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Abstract

Motivation: Whole-genome alignment (WGA) methods show insufficient scalability toward the

generation of large-scale WGAs. Profile alignment-based approaches revolutionized the fields of

multiple sequence alignment construction methods by significantly reducing computational com-

plexity and runtime. However, WGAs need to consider genomic rearrangements between

genomes, which make the profile-based extension of several whole-genomes challenging.

Currently, none of the available methods offer the possibility to align or extend WGA profiles.

Results: Here, we present genome profile alignment, an approach that aligns the profiles of WGAs

and that is capable of producing large-scale WGAs many times faster than conventional methods.

Our concept relies on already available whole-genome aligners, which are used to compute several

smaller sets of aligned genomes that are combined to a full WGA with a divide and conquer ap-

proach. To align or extend WGA profiles, we make use of the SuperGenome data structure, which

features a bidirectional mapping between individual sequence and alignment coordinates. This

data structure is used to efficiently transfer different coordinate systems into a common one based

on the principles of profiles alignments. The approach allows the computation of a WGA where

alignments are subsequently merged along a guide tree. The current implementation uses

progressiveMauve and offers the possibility for parallel computation of independent genome

alignments. Our results based on various bacterial datasets up to several hundred genomes show

that we can reduce the runtime from months to hours with a quality that is negligibly worse than

the WGA computed with the conventional progressiveMauve tool.

Availability and implementation: GPA is freely available at https://lambda.informatik.uni-tuebingen.

de/gitlab/ahennig/GPA. GPA is implemented in Java, uses progressiveMauve and offers a parallel

computation of WGAs.

Contact: kay.nieselt@uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole-genome sequencing (WGS) has become increasingly affordable

due to the continuous developments of next-generation sequencing

technologies. WGS for example is now routinely conducted in a clin-

ical context to monitor pandemic bacterial outbreaks based on the

sequencing of different isolates. Single nucleotide polymorphisms

(SNPs) between isolates and a reference genome can help to under-

stand and reconstruct transmission chains (Bryant et al., 2013; Sabat

et al., 2013). The disadvantage using a single reference to compare

different individuals is that features missing from the reference cannot

be detected. Especially in the absence of a closely related reference

genome, such an approach is not appropriate (Abdelbary et al.,

2018). To overcome this problem, an increasing number of studies in-

corporate the pan-genome of the species into the analysis of different

isolates. Here, gene content and genomic rearrangements such as

insertions, deletions, translocations and inversions are used to explain

the manifestation of phenotypic traits like antibiotic resistance

(Medini et al., 2005). One approach to compute a pan-genome is

based on whole-genome alignments (WGAs) [see for example

Angiuoli et al. (2011); Hennig et al. (2015); Schatz et al. (2014)]. In

comparison to a BLAST-based approach or variants of it which are

employed to compute orthologous gene groups, the WGA-based ap-

proach has the advantage that for the identification of orthologous

genes gene neighborhood is taken into account. In addition, the pan-

genome based on a WGA can be generalized to consider also non-

genic features. Further applications of WGAs encompass the identifi-

cation of pathogenic genomic islands or reconstruction of

phylogenomic trees (Chan and Ragan, 2013).
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Runtimes of current state-of-the-art aligners that are capable of

modeling genomic rearrangements, such as progressiveMauve

(Darling et al., 2010), are at least quadratic in the number of

genomes. Thus, computation of WGAs of hundreds or thousands of

even closely related bacterial genomes with state-of-the-art tools are

prohibitive. Currently only Parsnp (Treangen et al., 2014) is able

to compute large-scale alignments with hundreds or even thousands

of genomes within hours. However, it computes only a core-genome

alignment. While Parsnp is a highly valuable tool for the identifica-

tion of SNPs from the core pan-genome, it does not allow for the de-

tection of genomic rearrangements and pathogenic islands for

example. Recent advances in the field of WGA methods were made

with the introduction of seq-seq-pan (Jandrasits et al., 2018), which

offers the efficient extension of existing WGA by new genomes.

Through a pairwise iterative alignment process, new genomic

sequences are aligned against the consensus sequence of the align-

ment, which shows a substantial runtime decrease while achieving

comparably high-quality alignments.

seq-seq-pan makes use of the profile of a pairwise alignment

(and deduces a consensus sequence) for extension by new sequences.

Using a profile as a representation for an alignment is a popular con-

cept for calculating multiple sequence alignments (MSA) and was

first introduced by Hogeweg and Hesper (1984) in their progressive

alignment heuristic. The idea to progressively compute MSAs along

a guide tree, where at each node either a pairwise alignment between

sequences, a sequence and a profile or two profiles are conducted,

reduces the runtime significantly in contrast to the construction of

an optimal alignment that maximizes the sum of pairs score for ex-

ample. Especially the profile–profile alignment offers a fast and effi-

cient way to combine two separate alignments. Recent advances in

this field have been made by Liu and Warnow (2014) with the idea

of a divide and conquer approach to compute smaller subsets of

alignments which are merged through a profile–profile alignment.

The parallel computation of the subset alignments further reduces

the computational runtime, while still achieving highly accurate

results.However, currently such a profile alignment-based

approach is missing in state-of-the-art alignment tools such as

progressiveMauve. Since WGAs need to consider genomic rear-

rangements, such as translocations and inversions, between the indi-

vidual genomes, a profile alignment of two or more WGAs is more

difficult than a profile alignment of MSAs. Here, we introduce our

concept for the first profile–profile alignment of WGAs. The profile-

based merging of WGAs is conducted with the help of our

SuperGenome data structure (Herbig et al., 2012), which can be used

to transfer different WGA-coordinate systems into a common one.

Based on this profile-based alignment approach, we imple-

mented GPA (genome profile alignment), a software that can align

hundreds to thousands of genomes in a fast and efficient manner.

The goals of our WGA construction strategy were to adopt the

advances from the field of profile-based MSA tools, and therefore

significantly reduce computational time and still achieving highly ac-

curate WGAs. Our intention was not to develop a new genome

alignment algorithm. Therefore, GPA relies on other whole-genome

aligners but using a divide and conquer strategy to merge subsets of

alignments along a guide tree. In our current release, we have com-

bined progressiveMauve with our profile-based approach.

The article is organized as follows: In Section 2, we first present

the SuperGenome data structure and the algorithmic principles that

allow an efficient merging of several alignments. The critical aspect

is the transfer of different coordinate systems into a common one,

which is supported by the SuperGenome. We explain in detail the

extension of a given WGA by other genomes or other WGAs. Based

on this, we then explain how to compute large-scale WGAs from

scratch in a fast and parallelized manner. The section concludes

with a description of statistics that we used to compare and evaluate

our approach with the original progressiveMauve. The Section 3

presents the evaluation of the WGAs computed for different simu-

lated as well as real biological datasets by progressiveMauve

and GPA. The evaluation is focused on the runtime needed and the

achieved quality of the WGA by both approaches. Finally, we con-

clude this article with a critical discussion of our results and propose

future extensions of our approach.

2 Materials and methods

2.1 SuperGenome data structure and construction
In comparison to MSA, where the order of nucleotides within each

sequence is assumed to be preserved, aligning whole-genomes has to

consider the occurrence of rearrangements, such as translocations as

well as inversions. Regions shared by two or more genomes that do

not contain any rearrangements of homologous sequences are called

locally collinear blocks (LCBs), and a WGA is typically then repre-

sented by a set of such LCBs. Programs computing WGAs of this

form are for example Mauve (Darling et al., 2004),

progressiveMauve (Darling et al., 2010), Mugsy (Angiuoli and

Salzberg, 2011) and TBA (Blanchette et al., 2004). The

SuperGenome is a data structure, which makes use of a WGA and

features a bidirectional mapping between the alignment coordinates

and the original coordinates of each individual genome in the WGA

(Herbig et al., 2012). The main advantage of the SuperGenome data

structure is that it provides an unambiguous coordinate system and

is independent of any prechosen reference genome.

We will first introduce some formal terminology before we then

describe the algorithm to compute large-scale WGAs to decrease

computational runtime using a profile-based approach together with

the SuperGenome data structures derived from the profiles.

Given are n genomes gi; i ¼ 1; . . . ; n and a WGA A on these n

genomes. For every genome, we define a pair of integer arrays Gi

and SGi, which provides the bidirectional mapping between the gen-

omic positions of gi and alignment positions of A. Let us assume

that the j-th base of gi is aligned at the k-th position in A. Thus, Gi,

representing the mapping of gi to A, contains the value k at entry j.

In the case that the base was aligned as its reverse complement (i.e.,

representing an inversion), the value of k is negative:

Gi½j� ¼
k; if base j is aligned in forward orientation
�k; if base j is aligned as reverse complement

�
(1)

The respective SuperGenome array SGi represents the mapping

of the aligned sequence of genome gi in A and is analogous to Gi. In

addition, it also accounts for gaps. In case at position k in A no base

of gi was aligned the entry is set to zero:

SGi½k� ¼
j; if base j is aligned in forward orientation
�j; if base j is aligned as reverse complement
0; if no base of gi aligns at that position

8<
: (2)

An example illustrating the concept of the two arrays is shown

in Figure 1A.

These two arrays enable a simple way to deduce information

from the WGA. For alignment position k it is easy to determine

which individual genomic positions are aligned with each other by

accessing SGi½k� for each genome gi. Vice versa, to determine which

bases are aligned to a specific base j from gi, the image of Gi½j� is
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computed and the respective entry in the SG arrays is then used as

above.

For a given WGA of n genomes, the generation of the data struc-

ture is straightforward. For each genome, the pair of arrays Gi and

SGi is first initialized with the corresponding lengths of gi and A, re-

spectively, containing only zeros for each entry. To simplify the han-

dling of the 0-based array structure of Java, the arrays have a

leading entry (set to zero), resulting such that the j-th entry of the

array represents the j-th position in the genome or the alignment.

Through an iteration over every alignment position, the arrays are

filled, resulting in a total of 2� n arrays with a space requirement of

n� length of the alignment and the sum of all genome lengths.

In addition to the coordinate mapping, the SuperGenome takes

the LCB structure into account, as for example, computed by

progressiveMauve and stored in XMFA-format. The coordinate

system of the alignment and its mapping to the genomic position,

thus the SG arrays, is based on the concatenation of the individual

LCBs contained in the XMFA-file. For the construction of the data

structure the ordering of the LCB does not matter, however for con-

sistency we simply using the predefined ordering of the input file.

Furthermore, this ordering and the lengths of the LCBs are stored to

allow the inference of the LCBs from the SG arrays. For example,

for two LCBs of length n and m, respectively, the array positions

SG½1; . . . ;n� and SG½nþ 1; . . . ;nþm� represent these two LCBs.

From the SuperGenome data structure, the WGA can be derived

from the arrays SGi, where each aligned sequence of gi can be recon-

structed iteratively back from the genomic positions of the entries.

Here, inversions (negative values) and gaps (zeroes) have to be taken

into account.

2.2 Extending an existing WGA
We now first describe how a new genome is added to an existing

WGA on n genomes using the SuperGenome approach. Then we

show how to extend this principle to merging two WGAs on n and

m genomes, respectively, into a WGA on nþm genomes. The gen-

eral idea is that for the extension step only a pairwise alignment is

computed. This concept can then be generalized to several align-

ments and genomes that are combined into a WGA of all involved

genomes.

A common approach to make use of an existing alignment A is a

profile alignment, which preserves all prior aligned positions. The

profile of A is represented by a consensus sequence, which is derived

from the SuperGenome data structure through a majority call on all

alignment positions of A (see Fig. 1B for an example). For the inte-

gration of a new genome gnþ1 into A, unique regions of gnþ1 and

homologous regions of gnþ1 and the profile have to be computed in

order to extend A by gnþ1. This is achieved by computing a pairwise

alignment of the profile consensus sequence and the genomic se-

quence gnþ1. This pairwise alignment serves as a guiding alignment

to extend the given alignment A by the new genome gnþ1. Again we

use the SuperGenome data structure for this step (see Fig. 1C–E for

an illustration of this procedure). For this, the SuperGenome data

structure of the pairwise alignment is computed, which includes the

array SGcons with all positions of the profile consensus sequence and

SGnþ1, the SG array of genome gnþ1. The extension of A comprises

the transfer of the coordinates of SGi and Gi for the n genomes into

the common coordinate system of SGcons and SGnþ1. The new bidir-

ectional coordinate mappings SG0i and G0i for genome gi are derived

by

SG0i½j� ¼ SGi½SGcons½j�� and G0i½SG0i½j�� ¼ j (3)

where SGcons½j� is the index of the consensus sequence, which is

aligned at position j in the pairwise alignment, and SGi½SGcons½j�� the

index of the base of gi that was aligned in A.This coordinate transfer

restores all columns of alignment A. The arrays SGnþ1 and Gnþ1 do

not have to be updated, since they are already consistent with the co-

ordinate system of the guiding alignment. Based on the updated

SuperGenome data structure on nþ1 genomes, the new alignment

can now be easily derived and written into the alignment format as

described above.

The procedure for adding one genome to a WGA is easily

extended to merging the profiles of two WGAs on n>1 and m>1

genomes, respectively. Again, we compute a pairwise alignment, now

on the two respective consensus sequences, derive the respective

SuperGenome, which together with the SuperGenome of the input

WGAs is used to update the bidirectional mappings [see Equation (3)]

gn+1=  g4 = AGCGcons.       = ACG

1 2 3
A Ccons. 1 2 30

1 30
SGCons 1 3 40

1 2 30
Cons

B

G
A C GG

-
2
0

4

1 2 3

D

A C GG

4

g4

A
A
A

-
C

C

C

G
G

g1
g2
g3 -

-
-

1 2 30

-3 -2 -10
1 0 20

SG'1
SG'2
SG'3

1 30
10

G'1
G'2
G'3

1 2 30G4 41 30SG4 2 4

0

0
0 4

4

SGCons

1

SG1

2

SG4 G4

Update of SG'1 and G'1 at 
guiding alignment position j=3

1 2 30 0

1 2 30 1 30G'1 4

j=3

1 2 30SG'1 0

E

g1 = ACC g2 = AG g3 = CGT

1 2 3
A
A
A

-
C

C

C

G
G

g1

g2

g3

1 2 30

-3 -2 -10
1 0 20

SG1
SG2
SG3

1 2 30
1 30

G1
G2
G3

cons. = ACG

A

A(g1,g2,g3) 

4

A(cons.,g4)

4

-3 -2 -10

-4 -3 -10

A(g1,g2,g3,g4) 

C
g4

j=3

Genomic sequence

Aligned sequence A T G C C AG T-- A -G
1 2 3 5 6 74 9 108 121311

A T G C CAG TT C
1 2 3 5 6 74 9 108

Alignment position

Genomic position

G - Array

SG - Array 6 7 8 10 0 -29 0 0-1 4 530

-8 -7 11 13 1 212 4 530

Fig. 1. (A) Example of the SuperGenome data structure with its arrays G and

SG for a genome with its aligned genomic sequence. As visually encoded,

the array G resembles the alignment position for each base, while SG stores

the genomic positions of the aligned bases. Negative values in G and SG indi-

cate the alignment of the reversed complement of the base. (B) Based on the

three genomic sequences g1, g2 and g3 and their alignment Aðg1;g2;g3Þ, a

SuperGenome data structure (union of the SG and G arrays) is computed. In

addition, a consensus sequence from the alignment is deduced. (C) A new

genomic sequence g4 is combined with Aðg1;g2;g3Þ. For this a pairwise align-

ment Aðcons;g4Þ is computed and again a SuperGenome data structure is

deduced. (D) Update of A by g4: for every position j in Aðcons;g4Þ, (1) array

SGcons½j � (orange) contains the index of the aligned consensus sequence posi-

tions, which is used to determine the original genomic positions

SG1½SGcons½j�� (example shown in blue). (2) This allows a coordinate transfer

SG01½j � ¼ SG1½SGcons½j�� and G 01½SG01½j �� ¼ j (red) into a common coordinate sys-

tem of Aðcons;g4Þ. (E) From the updated SuperGenome data structure the

new alignment Aðg1;g2;g3;g4Þ is easily deduced
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of the two WGAs. A consequence of this merging procedure is that

prior aligned bases remain aligned in the merged WGA.

Finally, it is straightforward to generalize the pairwise approach

to combining more than two WGAs or WGAs with individual gen-

ome sequences. Rather than aligning only two sequences, we com-

pute the multiple genome alignment of all consensus sequences

derived from the k>2 individual WGAs as well as possible single

genome sequences. The generalized workflow of merging several

WGAs into a common WGA can be summarized in the following

six steps (see also Fig. 2):

1. Construct SuperGenome data structure for every input

alignment.

2. For every SuperGenome compute a consensus sequence (output

in FASTA format).

3. Align consensus sequences as well as possible individual genome

sequences with whole-genome aligner (e.g., using

progressiveMauve) to generate the guiding alignment.

4. Construct SuperGenome data structure for the guiding

alignment.

5. For every genome i, update SGi and Gi according to Equation (3).

6. Output new alignment derived from updated SG0 and G0 (output

in XMFA-format).

The merged WGA also accounts for LCB structures from the in-

put alignments. Previous start and stop positions in SG, which deter-

mine the borders of a LCB, are transferred and added to the ones

introduced by the guiding alignment. The resulting LCBs of the

merged WGA are defined between every consecutive pair of LCB

border positions in SG originating from the different WGAs that are

merged to secure the LCB property that no rearrangements within a

block occur.

2.3 Genome profile alignment
We have implemented the described approach how to efficiently

merge several WGAs or to extend a given WGA by new genomes

using our SuperGenome data structure in the tool which we call

GPA. Our tool is written in Java and can be run on any machine

with a Java VM installed. For the computation of the WGAs, we

currently make use of progressiveMauve, which needs to be

installed independently.

GPA can be applied in two ways: it can align genome sequences

from scratch, or it can be used to extend an existing WGA by new

genomes. In the first case, the input data are the genome sequences

that need to be provided in FASTA format. Since the general idea of

our approach is to combine smaller sets of aligned genomes to a full

WGA, these smaller sets first have to be defined. For this, we either

make use of a guide tree, which determines the individual merging

steps, or all genome sequences are randomly distributed into subsets,

where the size of the subsets has to be predefined by the user. The

guide tree needs to be provided by the user in Newick tree format

and can, for example, be the one as computed by

progressiveMauve. As most guide trees are binary and only two

sequences are aligned at each node, the provided input tree is further

modified, to control the number of sequences/WGAs that are

aligned in each step. With a user-defined maximum number of

sequences aligned in each step, the nodes of the guide tree (repre-

senting the set of sequences which will be aligned) are propagated

from the leaves (representing the genomes) toward the root (repre-

senting the final WGA) until another propagation to the next node

of the tree would exceed the maximum. This modified guide tree is

used to compute an internal guide tree structure. In the next step,

after the internal guide tree structure has been built, GPA automatic-

ally creates a folder structure, which serves to save the WGAs from

the intermediate steps in XMFA-format. The computation of the

WGAs follows the typical process of progressive alignments, starting

at the leaves of the guide tree and the root represents the full WGA.

If no guide tree has been provided, GPA merges all WGAs of the indi-

vidual subsets into a common WGA in one step. To further decrease

the runtime, GPA provides the possibility to compute the independ-

ent subalignments in parallel.

The second application case is to extend an existing WGA. For

this, GPA can be provided with an arbitrary number of WGAs and

single genomes. Here, the respective profiles or genomic sequences

are aligned in one step. The final WGA then contains all new

genomes as well as those which were contained in the input WGAs.

Note that in fact the second case is used throughout the computation

of a WGA from scratch when using our approach in GPA.

2.4 Experimental setup
2.4.1 Evaluation criteria

Besides runtime assessment, we used three different statistics to com-

pare the WGA computed using our guide tree-based SuperGenome

approach with the WGA computed by applying

progressiveMauve to all genomes at once: pairwise consistency

score, total column score and F-score.

The pairwise consistency (PC) score reflects how much the WGA

agrees with all possible pairwise alignments, a concept which was

first described by Gotoh (1990) and adapted in T-COFFEE

(Notredame et al., 2000). For this, for each pair of genomes in the

WGA, we compute the percentage of bases that are consistently

aligned in the WGA and in the respective pairwise genome align-

ment. For a given WGA of n genomes, we then report the average

PC score from all
n
2

� �
scores.

WGA 1 WGA N

SuperGenome 1 SuperGenome N

Consensus 
Sequence 1

Consensus 
Sequence N

Alignment of all Sequences
resulting in a Guiding Alignment 

SuperGenome of Guiding Alignment

WGA of all Sequences

Coordinates Transfer for all 

Genome
Sequence 

Genome
Sequence 

1

2

3

4

5

6

Fig. 2. Workflow of merging several alignment and genomes using the

SuperGenome data structure into a large WGA. The workflow consists of six

steps: (1) Build SuperGenome for every alignment, (2) compute consensus

sequence from input alignments, (3) align all consensus and genome sequen-

ces, (4) build SuperGenome of guiding alignment, (5) merge all alignments

and genomes (marked with a star) via coordinates transfer and (6) output

alignment of all sequences in XMFA-format derived from updated

SuperGenome data structure
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The total column (TC) score, first introduced in BaliBase

(Thompson et al., 2005), equals the percentage of identically aligned

columns in a given alignment when compared with a given reference

alignment.

The third statistic, the F-score, is the harmonic mean of precision

and recall for identical pairwise aligned bases. The F-score was used

in the Alignathon competition (https://compbio.soe.ucsc.edu/aligna

thon/) for the comparison of two WGAs (Earl et al., 2014), where

one of the two WGAs serves as a reference.

All three statistics have been widely used to evaluate MSA meth-

ods. The TC score is very conservative and prone to small changes

in the alignment, since one misaligned sequence can drastically de-

crease the score. Therefore, comparing the best MSA methods may

only result in low TC scores. On the other hand, only slight differen-

ces in the PC score between two alignments, as well as a high TC

and F-score, are reliable indicators for the similarity of the two. For

the calculation of all scores when comparing two WGAs, one needs

to take care of possible inversions and translocations. Again, the

SuperGenome data structure serves extremely useful for this, and

therefore we also used it for the calculation of these scores.

2.4.2 Simulated datasets

To evaluate the performance of GPA in the context of a ‘ground

truth’, where the optimal WGA is known, we used the same genome

simulation approach as the Alignathon. The simulated genomes

were generated with the software EVOLVER (Edgar et al., 2009) to-

gether with the evolverSimControl suite (Edgar et al., 2012),

that is able to evolve genomes based on a given phylogenetic tree

and report the respective WGA. The simulation parameters required

for the evolverSimControl suite were used from the EVOLVER

example and adapted to prohibit duplication events, since Mauve

cannot address duplication events. The F-scores between the simu-

lated and GPA generated WGAs were calculated with mafTools

(Earl et al., 2014) (https://github.com/dentearl/mafTools/).

2.4.3 Biological datasets

To explore the performance of GPA, we applied our approach to a

large number of complete single chromosome bacterial genomes

from the same species which we derived from NCBI (ftp://ftp.ncbi.

nlm.nih.gov/genomes). The various datasets reflect different genome

lengths and sizes as well as diversities of genomes within a species to

explore the performance of GPA. Currently, GPA can only handle

single sequences per genome. However, it is possible to concatenate

the different chromosomes (or plasmids) of one genome to overcome

this limitation. Still, we decided to remove all possible plasmids

prior to the WGA computation and only computed single chromo-

some alignments. All datasets used in this work are listed in Table 1

together with the total number of genomes as well as the average

genome length and average GC content (source https://www.ncbi.

nlm.nih.gov/).

2.4.4 Computational platform

We ran all WGA computations on a Linux server with four Intel(R)

197 Xeon(R) CPU E5-4610 v2 @ 2.30GHz and 500 GB of memory.

We measured the runtime with the GNU time command. During all

WGA computations, GPA used the maximal number of threads

needed to ensure that all independent subset alignments could be

computed in parallel.

3 Results

With GPA, we have extended progressiveMauve by the possibil-

ity to provide an existing sequence alignment in XMFA-format and

align it to other sequences or alignments. Traditionally, profile

alignment is conducted on a pairwise level, however, with GPA a

multiple profile alignment can be computed in one step. With this

feature, a progressive alignment strategy that is typically performed

along a binary guide tree can now be generalized to nonbinary trees

with fewer internal nodes. GPA provides a parameter k, that controls

the maximal degree of multifurcation of every internal node and

therefore how many genomes and/or profiles are merged at each

step. Our overall intention for this strategy was to multiply align up

to hundreds or more bacterial genomes with a significantly reduced

runtime and at the same time achieve highly qualitative WGAs. We

first evaluated the WGAs computed by GPA based on simulations,

followed by comparison of the WGAs computed for real biological

datasets.

3.1 Evaluation based on simulated data
We simulated five different WGAs of different sizes, where we used

the genome of Bordetella pertussis (RefSeq ID: NC_002929.2) as

the start of the simulation as well as the guide trees computed from

real biological genomes (see below) using progressiveMauve.

The simulations were all independent of each other. Therefore a

comparison of the PC, TC and F-scores across the WGAs of differ-

ent size is misleading because only the phylogenetic origin of the

simulated dataset is same. Here, the focus is set on comparing the

performance of the iterative profile alignment approach of GPA with

progressiveMauve. For GPA, WGAs with different merge sizes k

were computed, the one with the highest F-score is reported. For the

evaluations based on the TC scores we either use the simulated

alignment (as computed by EVOLVER) or the alignment computed

by progressiveMauve at once as a reference.

As can be seen from the results (see Table 2) the computation of

the WGA by GPA is not only significantly faster than computation

by progressiveMauve, but also the runtime difference increases

drastically with increasing number of genomes. At the same time,

the WGA computed by GPA is highly comparable to the one com-

puted by progressiveMauve. Both WGA computation

approaches yield highly similar PC and TC scores (with the simu-

lated alignment as the reference), which differ in less than 2%. Also,

the combination of high TC (>60%) and F-scores (>0.98) between

the respective WGAs of both tools shows their high conformity. In

addition, the F-scores, derived from the comparison of the WGA as

computed by progressiveMauve and GPA, respectively, with the

Table 1. The datasets, which were used for the WGA computations

as obtained from the NCBI FTP server

Organism No. of

Strains

Median genome

length (Mb)

GC content (%)

B.cereus 13 5.760 35.1

L. monocytogenes 30 2.975 37.9

C.trachomatis 72 1.046 41.3

M.tuberculosis 128 4.385 65.6

K.pneumoniae 166 5.590 57.2

S.aureus 176 2.847 32.8

B.pertussis 326 4.100 67.7

Note: All statistics including the median genome length and median GC

content have been derived from NCBI.
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simulated, ‘ground truth’ WGA are almost identical. The largest dif-

ference between both approaches besides runtime is the memory

needed to construct the alignment. Here, GPA needs around three to

five times more memory than progressiveMauve to compute the

WGAs. An exception for this is WGA computation of 80 simulated

strains, where the increase of memory consumption as well as run-

time of progressiveMauve is extraordinary. The simulation was

repeated several times, and the large runtime and memory consump-

tion was confirmed for each run.

Furthermore, for this alignment size a broader range of different

k values were tested. As it can be seen in Table 3, even though a

small k (relative to the alignment size) leads to a shorter runtime, it

also results in notably lower quality scores for the computed WGAs.

In particular, the TC score is more than 8% lower for k¼3 in com-

parison to the values achieved with k>10. We also noted that when

k becomes large enough, the difference between quality scores be-

come negligible.

3.2 Evaluation based on biological data: runtime
Since in the current implementation of GPA, we use

progressiveMauve as underlying multiple genome alignment

method, our evaluation focuses on the direct comparison between

the WGA produced by applying progressiveMauve to all

genomes at once and the WGA computed using our iterative merg-

ing approach implemented in GPA.

To compare the runtimes for the WGA construction of both

progressiveMauve and GPA, all WGAs are computed from

scratch. Here, for datasets with less than 100 genomes, we chose to

split these into randomly distributed groups that were of equal size

if possible. For all other datasets, we used the guide tree produced

by progressiveMauve, to determine the individual merging steps.

In addition, for datasets with more than 100 genomes available, we

computed several WGAs of different size. Starting at a set of 10

genomes, we subsequently added new genomes to the set for the

next larger alignment. This ensures that we can evaluate the progres-

sion of the performance of the tools with the increasing number of

genomes.

The results (see Table 4) show a general significant runtime de-

crease for the WGA construction of GPA compared with

progressiveMauve, independent of the dataset. As it can be seen

from the results and Figure 3, the runtime of progressiveMauve

increases at least quadratically with the number of aligned genomes,

while for GPA the increase shows a linear dependency.

The scalability and runtime reduction of GPA is most impres-

sive for the WGAs with over 80 genomes. Here, none of the

WGAs computed by progressiveMauve have finished after

350 h or even 1650 h (more than 2 months) of computing time,

where the choice was made to not further wait for the result. Note

in all these cases, the guide tree was still constructed. In contrast

to this, GPA could compute all WGA computations within a cou-

ple of hours or maximally few days. For example for the WGA of

176 Staphylococcus aureus strains GPA needed slightly more than

3 h (198 min), while progressiveMauve ran more than 1650 h

without reporting a result, thus in this case GPA was at least 500

times faster.

Independent from the used WGA construction method, the run-

time comparison between the datasets of the species shows differen-

ces as well. Here, an essential factor is the average genomic length.

The computation time needed for WGAs with the same number of

aligned genomes was less for the shorter genomes of S.aureus than

Table 3. Evaluation of WGAs generated by GPA based on simulated WGAs with several different parameters k for the maximal merge size

80 strains Runtime PC score F-score F-score TC score TC score

k [min.] GPA with EVO GPA with PM GPA in PM GPA in EVO

3 24 88.03% 0.942 0.947 55.40% 61.46%

7 34 90.38% 0.955 0.961 59.02% 64.90%

12 96 94.35% 0.976 0.982 62.29% 69.61%

17 163 94.70% 0.977 0.983 63.67% 70.68%

22 177 94.53% 0.977 0.984 63.55% 70.62%

Note: All WGAs were evaluated with respect to their runtime (wall-clock time) and PC score. In addition, TC score and F-scores between GPA and EVO as well

as GPA and progressiveMauve are reported.

Table 2. Evaluation of WGAs generated by progressiveMauve (PM) and GPA based on simulated WGAs by EVOLVER (EVO)

Runtime [min] PC score F-score F-score F-score TC score TC score TC score Memory

usage [GB]

No. of

Strains

PM GPA PM GPA PM with

EVO

GPA with

EVO

PM with

GPA

GPA in

PM

PM in

EVO

GPA in

EVO

PM GPA

10 26 8 97.27% 97.12% 0.985 0.985 0.992 92.54% 92.26% 90.39% 0.72 2.50

20 125 39 98.28% 98.24% 0.997 0.996 0.996 93.94% 96.40% 95.36% 1.34 4.59

40 678 121 94.78% 93.86% 0.976 0.971 0.990 62.84% 60.18% 58.74% 2.33 10.14

80 14541 163 94.49% 95.02% 0.976 0.977 0.984 63.67% 68.03% 70.68% 23.11 16.83

326 — 653 — 88.14% — 0.948 — — — 14.13% — 47.21

Note: All WGAs were evaluated with respect to their runtime (wall-clock time), average PC, F-scores achieved against EVO and maximal amount of RAM

used in the process of WGA computation. In addition the TC score and F-score between PM and GPA is reported. Again, for the calculation of the TC and F-score,

PM is used as the reference. GPA was run with several different parameters k for the merge size, reported for each dataset is the one with the highest F-score

achieved with EVO.
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for Mycobacterium tuberculosis and B.pertussis, which show com-

parable average genome lengths as well as runtimes. The WGAs for

Klebsiella pneumoniae that has on average the longest genomes also

needed the longest absolute runtime. When comparing the results of

M.tuberculosis and B.pertussis, which have a similar length, the di-

versity of the genomes within a dataset (reflected by a smaller over-

all PC score) does not affect the runtime as much as the genome

length.

Fig. 3. Comparison of the measured computational runtime needed for the construction of the WGA depending on the number of genomes for the datasets of S.

aureus (left) and B. pertussis (right). In addition to the direct comparison between progressiveMauve (orange) and GPA, the upper left section only shows the run-

time (wall-clock time) of GPA (blue) and GPA CPU time (green), together with the r2 values for the linear regression. The respective regression curves (PM cubic/

GPA linear) were computed with R

Table 4. Comparison between the WGA construction using the original progressiveMauve (PM) method and our SuperGenome-based it-

erative profile alignment approach of GPA

Dataset Runtime [min] No. of LCBs PC score TC score F-score

Organism No. of Strains PM GPA PM GPA PM GPA GPA in PM

10 27 9 3 6 97.90% 97.97% 93.99% 0.998

20 98 22 16 4 96.83% 97.29% 88.31% 0.994

M.tuberculosis 40 475 41 230 72 96.00% 96.61% 85.05% 0.993

(4.385 Mb) 80 1665 105 852 148 92.36% 93.03% 73.03% 0.990

128 >350 ha 527 — 437 — 90.67% — —

10 55 25 177 160 38.77% 38.94% 73.13% 0.991

20 691 90 784 769 41.31% 41.42% 67.18% 0.989

K.pneumoniae 40 9401 99 3369 1463 42.91% 43.15% 55.94% 0.981

Guide tree (5.590 Mb) 80 120 038 329 3986 4632 42.15% 42.38% 45.02% 0.974

166 >6250 ha 771 — 8558 — 41.19% — —

10 16 7 221 53 82.45% 81.81% 73.07% 0.983

20 64 33 415 362 81.58% 81.11% 67.83% 0.986

S.aureus 40 552 28 1222 555 76.33% 75.70% 56.63% 0.976

(2.847 Mb) 80 5213 121 2492 2498 73.02% 72.50% 47.37% 0.976

176 >1650 ha 198 — 3213 — 71.91% — —

10 24 9 64 56 58.77% 58.99% 95.87% 0.995

20 99 16 88 115 58.56% 58.45% 90.06% 0.991

B.pertussis 40 503 96 165 172 57.65% 57.78% 85.48% 0.990

(4.100 Mb) 80 1683 78 314 373 58.69% 58.39% 75.57% 0.981

326 >6250 ha 504 — 3708 — 47.37% — —

Random

B.cereus 13 225 61 380 214 60.00% 60.63% 62.40% 0.977

(5.760 Mb)

L.monocytogenes 30 628 28 293 254 73.41% 73.92% 61.50% 0.989

(2.975 Mb)

C.trachomatis 72 351 14 4 80 98.35% 98.36% 86.68% 0.995

(1.046 Mb)

Note: The results are divided into two distinct groups, whether for GPA a guide tree (guide tree) was used or not (random). The runtime for WGA computation

and the number of LCBs for the respective WGAs is reported. In addition, the WGAs were evaluated with respect to their average PC, the TC score (% of identical

aligned columns in PM) and F-score. Both, for the calculation of the TC and F-score, PM is used as the reference. GPA was run with several different parameters k

for the merge size, reported for each dataset is the one with the highest PC score.
aTime past till computation has been manually aborted by us.
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The number of LCBs, which represent genomic architectural dif-

ferences between the genomes, differ a lot between the organisms

analyzed here. For example, WGAs of M.tuberculosis and

B.pertussis with similar genome lengths have vastly different num-

ber of LCBs. On the other hand, as can be seen from Table 4 with

increasing number of aligned genomes from the same organism also

the number of LCBs always increases, independent whether the

WGA was computed using progressiveMauve or GPA. When

comparing progressiveMauve and GPA for a given set of

genomes, the number of LCBs is largely of similar order of magni-

tude, though in most cases (but not all) the WGA computed with

GPA had less LCBs than those for the WGA computed with the ori-

ginal progressiveMauve.

3.3 Evaluation based on biological data: qualitative

comparison of WGAs
In order to compare the WGA computed using GPA with the one

computed by the original approach of progressiveMauve, we

applied three evaluation criteria (see Section 2). For each dataset, we

calculated the average PC score, TC score and F-score (see Table 4).

For the calculation of TC and F-score, the progressiveMauve-

generated WGA was chosen to be the reference.

For each dataset, independent of the number of aligned strains

per species, the average PC score is very similar between the

progressiveMauve- and GPA-derived WGAs (<1% difference).

The largest difference of 0.67% is observed for the alignment of 80

strains of M.tuberculosis, where GPA yields a slightly higher PC

score than progressiveMauve. Overall, the PC only slightly

decreases within a species when adding more genomes to the align-

ment. The largest difference was observed for the WGAs computed

for B.pertussis: here the average PC score dropped from 59% for 10

genomes down to 47.4% when 326 genomes were aligned. An ex-

ception has been observed for the K.pneumoniae WGAs. Here the

average PC score of the WGA built from 10 and 20 genomes was

smaller than for the WGAs with 40 and 80 genomes. Generally, the

PC score differs most strongly when comparing different bacteria.

While the WGAs of M.tuberculosis and Chlamydia trachomatis

have average PC scores greater than 90%, the WGAs of

K.pneumoniae achieve a maximum of 43%.

The TC score, which represents the fraction of identically aligned

columns, compares the WGAs computed by GPA with the one

derived with the original progressiveMauve. Overall the TC

score is above 60% in most cases, indicating that GPA aligns a ma-

jority of all columns identically to the original

progressiveMauve even for larger WGAs with up to 80 genomes.

Also, none of the WGAs of our test datasets shows a TC score below

45%. Similar to the PC score the TC score differs between different

organisms though here the biggest differences are seen when increas-

ing the number of genomes within a species. Interestingly, the PC

and TC scores do not necessarily correlate a lot, i.e. WGAs with

similar PC scores do not necessarily have similar TC scores. For ex-

ample, WGAs with low PC scores (as seen for example in the case of

B.pertussis) may have higher TC scores than WGAs with high PC

scores (e.g. S.aureus).

Another indicator of the high similarity of the WGAs computed

with GPA and those computed with progressiveMauve is the very

high F-score. Independent of the organism as well as the number of

genomes the smallest value is 97.6% and the largest value is 99.8%.

Here, in general the precision score is higher than the recall for the

resulting F-score (data not shown). We observed that WGAs with a

high TC score also have a high F-score. On the other hand, increasing

the number of genomes for a WGA generally leads to a significant de-

crease of the TC score, while this behavior is not observed for the F-

score. An example is S.aureus, where the lowest TC score in all com-

parisons was achieved, while the F-score is still above 0.97.

3.4 Impact of compressing the guide tree
Next, we analyzed the impact of the multifurcation parameter k,

which is used to compress the input guide tree. This parameter k

reflects the maximal degree of each internal node of the guide tree,

which represents the maximal number of profiles or sequences that

are merged in a single step during the WGA computation. Clearly,

as can be seen from Table 4, the runtime of progressiveMauve

increases significantly with increasing number of genomes. Thus, a

trade-off between the number of genomes aligned at a time and run-

time needs to be considered when choosing k.

For this purpose, for a given initial guide tree on a given set of

genomes, we computed WGAs with GPA using different k. For each k,

we reported the runtime, PC, TC as well as the F-score. As expected

the majority of all cases shows that larger k result in larger runtimes

(see Supplementary Table S1). On the other hand, the PC and TC

score, as well as the F-score, are not greatly affected by the choice of k,

if k is not chosen too small for the dataset, as it can be seen for the

simulated WGA of 80 genomes from Table 3. However, the number of

LCBs varies, though a clear pattern cannot be deduced. Furthermore,

the analysis of the WGAs, where no guide tree was provided for GPA,

and therefore equally sized groups were merged, shows that at least for

smaller sized WGAs highly similar results to progressiveMauve can

be achieved as well (see lower part of Table 4).

4 Discussion

In this article, we introduced GPA, a tool which extends the WGA

method progressiveMauve (Darling et al., 2010) by the possibil-

ity to align individual genomes or WGAs to a given profile genome

alignment. The challenge in the case of profile-based WGA is that

genomic rearrangements like translocations and inversions have to

be considered and therefore the profile of genome alignments cannot

be as easily derived as in typical MSAs. Each individual genome as

well as WGA represents its own coordinate system, and one chal-

lenge when merging a given WGA with individual genomes or an-

other WGA is the transfer of the individual coordinate systems into

a common one. With our SuperGenome data structure, we have

introduced a novel concept that allows the extension of a given

WGA by further genomes or other WGAs, through a coordinate

transfer along a guiding alignment of their profiles. Currently, we

use progressiveMauve together with GPA and guarantee to ad-

here also to the LCBs computed by progressiveMauve.

Clearly, progressiveMauve has been shown to be among the

best methods for the alignment of bacterial genomes because of its

ability to consider rearrangements between the genomes. However,

the runtime of progressiveMauve which was shown to be at least

quadratic (Darling et al., 2010), as well as lack of parallelization,

prevent the computation of WGAs of hundreds or even thousands of

genomes. Thus the second goal of this article was to significantly re-

duce the runtime of progressiveMauve.

One central feature of progressiveMauve is a binary guide

tree and a WGA that is progressively computed along this tree. A

large fraction of the runtime of progressiveMauve is dedicated

to the optimization of the genomic rearrangements (through

repeated reanchoring) of all genomes aligned at the respective node

in the guide tree. The key algorithmic ingredient in GPA is the use of
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a compressed rather than strictly binary guide tree and the adapta-

tion of our introduced profile WGA to the alignment of several pro-

files in one step. The compressed guide tree leads to a significant

reduction of internal nodes and therefore subalignments that are

merged at a time. It should be noted, that alignment of genomes/pro-

files at each node in the guide tree used by GPA is performed with

progressiveMauve, which also explains the resulting high quality

of the WGA.

Though by definition the SuperGenome can be derived from

WGAs of arbitrary species, we have restricted our analyses to intra-

species microbial genomes, i.e. aligning different strains from the

same species. For our largest dataset of B.pertussis with 326

genomes, GPA needed <9 h, while a sole progressiveMauve -

based alignment was not finished after 6250 h (after which we

aborted the computation). A linear regression analysis showed a

clear linear relationship between runtime and genomes (see Fig. 3).

Based on the coefficients of the regression the computation of a

WGA with 1000 S.aureus genomes for example would need about

19 h, a WGA of 1000 B.pertussis genomes about 26 h. It should be

noted that GPA always uses a precomputed guide tree. In the runtime

comparison, the computation for the guide tree in

progressiveMauve was not subtracted from the overall runtime.

However, this part of the complete runtime in most cases is negli-

gible (<10%, see Supplementary Table S2). Only for the WGA of

K.pneumoniae, the fraction of the guide tree computation for the

small number of genomes (10, 20, 40) was larger than 50%. For the

practical application of GPA, we recommend Parsnp, which for ex-

ample was capable to produce the guide tree for the 326 genomes of

B.pertussis in <20 min.

The results of GPA depend on the guide tree and the number of

profiles that are merged at each node, our parameter k. As the guide

tree determines the order in which the genomes are subsequently

added, it is only plausible that the quality of the final WGA

decreases if the tree does not reflect their phylogenetic relationship.

The comparison of progressiveMauve and GPA shows that as a

trade-off for the reduced runtime of GPA the quality of the WGAs is in

most of the cases slightly worse. However, the small differences of the

PC scores by only a few percents together with the high TC and F-

scores show that the WGAs computed with GPA are highly similar to

those computed using the original progressiveMauve approach. In

addition, the comparison and evaluation of the simulated data show,

that when comparing the WGA computed by progressiveMauve

and the one computed by GPA with the ‘ground truth’ both the PC

score as well as F-score are almost identical independent of the number

of genomes in the WGA. This shows that we could introduce a WGA

approach that enables a faster computation of WGAs, while achieving

a comparable quality, which was our intention.

We also showed that in some cases there is a trade-off between

runtime and quality when deciding how many profiles are merged at

the same time. The parameter k controls the maximal number of pro-

files aligned at a time with progressiveMauve. On the other hand,

small k results in a short runtime, however, at the cost of an inferior

PC and TC score (see Table 3). Since the results of

progressiveMauve show that the computation time needed for

WGAs with less than 20 genomes is in most cases below 2 h, a k be-

tween 10 and 25 is currently our default and recommended value for

larger WGAs with more than 50 genomes. Currently, we have no

automated way of choosing a k that optimizes the PC score, however,

if k is not chosen too small, the variations between the resulting

WGAs are minor. In addition, the generation of WGAs with thou-

sands of genomes by GPA benefits from the usage of large cluster

systems, because the independent alignments can be computed in

parallel.

Currently, GPA makes use of progressiveMauve as the under-

lying WGA method, however, the modular implementation allows

in principle the support of other WGA methods. Since the

SuperGenome data structure requires a one-to-one mapping be-

tween the nucleotides of the genomes, only methods are feasible that

generate alignments with this feature. The disadvantage of these

type of methods, which include progressiveMauve, is that dupli-

cated regions cannot be aligned.

In the current version, memory consumption is an issue of GPA,

since the complete SuperGenome data structure is kept in memory to

speed up computation. For example, for the alignment of 326

B.pertussis strains, GPA needed between 70 and 110 GB RAM, de-

pending on the parameter k. With the next release, we will introduce

an index file for the SuperGenome data structure that is accessed on

demand to enable even larger WGAs with significantly less memory

requirements. First results indicate that for WGA with more than 100

genomes only a 10th of the RAM used with the original data structure

(less than 10 GB for all tested WGAs) is needed (data not shown).

The current version of GPA and the SuperGenome data structure

uses the consensus sequence derived from the profiles of WGAs,

which we used as a simple solution to efficiently align several pro-

files. Apparently, this is a feasible, but not an optimal solution, and

therefore other methods that use a more sophisticated representation

of the profiles for the merging step will be considered as possibly

improved solutions in a future release. Furthermore, considering re-

cent efforts with respect to the computation of optimal LCBs and

their ordering (Gärtner et al., 2018), which influence the structure

of the coordinate system, could further improve our approach.

A possible application of GPA can be seen from comparative gen-

ome analyses that rely on a WGA. An example is AureoWiki (Fuchs

et al., 2017) (http://aureowiki.med.uni-greifswald.de/), a database

of 32 different S.aureus strains that has been built from the results

of a WGA-based pan-genome computation. To incorporate new

S.aureus strains into the database, would require a WGA with the

new genomic sequences. Computing this WGA from scratch could

introduce changes that are not consistent with prior results. Here,

the profile-based extension of the WGA by GPA preserves the former

WGA and allows the addition of new strains without the necessity

to completely rebuild the database.

As a conclusion, GPA introduces a time efficient computation of

large-scale WGAs through the usage of WGA-profile alignments

and adds further utility by the possibility to extend existing WGAs.

With GPA hundreds to thousands or more bacterial genomes can

now be fully aligned in an acceptable time.

Conflict of Interest: none declared.
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