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Key points

●● CF and non-CF bronchiectasis are complex, multifactorial chronic pulmonary diseases with gender-
specific differences in their prevalence, clinical presentation and disease severity.

●● Microbiology and host physiology (immune and inflammatory responses) are essential aspects of 
bronchiectasis that are influenced by gender.

●● Sex steroid hormones vary in type, fluctuating pattern and concentration throughout life and 
between the genders with a potential central role in bronchiectasis-related gender differences.

●● Gender-focused clinical and/or therapeutic intervention has the potential to narrow the observed 
gender gap occurring in bronchiectasis-related lung disease.

Educational aims

●● To summarise the existing knowledge base of gender-related differences in CF and non-CF 
bronchiectasis.

●● To highlight key areas of importance in the diagnosis, monitoring and treatment of 
bronchiectasis that is amenable to clinical and/or pharmacological intervention to narrow the 
existing “gender gap”.
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Gender differences in chronic respiratory disease, including cystic fibrosis and non-cystic fibrosis 
bronchiectasis are clinically apparent and of increasing importance. Differences in disease prevalence, 
severity and outcome are all described, however, the precise cause of the gender dichotomy and 
their associated underlying mechanisms have been poorly characterised. A lack of dedicated clinical 
and epidemiological research focused in this area has led to a paucity of data and therefore a lack 
of understanding of its key drivers. Diagnosis, disease pathogenesis and treatment response are 
all complex but important aspects of bronchiectasis with an evident gender bias. Broadening our 
understanding of the interplay between microbiology, host physiology and the environment in 
the context of chronic lung diseases, such as bronchiectasis, is critical to unravelling mechanisms 
driving the observed gender differences. In this review, epidemiological, biological and environmental 
evidence related to gender in bronchiectasis is summarised. This illustrates gender differences as 
a “real issue” with the objective of mapping out a future framework upon which a gender-tailored 
medical approach may be incorporated into the diagnosis, monitoring and treatment of bronchiectasis.
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Increasing epidemiological and biological evidence 
supports the influence of gender on disease 
pathogenesis and patient outcomes [1–3]. Sexual 
dichotomies plague most chronic respiratory 
disease states including asthma, chronic obstructive 
pulmonary disease (COPD) and bronchiectasis. 
Gender-related differences are described in disease 
prevalence, severity and outcome [1, 2, 4, 5].

Bronchiectasis is a complex multifactorial 
chronic respiratory disorder characterised by an 
abnormal, permanent and irreversible dilatation 
of bronchi. This anatomically abnormal state is 
accompanied by persistent airway inflammation, 
a chronic cough and excessive mucopurulent 
secretions [6, 7]. A key genetic related cause of 
bronchiectasis is cystic fibrosis (CF); a progressive 

multi-systemic disease caused by a mutation to 
the CF transmembrane conductance regulator 
(CFTR), which codes for an apically based chloride 
ion channel. In addition to CF, bronchiectasis 
may also be driven by a range of non-CF related 
disorders or be idiopathic [8–11]. The diagnosis 
and management of CF-related bronchiectasis has 
matured. Significant improvements in radiology, 
awareness and specialist non-CF bronchiectasis 
services, including the publication of consensus 
international guidelines for its diagnosis and 
management, have all contributed to the increased 
prevalence of non-CF bronchiectasis [11, 12]. 
Despite this, delayed diagnosis or misdiagnosis 
remains a key issue affecting both CF and non-CF 
bronchiectasis [6, 7, 13].

Gender differences in 
bronchiectasis: a real issue?

@ ERSpublications
CF and non-CF bronchiectasis are complex multifactorial chronic pulmonary diseases 
demonstrating gender differences in their prevalence, severity and infections, some of 
which are attributable to sex hormones http://ow.ly/beDf30jseK4

Cite as: Vidaillac C, Yong 
VFL, Jaggi TK, et al. Gender 
differences in bronchiectasis: 
a real issue? Breathe 2018; 
14: 108–121.

http://orcid.org/0000-0003-0417-7607
http://ow.ly/beDf30jseK4


110 Breathe  |  June 2018  |  Volume 14  |  No 2

﻿ Gender differences in bronchiectasis: a real issue?

Age and ethnicity are recognised as independent 
risk factors for respiratory diseases including CF 
and non-CF bronchiectasis [14–16]. Importantly, 
gender also plays a central role (figure 1) [1, 17–19]. 
In CF, higher male prevalence is observed across 
age categories [5, 8, 27]. Conversely, in non-CF 
bronchiectasis, females are more likely to present 
earlier, while males surpass them in older age 
categories [1, 17, 28–30]. In terms of disease 
severity, females are reported to have more severe 
disease, poorer clinical outcomes, worse lung 
function and a survival disadvantage compared to 
males across all age groups in both CF and non-CF 
related bronchiectasis (figure 2) [1, 3, 31].

The sexual dichotomy in bronchiectasis is 
multifactorial. Inherent gender differences in lung 
anatomy affect the susceptibility to chronic lung 
diseases such as bronchiectasis [37]. Females have 
smaller lungs but importantly smaller conducting 
airways, a pseudostratified ciliated epithelial 
tissue with mucus-secreting properties [4]. Lung 

physiology, and specifically microbiota composition, 
affects the severity and progression of chronic 
respiratory disease states with observed gender 
differences [1, 38]. The respiratory microbiome 
appears to have sex-specific signatures and 
is susceptible to a range of host immune and 
inflammatory consequences [39, 40]. Continuous 
chronic inflammation is reported as more 
deleterious in females potentially contributing to 
greater tissue damage and their observed worse 
disease severity [41].

Differences in genetics and sex steroid 
hormones, both type and concentration, are key 
components to the gender dichotomy observed 
in human health and disease [42]. These factors 
govern host physiology, immunity, microbiota and 
psychological or social behaviour [17, 43]. Women 
experience greater hormonal change through 
menstrual cycling, pregnancy and menopause over 
a lifespan and concentrations are generally higher 
than males. Hormone type and concentration are 
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Figure 1  The pathophysiology of bronchiectasis may be influenced by sex steroid hormones, which potentially account for some of the observed gender dichot-
omy in CF and non-CF bronchiectasis. Bronchiectasis is the result of a “vicious cycle” of chronic inflammation and infection that leads to frequent and recurrent 
exacerbations [6, 7]. Sex steroid hormones potentially play an important role in the pathophysiology of the disease through anatomical variation, regulation of 
lung function and altering microbiota composition, as well as influencing host immune and inflammatory response [19, 20, 21, 22–24]. Age, environmental 
factors and comorbidities are also important key components, directly or indirectly affecting the nature and concentration of sex steroid hormones [CC] and, 
therefore, potentially influencing gender differences observed in bronchiectasis [19, 20, 21, 22–26]. E: oestrogens; FSH: follicle-stimulating hormone; LH: 
luteinizing hormone; HCG: human chorionic gonadotropin; E2: oestradiol; P4: progesterone.
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thought to play crucial roles in disease pathogenesis 
and severity and therefore represent potential 
therapeutic targets to address gender-related 
disparities in respiratory medicine.

In this review, we present the current evidence 
base to support gender-related differences in 
prevalence, severity and treatment response in CF 
and non-CF bronchiectasis. Sexual dichotomies 
in bronchiectasis microbiology will be discussed, 
with specific focus on Pseudomonas aeruginosa, a 
major pathogen in bronchiectasis. The role of sex 
steroids on its regulation and that of the resident 
lung microbiota will be addressed. Potential 
clinical and therapeutic interventions to narrow 
the “gender-gap” will be outlined to map out a 
future framework upon which gender-tailored 
medical approaches may be incorporated into the 
diagnosis, monitoring and treatment of CF and 
non-CF bronchiectasis.

Gender differences in CF and 
non-CF bronchiectasis

Disease prevalence, severity and 
treatment

Bronchiectasis is characterised by the interplay 
between infection, inflammation and immunity, 
leading to airway damage and infection. It is the 
hallmark of lung disease in CF, where abnormal 
CFTR function dehydrates the airway lumen, 
thickens secretions and impairs mucociliary 
clearance, which in turn increases the risk of 
microbial colonisation and infection [44]. Non-CF 
bronchiectasis is similarly complex and its 
multifactorial pathogenesis has highly variable 
clinical presentations that sometimes overlap 
with other respiratory disease states [30]. Repeated 
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Figure 2  A summary of known gender differences in the prevalence and severity of CF and non-CF bronchiectasis by 
age and during pregnancy. Areas with no or sparse data are indicated. a) While data are sparse in paediatric popula-
tions, bronchiectasis confirmed by high-resolution computed tomography scans of the thorax suggest a 2:1 male:female 
ratio in patients aged <18 years [1, 18, 32]. b) Severity of bronchiectasis is greater in females than in males [1, 3, 31]. 
Prevalence of CF is reported to be higher in males, while females surpass males in non-CF bronchiectasis [3, 13, 20, 53, 54]. 
c) Prevalence and severity data are not available in the elderly due to a shortened life expectancy in CF. In non-CF bron-
chiectasis, prevalence is higher in males, although females present with clinically more severe disease [18, 21, 22, 33, 
34]. d) Pregnancy is increasingly reported in CF patients. Although severity of the disease appears similar in pregnant and 
non-pregnant patients, poorer lung function prior to pregnancy appears to be a risk factor for complications and worse 
clinical outcomes during pregnancy [35, 36]. FEV1: forced expiratory volume in 1 s.
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cycles of infection and inflammation coupled to 
mucus hypersecretion leads to obstruction and 
collapse of smaller airways further perpetuating 
more bronchiectasis (figure 1) [45].

CF-related bronchiectasis is predominantly 
a Caucasian disease, with highest prevalence 
reported in Europe, North America and Australia 
[44, 46]. CF  is more prevalent in males across 
all age groups (figure 2) [31]. However, the 
prevalence of non-CF bronchiectasis varies with 
age, ethnicity and geography [14–16]. Recent 
work estimates a prevalence of 370–566 per 
100 000 of the population in the USA and Europe; 
however, prevalence in the Asia–Pacific region 
is less certain due to a lack of published data. 
Frequencies are expected to be up to four-fold 
higher; however, existing data from Hong Kong 
and Australia are in contrast to this [17, 33, 47–49]. 
Non-CF bronchiectasis is an age-associated 
disease with highest prevalence in the age group 
>75 years [13]. Rates are higher in populations 
with poor healthcare access or significant 
childhood pulmonary infection [50].

Gender differences in bronchiectasis are 
reported [2, 19, 31, 38, 51, 52]. Females with CF 
have more severe disease, poorer lung function and 
earlier Pseudomonas colonisation and conversion 
to its more aggressive mucoid form [3, 20, 53, 54]. 
Females with non-CF bronchiectasis are more 
likely to present with disease especially that which 
is idiopathic or associated with asthma [13]. 
Prevalence of non-CF bronchiectasis is reported 
to be higher in males, especially when aged ≥65 
years [18, 28, 29, 33, 34]. Explanations put forward 
include the overall lower life expectancy of females 
and higher proportions of smokers with COPD in the 
affected age group [29, 33, 55]. While data is scarce 
in paediatric populations, bronchiectasis confirmed 
by high-resolution computed tomography scans of 
the thorax suggest a 2:1 male:female ratio [1, 18].

While the prevalence of bronchiectasis is higher 
in males, disease is more severe in females [2, 13, 
56, 57]. In CF and non-CF bronchiectasis, females 
have poorer prognosis [3, 5, 31, 38, 57, 58]. As early 
as the 1990s, the median survival in CF females 
was reported to be lower than that in males [59]. 
More recent work confirms this observation [31]. 
With improved overall CF survival due to advances 
in its diagnosis and treatment, most women 
now reach reproductive age and many conceive. 
Pregnancy brings with it fluctuating hormonal 
states and additional physiological stresses. In 
a study by Cohen et al. [60] more than 30 years 
ago, pregnant women with CF are reported to 
have severe pulmonary dysfunction associated 
with shortened gestation periods and increased 
perinatal mortality rates. With advances in our 
understanding of CF disease and improvement in 
its care, more recent work has shown that pregnant 
women with CF in fact do not experience worse 
survival; however, prospective work is desired 
to examine the precise effect of pregnancy on 

CF progression and to unravel the specific role 
of sex hormones in pregnancy [35, 36]. Work 
performed by our group illustrates that oestrogen 
as 17β-oestradiol impairs immune responses in the 
CF airway and has a role in the mucoid conversion 
of P. aeruginosa [20, 61]. In addition, associations 
between oestriol, the major oestrogen during 
pregnancy, and airway Pseudomonas including 
its mucoid conversion post pregnancy have been 
suggested but require further exploration [20]. The 
role for hormones as modulators of CF disease is 
further suggested by fluctuating lung function and 
nasal potential differences over the course of a 
menstrual cycle, observations discussed later in this 
review [20, 21, 62, 63]. As non-CF bronchiectasis 
usually presents in females who have undergone 
the menopause, the role of oestrone, the major 
oestrogen of menopause, should be investigated in 
future studies as currently no evidence exists to link 
hormones to the severity of non-CF bronchiectasis 
in affected females.

There is little data available addressing the 
impact of gender on treatment responses in 
bronchiectasis [64]. A recent CF study focused on 
evaluating the lung microbiome as a marker of 
response to aztreonam did report gender-associated 
differences in treatment response and lung 
microbiome diversity [64]. Importantly, treatment 
adherence differs between genders with females 
demonstrating poorer overall adherence [65–71]. 
This likely contributes to gender-related differences 
in disease severity in bronchiectasis, for instance, 
significantly less women use inhalers appropriately 
and have poorer attendance at follow-up 
appointments for treatment and pulmonary 
rehabilitation [1, 72, 73].

Physical and biological 
mechanisms

Physical and biological mechanisms play key 
roles in the gender differences observed in CF and 
non-CF bronchiectasis. These include comorbidities, 
pulmonary anatomy and physiology, chronic 
infection and inflammation, impaired host defences 
and other environmental influences (figure 1) [74]. 
Many mechanisms are reported to the disadvantage 
of women with CF and non-CF bronchiectasis. These 
include earlier bacterial colonisation and conversion 
to mucoid P. aeruginosa phenotypes, nutritional 
deficiencies and disorders, delayed diagnoses, greater 
comorbidities and socio-cultural disparity [14, 51].

Sex-related differences in respiratory tract 
structure, function and microbiome composition 
predispose females to earlier infection. Females 
have smaller lungs and therefore smaller conducting 
airways. Goblet cells located at the surface of 
pseudostratified ciliated epithelia are responsible 
for mucus production and oestrogen regulates 
MUC5B gene expression augmenting mucin 
production  [4,  75]. In addition, the female sex 
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hormones oestrogen and progesterone influence 
airway cilia beat frequency and function thereby 
affecting the mucociliary escalator [76]. Changes 
to the pathogenicity of CF-related pathogens 
correlates with clinical outcome and patient survival. 
Colonisation with P. aeruginosa, Staphylococcus 
aureus, Haemophilus influenzae, Aspergillus species 
and non-tuberculous mycobacteria (NTM) occur 
in females at younger age, and correlate with lower 
life expectancy [31]. In NTM associated non-CF 
bronchiectasis, gender associations are observed with 
particular species: M. kansasii in men and M. avium 
intracellulare in women [77, 78]. Studies in mice reveal 
that lower oestrogen levels predispose to M. avium 
intracellulare lung infection, a potential association 
with the post-menopausal state [79]. One particular 
NTM-associated bronchiectasis phenotype coined 
Lady Windermere’s syndrome is typically found in 
white, lean and tall women [80]. The recognised sex-
related differences in microbial colonisation, infection 
and virulence can, at least in part, be attributed to 
differences in host immune response and bacterial 
pathogenicity; features influenced and regulated by 
sex steroid hormones  [81, 82].

Nutritionally deficient diets unsurprisingly 
have an adverse effect on the course of chronic 
pulmonary disease [83–87]. They influence body 
mass index and lead to deficiency states that 
impact host homeostasis and physiological function 
[87, 88]. An Australian study illustrated that men 
with higher fat and energy intake had a longer 
median survival compared to females, while vitamin 
D deficient states, which are of higher prevalence 
in women and in non-CF bronchiectasis patients, 
correlate with disease severity [89, 90]. The greater 
the deficiency in vitamin D the greater severity of 
the disease. Concomitant disease occurring with 
non-CF bronchiectasis, such as rheumatologic 
or connective tissue disorders, are also of higher 
prevalence in women and further influences the 
observed gender dichotomies [1].

The delayed diagnosis of bronchiectasis 
observed in females results in a delayed initiation 
of appropriate therapy, and therefore disease 
progression, increased exacerbations and earlier 
microbial colonisation with Pseudomonas and other 
pathogens [17, 27, 91]. Gender bias in the diagnosis 
of CF and non-CF bronchiectasis is reported [27, 34, 
91, 92]. In a study by Lai et al. [27], females with CF 
were diagnosed later. In another study, an overall 
delay of over a decade was observed in diagnosing 
non-CF bronchiectasis, with women being at a 
disadvantage [91]. Such differences are attributed 
to age of symptom onset, daily expectoration and 
poor pulmonary function, each illustrating gender-
related differences [27, 91].

Social habits and behaviour are also important 
factors in gender-associated differences in 
bronchiectasis [56, 86]. Both impact disease 
manifestation and progression [56, 93]. Generally, 
males and females differ in perception of disease, a 
feature impacting their response to it [56, 93, 94]. 

Health perceptions are different to actual disease 
but have a direct bearing on quality of life [56, 86, 
93, 95]. Women in general report more physical 
and emotional symptoms. In CF for example, 
patients with comparable disease based on lung 
function and BMI illustrate differences, i.e. females 
experience a poorer quality of life, concerns 
for a career and their general future [56,  86]. 
Males conversely scored poorly on body image 
perception [56, 86]. Behavioural characteristics 
of women with CF include a lack of participation 
in aerobic physical activity and limitation of their 
caloric intake, leading to inadequate airway 
clearance and nutritional deficiency [96–98]. In 
contrast, males participate in sports and have 
higher caloric intake, factors promoting better 
CF outcomes [86, 97, 98].

Environmental factors influence bronchiectasis 
outcomes. Tobacco smoking is reported to have 
a greater disadvantage for women, who typically 
experience faster pulmonary function declines 
compared to men, even when amounts of tobacco 
smoked are equal [74, 99]. The relatively smaller 
size of female lungs coupled to the differing 
detoxification approaches further translates into a 
greater and prolonged exposure to tobacco and its 
associated toxicity in females [74, 99].

The role of sex steroid hormones

Sex steroid hormones and, in particular oestrogens, 
have complex effects on the interaction between 
infection, immune function and inflammation. 
Oestrogen receptors are expressed on airway 
epithelial cells, and multiple studies have evaluated 
their effect on CF-related bronchiectasis [19–24]. 
Oestrogens directly regulate goblet cell expression 
and impact the post-translational modification of 
mucin, a key component of mucus [100, 101]. Both 
oestrogen and progesterone, through functional 
regulation of ion transporters, further dehydrate the 
airway–surface liquid, a crucial ingredient for optimal 
mucociliary clearance, which when impaired confers 
a susceptibility to microbial colonisation and infection 
[62, 102–106]. Testosterone and female sex steroid 
hormones also differentially regulate levels of CFTR 
expression in the lungs and other organs [107, 108]. 
Ramli et al. [107] demonstrate that testosterone 
increases CFTR epithelial expression, an effect 
reversed by anti-androgen treatment with flutamide. 
Similar effects with oestrogen but not progesterone 
have also been described [108]. In previous studies 
we demonstrate that immune responses in the 
CF airway are further compromised by oestrogen 
which supresses the protective acute inflammatory 
burst necessary to clear bacterial infection and 
prevent exacerbation  [61]. T-helper-17-induced 
inflammation, further enhanced by oestrogen, is also 
associated with gender-related differences in CF [24]. 
The inflammatory function of oestrogen in the airway 
is complex and tightly balanced; anti-inflammatory 
but also able to induce tumour necrosis factor (TNF)-α 
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and IL-8 and promote neutrophil oxidative burst. 
Ovariectomised female mice treated with oestrogen 
were also more susceptible to P. aeruginosa with 
greater mortality [109].

In addition to regulating lung physiology 
and host immune and inflammatory response, 
female hormones also directly affect bacterial 
pathogenesis. Our group has shown that oestrogen 
promotes the conversion of P. aeruginosa from 
a non-mucoid to a more pathogenic mucoid 
phenotype, one associated with lung function 
decline [20, 45, 57, 110–112]. This mucoid drug-
resistant switch is associated with alginate over 
production [20, 53, 113–116]. Chronic mucoid 
P. aeruginosa infection occurs earlier in women, 
further supported by the premature decline 
in female pulmonary function [3, 20]. Mucoid 
conversion and biofilm formation are mutually 
exclusive events and oestrogen independently 
promotes P. aeruginosa biofilm formation through 
inhibitory effects on antimicrobial peptides, such 
as lactoferrin [24, 116].

A significant increase in female CF exacerbations 
occurs post-puberty as a direct consequence of 
menstrual hormonal fluctuation [117]. Sweezey 
et al. [63] further illustrate that nasal potential 
differences, a measure of ion transport across 
respiratory epithelia, varies through the menstrual 
cycle of females with CF. In menstruating CF women, 
infective exacerbations associate with elevated 
systemic oestrogen, and mucoid P. aeruginosa is 
selectively isolated at this time [20]. Further work 
dissecting out mechanisms through which sex 
steroids regulate host physiology and bacterial 
pathogenicity are now warranted.

Sex hormones are delivered to host tissues 
through sex hormone binding globulin, which 
exhibits a higher binding affinity for the male 
hormone testosterone compared to oestrogen. 
Therefore, greater unbound and biologically 
active sex hormones are available in females 
potentially explaining the larger gender-
related disadvantage females experience in 
terms of lung physiology and pathology [118]. 
Oestrogen exists in multiple forms: oestrone (E1), 
oestradiol (E2), oestriol (E3) and oestetrol (E4). E1 is 
predominant in menopause, while E2 and E3 are 
most abundant in pre-menopausal and pregnant 
women, respectively. E4 is found in pregnancy. The 
variability of oestrogen receptor affinity for the 
different oestrogens, their potency and subsequent 
metabolism can further explain potential variations 
in their in vivo biological activity across women 
of different age groups [119]. Endocrine-related 
disorders are common in CF and several studies 
report that up to a quarter of men with CF have 
low testosterone, which in turn affects disease 
progression through loss of body mass and bone 
mineral density  [120–127]. High testosterone 
coupled to low oestradiol and progesterone are 
also reported in non-ovulating female CF patients 
with uncertain effects on disease outcomes [121].

In vivo oestrogen concentrations are affected 
by exogenous exposure or consumption [25, 26]. 
This is a relevant topic as it is now evident that 
synthetic and natural oestrogens entering the food 
chain pollute our environment [25, 26]. While 
consequences on human health are debated, their 
consequence in respiratory disease and specifically 
bronchiectasis is yet to be explored [25]. Certain 
environmental factors induce variation to their 
production and metabolism, which potentially 
contributes to gender-related disparities in 
bronchiectasis [128, 129].

Overall, a sufficient body of evidence now 
exists, particularly in CF, to suggest that the 
shifting hormonal state in the female airway 
bears a substantial effect on lung pathology and 
worsens bronchiectasis outcomes [117]. Hormonal 
therapy represents a potential strategy to improve 
clinical outcomes by interrupting endogenous 
oestrogen.  In this context we demonstrated 
that oral contraceptive use influences the need 
for antibiotics in CF exacerbations [20]. Further 
prospective and randomised controlled clinical 
trials are necessary before such approaches can 
be clinically applicable [130].

The lung microbiome in CF 
and non-CF bronchiectasis

Structure and composition of the 
lung microbiome: is there a gender 
bias?

The lung microbiome is a dynamic microbial 
community, consisting of bacteria, viruses 
and fungi, each influenced by its host and the 
environment. There are an increasing number of 
studies assessing its composition and associated 
disease progression in bronchiectasis. Its 
structure, composition and diversity demonstrate 
marked inter-patient variability in CF and non-CF 
bronchiectasis [32, 131–134]. Most studies 
show that the lung microbiome is patient specific 
with its diversity dependent on patient age, lung 
function and bronchiectasis severity [135–139]. 
In cross-sectional studies assessing more than 
200 CF patients (children and adults), four 
dominant genera were reported across age groups 
and include Streptococcus, Rothia, Veillonella 
and Actinomyces  [135]. Pathogenic organisms 
detected include Pseudomonas, Burkholderia, 
Stenotrophomonas and Achromobacter. The first 
two dominate in older patients, while Streptococcus 
is found at high frequency in children [135]. In 
paediatric non-CF bronchiectasis, Haemophilus, 
Moraxella and Neisseria are more abundant compared 
to Pseudomonas and Staphylococcus [32]. In contrast, 
adults with non-CF bronchiectasis illustrate 
microbiome profiles dominated by Haemophilus, 
Pseudomonas and Streptococcus  [140]. Other 
common pathogens in this setting include Klebsiella 
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pneumoniae, Acinetobacter spp. and Stenotrophomonas 
maltophilia [140, 141]. Importantly, lung microbiome 
diversity does not correlate with pulmonary function, 
a feature in contrast with CF. Treatment variability 
in bronchiectasis potentially explains the observed 
differences in lung microbiome structure and 
diversity; however, when exacerbation-associated 
microbiomes are assessed they surprisingly do not 
differ to the stable state [140, 142]. Geographic 
variability and antibiotic-related change to 
microbiome composition are other key factors for 
CF and non-CF bronchiectasis where antibiotic 
usage is high [143]. Analyses from a large CF 
cohort illustrates that the relative abundance of 
the opportunistic pathogens Pseudomonas and 
Staphylococcus were somewhat reduced following 
antimicrobial treatment, whereas commensal 
bacteria Streptococcus and Prevotella dramatically 
decreased. Following antibiotic withdrawal, 
the relative abundance of pathogens was restored 
while commensal bacteria remained in low 
abundance [144].

Gender differences in bronchiectasis airway 
microbiology and microbiome composition remains 
a key question with a lack of dedicated research 
(figure 3). In recent CF studies assessing the lung 
microbiome as a marker to identify responders 
to aztreonam therapy, gender was interestingly 
cited as a confounding parameter [64]. In this 
study, males had significantly higher Shannon 
diversity indices that correlated with a reduced 
proportional abundance of Pseudomonas and 
increased abundance of Streptococcus, Dialister, 
Shuttleworthia and Stenotrophomonas (figure 3). 
In contrast, females had a higher abundance 
of Pseudomonas and trended toward improved 

responsiveness to aztreonam. Significant 
gender variation was detected in microbiome 
composition; however, the authors could not 
exclude the possibility that such differences 
were simply due to interpatient variability  [64]. 
As discussed above, females with CF acquire 
and convert to mucoid P. aeruginosa in advance 
of males [20, 53, 57, 110]. Beside Pseudomonas, 
S. aureus, H. influenzae, Achromobacter xylosoxidans, 
Aspergillus species and NTM all occur in CF females 
at an earlier time-point compared to males, with 
the largest age differences observed with atypical 
mycobacteria [31]. In non-CF bronchiectasis, post-
menopausal women are reported to have greater 
NTM susceptibility  [78, 145]. In a retrospective 
review, P. aeruginosa is also described as the 
predominant pathogen in females with non-CF 
bronchiectasis, while in contrast, males were 
dominated by H.  influenzae  [52]. The lower 
abundance of H. influenzae in females here may be 
linked to the protective role of oestrogen as proposed 
in a separate body of research [146]. Like CF, mucoid 
conversion of P. aeruginosa appears to occur more 
frequently in females with non-CF bronchiectasis; 
however, not all studies are congruent on these 
findings [54, 112].

P. aeruginosa: a biomarker of 
severity in bronchiectasis and a 
pathogen that responds to sex 
steroid hormones

Pulmonary infection is a major risk factor for the 
development of bronchiectasis [147, 148]. The 
impaired airway mucus clearance provides a 

CF Gender differences in airway 
microbial pathogens
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Abundance

Male

Female

Abundance
Streptococcus spp.
Stenotrophomonas spp.

Pseudomonas aeruginosa

Haemophilus influenzae
Streptococcus pneumoniae
Staphylococcus aureus

Pseudomonas aeruginosa
Haemophilus influenzae
NTM

Pseudomonas aeruginosa
mucoid

Female>male
(with earlier conversion)

Pseudomonas aeruginosa
mucoid

Male

Female

Female>male

Figure 3  Gender differences in the lung microbiome in CF and non-CF bronchiectasis. The nature of respiratory pathogens 
predominant in patients with CF and non-CF bronchiectasis is gender specific [32, 135–138]. Females have higher risks of 
Pseudomonas aeruginosa colonisation and mucoid conversion in both CF and non-CF bronchiectasis [54, 111].
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favourable environment for microbial colonisation 
by opportunistic pathogens, including P. aeruginosa 
[149, 150]. P. aeruginosa is a recognised marker 
of bronchiectasis severity and is associated with 
increased hospitalisations, exacerbations and 
greater mortality [141, 150–154]. This versatile 
genetically flexible pathogen can modulate its 
gene expression to increase survival potential in 
the presence of environmental challenges including 
the host immune response, oxygen depletion and 
the threat of antimicrobial therapy [155–159]. 
Excess inflammation in bronchiectasis causes 
oxidative stress, that itself exerts a mutagenic 
stress on DNA and promotes the development of 
hyper-mutable Pseudomonas strains [160–162]. 
Adaptive mutations aid P. aeruginosa persistence 
in lung niches [154, 157, 159, 163–165]. The 
detection of small colony variants in CF associates 
with poorer prognosis and increased levels of 
the biofilm signalling molecule cyclic-di-GMP, 
exopolysaccharide production and enhanced biofilm 
formation [166, 167]. In non-CF bronchiectasis, 
P. aeruginosa is the leading coloniser [140, 168]. 
Despite this, emerging data in CF and non-CF 
bronchiectasis suggest the value of comprehensive 
molecular analysis of this organism, particularly in 
the setting of multispecies communities where 
social interaction shapes virulence [136, 159, 
169–172]. These data should be related to its 
potential to respond to hormones, which in turn 
may explain gender-related differences in the 
organism’s genetic composition, flexibility and 
transmissibility [173–175].

P. aeruginosa in CF and non-CF bronchiectasis is 
phenotypically diverse [150, 174, 176]. It utilises 
a range of virulence mechanisms that all have the 
potential of influence by sex hormones [53, 113, 
141, 156, 163, 176]. Pseudomonas virulence changes 
over time and with disease progression; for example, 
flagellar expression, which is essential for motility, 
reduces over time in CF and non-CF bronchiectasis 
[156, 176]. Woo et al. [176] illustrate that in 
bronchiectasis, P. aeruginosa strains have comparable 
levels of proteases and elastases and similar capacities 
for motility and biofilm formation. However, lipase 
production, an enzyme used by the bacteria to break 
down lipids from lung surfactant, is reduced in non-CF 
bronchiectasis isolates compared to CF [176].

Sex steroids, directly and indirectly, influence 
the pathogenesis of bronchiectasis by altering the 
ecological interaction between airway microbes 
(commensal or pathogenic) and their host 
(figure 1) [177]. Host hormones cross-talk with 
bacteria influencing their survival, virulence and 
pathogenesis [178–180]. Lyte and co-workers 
[181, 182] demonstrate that P. aeruginosa growth 
can be induced by stress hormones. Increased 
densities of P. aeruginosa promote quorum sensing, 
alginate production and biofilm formation, all crucial 
virulence traits ensuring the bacteria’s persistence 
and survival [163, 183, 184]. Oestrogens, and 
17β-oestradiol in particular, promote P. aeruginosa 

mucoid conversion and emerging work suggests 
that the hormone (and its metabolites) may even act 
as quorum sensing inhibitors [31, 179, 185, 186].

Narrowing the gender 
gap: potential clinical and 
therapeutic interventions

Addressing sex-related dichotomies observed in 
pulmonary disease including bronchiectasis are 
believed to have the potential to confer therapeutic 
and prognostic improvements. Clinical and 
therapeutic interventions aimed at addressing 
biological and/or behavioural parameters may 
contribute to narrowing the emerging “gender gap” 
in chronic respiratory disease and infection [21]. 
Therefore, in addition to age, ethnicity, geography 
and nutrition, gender should also be considered 
an important factor in the management of CF and 
non-CF related bronchiectasis.

In bronchiectasis, females generally have worse 
clinical outcome, poorer lung function, more 
severe infections, and increased exacerbations 
and mortality [1, 3, 19, 187]. Improving 
patients’ quality of life and clinical symptoms, 
particularly breathlessness and cough, reducing 
exacerbations and lowering the airway microbial 
load remain the core principles of bronchiectasis 
management [188]. However, females seek medical 
attention later and underestimate their symptoms, 
with consequences for the severity of their disease 
and potentially treatment response [189]. Raising 
awareness of bronchiectasis may reduce diagnostic 
delays observed in females and encouraging females 
to seek appropriate medical care and treatment can 
potentially assist in narrowing the gender gap in 
terms of clinical outcome [188].

Treatment approaches for bronchiectasis are 
complex and have been reviewed elsewhere [190–
192]. Some believe that management strategies 
should be gender oriented; however, little data to 
support such an approach exists. Future studies 
should address differences in treatment efficacy 
and response between the genders and examine 
potential strategies to narrow the “gender gap”. 
Interestingly, a gender-specific aztreonam response 
favouring females has been reported in CF; 
however, reasons to explain this are unclear [64]. 
Gender associated differences in microbiology, 
pharmacology, metabolism, immune response 
and inflammation are all targetable possibilities. In 
addition to variation in antibiotic response, Heirali 
et al. [64] showed that anti-microbial susceptibility 
profiles varied between genders suggesting that 
further work is required to better understand the 
potential to stratify our antibiotic approach by gender. 
Anti-inflammatory therapies exhibit gender-specific 
effects [41]. In prior work unrelated to bronchiectasis, 
females with asthma or COPD report greater oral 
corticosteroid use but persistently worse clinical 
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outcomes [41]. Mechanisms driving the observed 
gender-related differences in bronchiectasis have 
important consequences for therapy. Menstrual 
cycle variation in asthma, for instance, is a relatively 
well-recognised phenotype with small studies 
illustrating the potential benefit of exogenous 
hormone administration [193, 194]. While it is 
unlikely that menstrual cycling influences non-CF 
bronchiectasis (as most disease is detected in the 
post-menopause state), its effect in menstruating 
CF patients is emerging [20, 62, 63]. Furthermore, 
sub-phenotypes of bronchiectasis may exist that can 
be stratified by gender and the dominant hormone, 
whether pre- or post-menopausal. Use of the oral 
contraceptive pill appears to lower exacerbation rates 
and the need for antibiotics in CF but further studies 
are required to confirm this [20]. Women receiving 
hormone replacement therapy demonstrate 
better immune function through increases in 
cell proliferation and elevated TNF-α, however, 
how this translates to female post-menopausal 
non-CF bronchiectasis remains to be established 
[75]. Importantly, if hormonal manipulation is to 
be seriously considered as a potential adjunctive 
therapeutic approach in bronchiectasis, their 
adverse long-term consequences must be examined. 
Tamoxifen, a selective oestrogen-receptor modulator 
is experimentally suggested to be of benefit in 
primary cell cultures from women with CF and is 
shown to restore the epithelial airway–surface liquid 
by interfering with calcium signalling [62, 106].

Research focusing on CF and non-CF 
bronchiectasis is clearly necessary in the context of 
the gender-related differences already established in 
these diseases. A better understanding of infection 
and immune and inflammatory mechanisms in 
relation to gender will be necessary if we are to 
successfully narrow the bronchiectasis “gender gap”.

Conclusion

The inherent heterogeneity in bronchiectasis, CF 
and non-CF represents a clinical and therapeutic 
challenge. The global move toward personalised 
medicine combined with the identification of 

genotypes, phenotypes and other biological 
parameters in bronchiectasis is of great interest 
particularly in the context of gender-associated 
alterations in disease [195, 196]. There are clear 
gender associated differences in disease portending 
to worse clinical outcomes for female patients. 
The role of sex steroid hormones in the microbial 
endocrinology space is emerging and how this 
affects the airway microbiology in bronchiectasis 
is an important avenue for future work. However, 
a gender-tailored clinical and pharmacological 
approach may be necessary before we can consider 
this. An important recent statement by Melinda 
Gates must be acknowledged: “We cannot close 
the gender gap without first closing the data gap”. 
Therefore, dedicated gender-focused research is 
necessary to better understand its role and impact 
in bronchiectasis and permit us to effect appropriate 
intervention to address this “real issue”.
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