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It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells
degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells
degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y
cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor
of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y
cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-
induced toxicity in neuronal cells.

1. Introduction

Induction of reactive oxygen species (ROS) formation has
been implicated in many neurological diseases such as
ischemia, traumatic brain injury, Alzheimer’s disease, and
Parkinson’s disease [1]. Hydrogen peroxide (H2O2) belongs
to nonradical form of ROS and is easily converted to hydroxyl
radical which cause damage to many cellular components
or even cell death [2]. It is increasingly apparent that H2O2

plays a key role in cell death of neuronal [3] and glial cells
[4]. Several studies have indicated that H2O2 activates a
number of signaling cascades including extracellular signal-
regulated kinase (ERK) [5], c-Jun-N-terminal kinase (JNK)
[6], and nuclear factor kappa B (NF-κB) [3]. However, the
upstream elements that lead to this committed stage of
H2O2-induced cellular death signaling in neuronal cells need
further investigation.

It has been reported that a major pathway involved in
ERK stimulation in various types of cells requires the sequen-
tial activation of Ras, Raf, and mitogen-activated/ERK-
activated kinase (MEK) [7]. Therefore, in the present
study, exposure to exogenous H2O2 was used to determine

the effects of H2O2 on activation of Ras-dependent death
signaling cascades in cultured human neuroblastoma cell
lines, SH-SY5Y cells.

2. Materials and Methods

SH-SY5Y cells were grown in completed media whichwere
made with 45% Minimum Essential Media (MEM), 45%
Ham’s F-12, 10% inactivated fetal bovine serum, and 100
units/ml penicillin/streptomycin. The cells were maintained
at 37◦C under 5% CO2/95% humidified air incubator for
indicated time. The toxic effect of H2O2 on cell viability
was determined in cultured cells. The cultured cells were
exposed to H2O2 for 24 hours. The control-cultured cells
were incubated with cultured medium for 24 hours. Cell
viability was measured by using the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, which
is based on the conversion of MTT to dark blue formazan
crystals by mitochondrial dehydrogenase enzyme. MTT in
Dulbecco’s Phosphate Buffer Saline (D-PBS) was added into
each well and incubated at 37◦C for 4 hours. The solution
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was discarded, then the extraction buffer (0.04 N HCl in
isopropanol) was added. The optical densities were measured
at 570 nm spectral wavelength using microtiter plate reader.
Data were expressed as mean ± SEM. Significance was
assessed by one-way analysis of variance (ANOVA) and
Tukey-Kramer Multiple Comparisons Test using the scien-
tific statistic software SigmaStat version 2.03. Probability (P)
values of less than.05 were considered significant.

3. Results

SH-SY5Y cultured cells were exposed to H2O2 at 0.1,
0.2, and 1 mM for 24 hours. The control-cultured cells
were incubated with cultured medium for 24 hours. The
higherthe H2O2 concentrationswere, the gradual reduction
in cell viability was observed. H2O2 at 0.1, 0.2, and 1.0 mM
significantly decreased cell viability to 73 ± 1.5%, 62 ±
0.1%, and 55 ± 2.7% of the untreated (0 mM) control
values, respectively (Figure 1). The results indicate that H2O2

produced a dose-dependent reduction in cell viability.
SH-SY5Y cells were exposed to 0.1 mM H2O2 with or

without pretreatment with GDP-beta-S, a GDP analog for
3 hours. After incubation, the cell viability was determined
using MTT assay. H2O2 at 0.1 mM for 24 h significantly
decreased cell viability (76 ± 0.66% of the control) when
compared with untreated control cells. Viability of SH-SY5Y
cells, pretreated with 0.001, 0.01, 0.1 and 1.0 mM GDP-beta-
S for 3 hours prior to incubation with 0.1 mM H H2O2 for
another 24 hours, was 74 ± 7.5%, 70 ± 7.5%, 77 ± 0% and
106 ± 8.9% of the control values, respectively (Figure 2).
The pretreatment of GDP-beta-S at 1.0 mM significantly
increased cell viability in H2O2-treated cells when compared
with H2O2-treated cells without GDP-beta-S. GDP-beta-
S at 0.001, 0.01, 0.1, and 1.0 mM had no effect on cell
viability when compared with control untreated cells (data
not shown).

SH-SY5Y cells were exposed to 0.1 mM H2O2 with
or without pretreatment with FTI-277, an inhibitor of
farnesyltransferase, for 3 hours. After incubation, the cell
viability was determined using MTT assay. H2O2 at 0.1 mM
for 24 hours significantly decreased cell viability (78 ±
5.0% of the control) when compared with untreated control
cells. Viability of SH-SY5Y cells, pretreated with 2.0, 5.0,
and 10.0 μM FTI-277 for 3 hours prior to incubation with
0.1 mM H2O2 for another 24 hours, was 94 ± 2.6%, 102
± 4.9%, and 101 ± 0.8% of the control values, respectively
(Figure 3). The pretreatment of FTI-277 at 2.0, 5.0, and
10.0 μM significantly increased cell viability in H2O2-treated
cells when compared with H2O2-treated cells without FTI-
277. FTI-277 at 2.0, 5.0 and 10.0 μM had no effect on cell
viability when compared with control untreated cells (data
not shown).

4. Discussion

Several in vitro [8] and in vivo [9] studies have suggested
that a Ras-dependent signaling pathway plays a role in the
regulation of cell death cascades. Ras is the prototype small
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Figure 1: Effect of H2O2-induced reduction in cell viability in SH-
SY5Y cultured cells. SH-SY5Y cells were treated with H2O2 at 0.1,
0.2, and 1.0 mM for 24 hours. Cell viability was assessed using MTT
assay and presented as percentage of untreated (0 mM) control cells.
The results are expressed as mean ± SEM of four independent
experiments. The ANOVA was performed for statistical analysis (∗P
< .05 compared with control).
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Figure 2: Effect of an inhibitor of G-protein activation, GDP-
beta-S, on H2O2-induced reduction in cell viability in SH-SY5Y
cultured cells. SH-SY5Y cells were treated with 0.001, 0.01, 0.1, and
1.0 mM GDP-beta-S for 3 hours prior to incubation with 0.1 mM
H2O2 for another 24 hours. Cell viability was assessed using MTT
assay and presented as percentage of untreated (0 mM) control
cells. The results are expressed as mean ± SEM of five independent
experiments. The ANOVA was performed for statistical analysis (∗P
< .05 compared with control and #P < .05 compared with H2O2-
treated cells).

guanine nucleotide-binding proteins (G-proteins) or GTPase
which cycle between inactive GDP-bound and active GTP-
bound states. Active Ras is able to stimulate many effector
proteins such as JNK, ERK, and NF-κB [10]. In the present
study, the role of GDP-to-GTP exchange in Ras activation
was investigated in H2O2-induced cell death using GDP-
beta-S, a GDP analog that competitively inhibits G-protein
activation by GTP. The pretreatment of GDP-beta-S at
1.0 mM significantly increased cell viability in H2O2-treated
cells when compared with H2O2-treated cells without GDP-
beta-S. These results clearly showed that GDP-beta-S reverses
the toxic effects of H2O2 in reduction in cell viability in
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Figure 3: Effect of farnesyltransferase (FTase) inhibitor, FTI-277,
on H2O2-induced reduction in cell viability in SH-SY5Y cultured
cells. SH-SY5Y cells were treated with 2.0, 5.0, and 10.0 μM FTI-277
for 3 hours prior to incubation with 0.1 mM H2O2 for another 24
hours. Cell viability was assessed using MTT assay and presented
as percentage of untreated (0 mM) control cells. The results are
expressed as mean ± SEM of four independent experiments. The
ANOVA was performed for statistical analysis (∗P < .05 compared
with control and #P < .05 compared with H2O2-treated cells).

SH-SY5Y cells. It is presumably that intracellular GDP-beta-
S inactivates G-proteins which would otherwise initiate cell
death after exposure to H2O2. Exposure to stressful stimuli
has demonstrated to induce G-protein activation in several
cell systems. For example, hair cells of rat treated with GDP-
beta-S are protected from gentamicin-induced ototoxicity.
The results of potent protection of Ras inhibitors, B581 and
FTI-277, against gentamicin-induced c-Jun activation and
hair cell damage suggest that activation of Ras is functionally
involved in this toxic cell damage [11].

In the present study, the potential role of Ras activa-
tion in H2O2-induced neuronal toxicity was explored with
inhibitors of farnesyltransferase (FTase). These compounds
block the activity of Ras by inhibiting the prenylation that
is required for membrane insertion of Ras, which is in turn
necessary for activation of downstream Ras signaling [12].
The results of the present study showed that FTI-277 reverses
the toxic effects of H2O2 on reduction in cell viability in SH-
SY5Y cultured cells. FTI-277 is a highly potent and selective
inhibitor of FTase. Its inhibition is specific to Ras proteins
whereas Rho isoforms and Rac are geranylgeranylated rather
than farnesylated [13]. FTI-277 inhibits Ras processing in
whole cells; however, it does not inhibit geranylgeranylated
processing at concentrations up to 10 μM [14], the highest
dose (10 μM) used in the present study, suggesting that
the inhibitory effects of FTase inhibitor within the Ras
superfamily are limited to Ras isoforms.

Ras proteins have been characterized into three major
isoforms, H-Ras, N-Ras, and K-Ras [7]. Although they
are almost identical, distinct cellular functions for the Ras
isoforms have been documented. For example, the H-Ras
protein increases resistance to the ionizing radiation; on the
other hand, K-Ras decreases the radiation resistance in Rat2
fibroblast cells [15]. It has been demonstrated that H-Ras
processing is inhibited at concentrations as low as 10 nM of
FTI-277. N-Ras processing is inhibited at 5 μM of FTI-277

while complete inhibition of K-Ras requires 10 μM of FTI-
277 [16]. Thus the data from the present study suggest that
FTI-277 concentrations (2–10 μM) which can inhibit H2O2-
induced toxicity in SH-SY5Y cells may protect SH-SY5Y cells
through inhibition of Ras.

5. Conclusion

In conclusion, the results of the present study emphasize that
Ras proteins may contribute as molecular elements in H2O2-
induced cell death in neuroblastoma SH-SY5Y cells. Inhibi-
tion of Ras farnesyltransferase (FTase) may have potential
in the management of oxidative stress-induced neuronal
cell degeneration. Further exploration of the mechanism by
which reduced Ras activity is able to decrease oxidative stress-
induced neuronal cell degeneration seems to be established.
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