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Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation.
Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope
prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-
chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen,
HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical
propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM
based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive
prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy
(72.52%), specificity (84.22%), PPV (32.07%), and Matthews’ correlation coefficient (10.36%).

1. Introduction

Epitopes, also called antigenic determinants, are clusters of
amino acid segments located on the surfaces of an antigen.
Epitopes can elicit the immune response and are recognized
by specific antibodies [1]. Basically, B-cell epitopes are
categorized into two types: linear and conformational. Linear
epitopes (LEs) are composed of contiguous amino acid
residues within a continuous stretch of a primary protein
sequence. Conformational epitopes (CEs) consist of amino
acids that are dispersed among discontinuous regions but
become aggregated on the protein surface [2, 3]. In general,
over 90% of B-cell epitopes are discontinuous [4, 5];
thus, CEs play critical roles in biological and biomedical
applications, including the prevention and neutralization of
pathogen infections, and the design of therapeutic drugs.

However, the prediction and identification of CEs within
a protein depend on resolved three-dimensional structural
information. One major, generally accepted concept is that
conformational epitopes cannot be properly formed without
binding to a corresponding antibody [6]. Therefore, antigen-
antibody cocrystallographic information is a major concern
in CE prediction. On the other hand, because CEs are
discontinuous epitopes, it is difficult to design a peptide
that forms the same conformation as the predicted CE.
Thus, CEs that are predicted by computational analysis
may not be verifiable in biochemical experiments, except
with the cocrystallographic approach. Although B-cell LEs
occupy a small part of the entire epitope group, they are
important in biochemistry [7], virology [8], immunology
[9], and vaccine research [10]. Therefore, research and
development of accurate computational approaches for LE
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prediction remains a critical challenge in bioinformatics
and computational biology [6]. Most published B-cell LE
predictors have been based on the characteristics of amino
acids, like hydrophobicity, surface accessibility, mobility, pro-
trusion area, physico-chemical properties, antigenicity, and
pocket characteristics [1, 3, 11–16]. For example, BcePred
[16], BEPITOPE [17], PEOPLE [11], VaxiJen [18], and LEP
[12] are bioinformatics tool that use various mathematical
approaches to predict LEs according to the physico-chemical
propensities of amino acids. Nevertheless, in 2005, Blythe
and Flower led a group that evaluated the physico-chemical
propensities of amino acids to predict LEs in proteins; they
reported that even the best physico-chemical propensity
scales available performed only slightly better than a random
model [19]. Hence, it was proposed that, instead of using the
antigenicity scale alone, LE prediction may be improved by
integration with other computational approaches.

Several machine learning computational methods have
been applied to improve the accuracy of LE prediction.
For example, BepiPred combined a hydrophilicity scale with
a hidden Markov model [20]; BCPred [21] and FBCPred
[22] employed SVM with a subsequence kernel; Söllner and
Mayer utilized a molecular operating environment with the
decision tree and nearest neighbour approaches [6]. How-
ever, these machine learning approaches were mostly set to
predict peptides of fixed lengths. It is difficult to analyze true
LEs, because they generally range from 8 to 20 amino acid
residues in length [11, 23–25]. Epitopes with fixed lengths
are not typically sufficient to represent the whole region
of antigenic determinants. To overcome the drawbacks of
training and/or predicting fixed length epitopes, ABCPred
used two artificial neural network methods, the feed-forward
network and the recurrent neural network, for the prediction
of B-cell LEs [26]. Both networks were used with different
window lengths from 10 to 20 amino acids and a two-residue
interval.

Although bioinformatists have expended great effort on
developing LE predictors, there remains much room for
improvement. Theoretically, an epitope identified by experi-
mental immunological or biochemical methods must possess
biological antigenicity that can induce antibody production
in animals. However, when computational skills are used
for the prediction, some experimentally identified epitopes
could be missed or ignored. This generated the interesting
study of how to retrieve the unpredictable epitopes and
enhance their antigenicity score in silico.

In 2008, LEP was developed for predicting LEs based on
physico-chemical propensities combined with a mathemat-
ical morphology approach. LEP could retrieve some of the
LEs that were locally embedded in the noise signals of the
antigenic index [12]. We reasoned that prediction accuracies
could be further improved and retain the advantage of
variable length conditions, by combining the LEP with
machine learning technologies.

As mentioned above, the machine learning methods used
in previous LE prediction methods were often trained to
predict epitopes with fixed lengths. Chen’s study showed
that the frequencies of occurrence for some amino acid
pairs in the epitope dataset were significantly higher than

in non-epitope datasets, or vice versa [23]. We noticed this
important statistical feature and applied it to enhance the
performance of LE prediction systems. Hence, in order to
explore the statistical advantages of verified epitopes and
retain the antigenic characteristics of candidate peptides, we
decided to extend the concept of amino acid pairs from
Chen’s study, which only considered peptides with 2 residues.

In this study, we developed a novel B-cell LE prediction
system called LEPS (Linear Epitope Prediction by Propen-
sities and Support Vector Machine). The LEPS is freely
available for academic use at http://leps.cs.ntou.edu.tw. We
adopted the library for SVM (LIBSVM) tool and trained
it to recognize features of amino acid segments (AASs)
with lengths from 2 to 4 residues. Then, SVM was used
to characterize those patterns as epitope and non-epitope
clusters [27]. Accordingly, the LEPS approach first per-
formed physico-chemical propensities and mathematical
morphology approaches and then used the AAS features
to cluster the predicted LE candidates and remove the less
probable LEs.

2. Materials and Methods

2.1. Testing Datasets and Predictors. Four datasets were used
in this study. The AntiJen dataset was recommended at an
international meeting sponsored by the National Institute
for Allergy and Infectious Disease [6] and contained 171
protein sequences with 691 verified, nonoverlapping epitopes
[19]. The HIV dataset was a collection of the antigenic
determinants located on 10 HIV proteins with 54 nonover-
lapping, verified epitopes [39]. The PC dataset, generated
in this study, was a collection of 12 protein sequences
with 98 nonoverlapping, verified epitopes (Table 1). In order
to balance out the variation of each dataset in quantity
and antigen diversity, these three datasets were merged
into one, comprehensive dataset called the “AHP dataset.”
These datasets were analyzed with different LE predictors,
including the BepiPred [20], ABCPred [26], BCPred [21],
and FBCPred [22], to compare performances with that of the
LEPS developed here.

2.2. System Flow. The proposed system was divided into
three main steps (Figure 1(a)). The first step retrieved primi-
tive epitope candidates from a query protein sequence with
LEP [12], which was developed in our previous work and
was used with the default settings. Then, an SVM classifier
was applied to remove less probable epitope candidates and
improve prediction accuracies. In the final step, the predicted
epitope residues were highlighted in the query sequence and
visualized in a predicted structure. The virtual structure was
generated from Modeller 9.9, based on homologous protein
structure modeling approaches [40].

2.3. Training Datasets and SVM Model. The process of train-
ing the SVM model comprised two major steps (Figure 1(b)).
The first step (step 1(b)) evaluated the statistical characteris-
tics that determined the frequencies of occurrence of AASs
with various lengths from an independent B-cell epitope
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Table 1: Epitopes predicted in the PC dataset after analysis with LEPS.

Antigen : length
(UniProt IDa)

LEPS-predicted Epitopes Experimental epitopes Ref.

PrP : 253
(P04156)

M1ANLGCWML9

R37YPGQG42 [28]

Q52GG54 [28]

Q91GGGT95 [28]

N100KPSKPKTNMKHMA113 [28]

G123GLGGYMLG131 [28]

S143DYEDRYYRENMHRYPN159 H140FGSDY145 [28]

Q160VYYRPMD167 [28]

F198TETD202 [28]

Y218ERESQAYYQRGS230

GAPDH : 338
(P20287)

A4KVGING10

A21AFLKNTVDV30

V31SVNDPFIDL40 V31SVNDPFIDLEYM43 [29]

K48RDSTHGTFPGEVSTENGKLKVN G58EVSTENGKLKVNGKLISVHCERDP82 [29]

KL73

C78ERDPANIPWDKDGA92

A108QAHIKNNRAK118 G100VFTTIDKAQAHIKN114 [29]

S123APSADAPM131

V136NENSYEKS144

V148SNASCTTN156

K163VIHDKFEIV172 K163VIHDKFEIVE173 [29]

V188VDGPSSKLWRDGRGAM204

A210STGAAKAVG219

L225NGKLT230

R235VPTPDVSV243

R249LGKGASYEE258

F287VGSTSSS294 S268GPLKGILEYTEDEVVSSDFVG289 [29]

I302SLNNNF308

Y315DNEFGY321

I329THMHKVDHA338

Ara h 1 : 626
(P43238)

K26SSPYQKKTENPC38 K26SSPYQKK33 [30]

Q47QEPDDLK54 Q48EPDDLKQKA57 [30]

E66YDPRCVY73 [30]

P75RGHTGTTNQRSPPGERTRGRQPG E90RTRGRQPGDYDDDRR105 [30]

DYDDDRRQPRREEGGRWGPAGPRE R108REEGGRW115 [30]

REREEDWRQPREDWRRPSHQQPR E124REEDWRQ131 [30]

KIRPEGREGEQEWGTPGSHVREETSR E134DWRRPSHQQPRKIRPEG151 [30]

NN173

P295GQFEDFF302 [30]

Y312LQGFSRN319 [30]

F325NAEFNEIRR334 [30]

Q345EERGQRR352 [30]

K381SVSKKGSEEEGDI394 D393ITNPINLRE402 [30]

N409NFGKLFEVK418 [30]

G463NLELV468 [30]

K472EQQQRGRREEEEDEDEEEEGSN
EV497

R498RYTARLKEG507 [30]

E525LHLLGFGIN534 [30]
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Table 1: Continued.

Antigen : length
(UniProt IDa)

LEPS-predicted Epitopes Experimental epitopes Ref.

H539RIFLAGDKD548 [30]

I551DQIEKQAKDLAFPGSGE568 [30]

P587QSQSQSPSSPEKESPEKEDQEEEN
QGGKGP617

SARS N : 422
(Q19QW0)

A36RPKQRRPQGLPNNTASWFT55 [31]

H60GKEEL65

T77NSGPDDQ84

L140NTPKDHIGTRNPNNN155

A156ATVLQLPQGTTLPKGFYAEGSRGG180 [31]

T266KQYNVTQAFGRRGP280 [31]

N286FGDQDLIRQGTDYK300 [31]

K356HIDAYKTFPPTEPKKDKKK375 [31]

R386QKKQPTVTLLPAADMDDFSRQLQN410 [31]

ZP3 : 399
(O77685, residue
24–422)

T31QSPAPGSSFSP42 T31QSPAPGSSFSPPPVVA47 [32]

Q71AAELTLGPSACAPVPAEPLSK92 [32]

H101ECGSELQMTPDSLIYSTVLHY122 [32]

P124NLSQ128 L126SQSPLVLRSSP137 [32]

G156IQPTWVPFHSTLSREQ172 [32]

D251SSSIFISPRPG262 [32]

V291TATDQAPSPLN302 [32]

A311DEWLPVEGPRD322 [32]

Q346EPGNPSEFEADLMLGPLVLSEAENGP372 [32]

AIV-H4 : 511
(A3KF09,
residue17–527)

Q17NYTGNPVIC26 D107TCYPFDVPEYQSLR121 [33]

F137QWNTVKQNGKSGACKRANVNDFFNRLNWLVK [33]

S169DGNAYP175 SDGNAYPLQNLTKINNGDYARLYIWGVHHPSTDT202

N206LYKNNPGRVTVSTK220 [33]

T224SVVPNIGSGPLVRGGQSGRVSXYWTIV250 [33]

V257FNTIGNLIAPRGHYKLNNQKKSTILNTAIPIGSC
SKCHTDKGSLSTTKPFQNISRIAVGDCPRYV
QGSLKLATGMRNIPEKASRGLFGAI349

[33]

D455SEMNKLFERVRRQL469 [33]

A473EDKGNGCFEIFHKCDNN490 [33]

N512RFQIQGVKLTQGYM526 [33]

AIV-H5 : 568
(A5HNY9)

A25NNSTEQVDTIMEKNVTVTHAQDILEKTHNGKL57 [33]

E85FLNVPEWSYIVEKINPANDLCYP108 [33]

C151PYQGRSSFFRNVVW165 [33]

D199AAEQTRLYQNPTTY213 [33]

R223SKVNGQSGRMEFFWTILKPNDAINFESNGNFIA [33]

ENAYKIV273

L472RDNAKELGNGCFEFYHR489 [33]

E284LEYGNCNTKC294

AIV-H12 : 527
(C7FPM3, residue
1–527)

T35LIEQNVPVT44 D31TVNTLIEQNVPVTQVEELVH51 [33]

K127YERVKMFDFTKWNVTYTGTSKACNNTSNQGS [33]

YRSMRWLTLKSGQFPVQTDEY180

F190TWAIHHPPTSDEQVKLYKNPNSLSSVTTDEINR [33]

FRPNIGPRPL234

Q238QGRMDYYWAVLKPGQTV255 [33]

T259NGNLIAPEYGHLITGKSHGRILKNDLPIGQCTTEC294 [33]

T310SKHYIGKCPKYIPS324 [33]
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Table 1: Continued.

Antigen : length
(UniProt IDa)

LEPS-predicted Epitopes Experimental epitopes Ref.

R334NVPQAQDRGLFGAIAGFIEG354 [33]

I430TDIWAYNAELLVLLENQKTLDEHDANVRNLHD [33]

VR465

G478CFEILHKCDDGCMDTIKNGT498 [33]

Q502DYEEESKLERQRINGVKLEENSTYK527 [33]

DEN-3
E-glycoprotein : 493
(D2JWZ8, residue
281–773)

T331QLATLRKLCIEGKI345 [34]

D351SRCPTQGEAVLPEEQDPNY370 [34]

Q411YENLKYTVIITVHTGDQHQVGNETQGVT
AEITPQASTTE450

[34]

L476LTMKNKAWMVHRQW490 [34]

S533QEGA537 Q526EVVVLGSQEGAMHT540 [34]

W669YKKGSSI676

L707NSLG711

O. tsutsugamushi
47-kDa antigen : 466
(Q53246)

H21SKSLLNQKAVLPQQKSDMHIN42 [35]

T65NIGISLNNKVSKYQQEV82 [35]

V97TNENVIAGR106 [35]

Y145ATFGDSNQS154 [35]

V173TNGIISSKGRDMG186 [35]

F193IQTNAAIHM202 [35]

H201MGSFGGPMF210 [35]

I233PSNTVLEAV242 [35]

L245KKGEKIR252 L245KKGEKIRRG254 [35]

L333LRNGKSMTLKCKIIANK350 [35]

Q357SNDQSLVVN366 [35]

L373TPDLVKKYNITSA386 [35]

HPV L1 protein : 510
(A8BQ01)

D41VYVTRTNVYYHGGSSRLLTVGHPYYSIKKSNN
VAVPKV80

[36]

V122GRGQPL128
V90KLPDPNKFGLPDADLYDPDTQRLLWACVGVEVG
RGQPLGV130

[36]

T205TIEDGDMVET215 [36]

D219ICTNTCKYPDYLKMAAEPY238 [36]

G235DSMFFSLRREQMFTRHFFNRGGKMGDTIPD285 [36]

R326AQGHNNGMCW336

S350TNVSLCATEA360 [36]

F370KEYLRHMEEYDLQFIFQLCKITLTPEIMAY400 [36]

V416PPPPSASL424

K440PTPPKTPTDP450 P450YASLTFWDVDLSESFSMDLD470 [36]

G497TPPPTSKRKRV508

Bacillus anthracis, PA
domain III and IV : 248
(P13423, residue
488–735)

N538PSDPLETTKPDMT551 R532RIAAVNPSDPLETTKPDMT551 [37]

A596ELNATNIYTVL607 [37]

I620RDKRFHYDRNNIAVGADES639 [37]

L692NISSLRQDGKT703 [37]

N720PNYK724 L716YISNPNYKVNVYAVTKENT735 [37]
a
Because some of the epitopes in the PC dataset were partial antigen fragments, the serial numbers for the residues in each epitope were assigned according to

the sequence information retrieved from the UniProt database [38]. The overlapping amino acids between the experimentally verified and predicted epitopes
are shown in bold.
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Figure 1: The design of LEPS. (a) Step 1(a): primitive epitope candidates with globally and locally high antigenicity were extracted by
calculating weighting coefficients for various physicochemical propensities of each amino acid. After the filtering process with the SVM
classifier (step 2(a)), predicted epitopes were highlighted (step 3(a)) in the query sequence and the simulated structure. (b) Step 1(b):
1230 experimentally verified epitopes and 872 non-epitopes were analyzed to determine the statistical characteristics of AASs. Step 2(b):
subsequently, epitope indexes of 872 epitopes and 872 non-epitopes were used to train the SVM model to predict candidate epitopes based
on the statistical characteristics defined in step 1(b).

dataset (Bcipep [41]) and a non-epitope dataset (Chen et al.
[23]). The second step (step 2(b)) produced an SVM model
that recognized the epitopes and non-epitopes of the Chen
dataset based on the statistical features derived from step
1(b).

The Bcipep dataset comprised 1230 experimentally veri-
fied, B-cell, and nonredundant LEs with lengths that ranged
from 3 to 56 residues that were identified in over 1000
antigen proteins. This dataset was used in step 1(b) to analyze
the statistical characteristics associated with the frequencies
of occurrence of AASs of 2 to 4 residues in length that
represented epitopes.

The Chen dataset contained 872 epitopes and 872 non-
epitopes. All epitopes and non-epitopes within this dataset
were restricted to a length of 20 residues. These verified

epitopes were retrieved from the Bcipep dataset by applying
a “truncation-extension treatment.” That is, when the length
of an LE was longer than 20 residues, an equal number of
superfluous residues were truncated from both the N- and C-
termini to preserve the central 20 residues. Conversely, when
the length of an LE was shorter than 20 residues, an equal
number of residues were added to both the N- and C-termini
until the epitope comprised 20 residues. On the other hand,
the 872 non-epitopes were generated by randomly selecting
peptide segments from the Swiss-Prot database [42], with the
stipulation that none was the same as any of the 872 epitopes.
The 872 non-epitopes were used to analyze the statistical
characteristics of AASs for non-epitopes in step 1(b). After
determining the statistical features that were associated with
frequencies of occurrence, the proposed system applied these



Journal of Biomedicine and Biotechnology 7

features (step 2(b)) to produce an SVM model in a 5-fold
cross-validation on the Chen dataset.

2.4. Statistical Analysis of AASs and Epitope Indexes. For
LE verification, we considered the statistical features to be
AASs of 2 (AAS2), 3 (AAS3), and 4 (AAS4) residues in
length for both epitopes and non-epitopes. For AAS2, 400
possible combinations of residue pairs were analyzed for
occurrence frequencies within both the epitope and non-
epitope datasets. The epitope index (Epidex2

i ) of the ith
pattern (AAS2

i ) was calculated by taking logarithm value of
the ratio of the number of AAS2

i among all epitopes AASs2

compared to the same ratio in the non-epitope AASs2 group
with the following equation:

Epidex2
i = log

(
f 2+

i /
∑

i f
2+

i

f 2−
i /
∑

i f
2−
i

)
(i = 1, 2, . . . , 400), (1)

where f 2+

i and f 2−
i were the numbers of AAS2

i in the
epitope and non-epitope datasets; respectively, and

∑
i f

2+

i

and
∑

i f
2−
i denoted the total number of AAS2

i in the
corresponding dataset. Finally, the values of Epidex2

i were
normalized to the range of [0, 1] to avoid dominance of any
individual Epidex2

i in the classifier learning processes.
There were a total of 8000 and 160,000 possible combi-

nations for AAS3 and AAS4, respectively. A large portion of
AAS3 or AAS4 did not appear in the non-epitope dataset;
this would cause a problem, because it could lead to a zero
in the denominator. Hence, the definitions of Epidex3

i and
Epidex4

i were modified from the definition for Epidex2
i , and

the corresponding epitope indexes for AAS3 and AAS4 were
defined as follows:

Epidexli =
f l

+

i∑
i f

l+
i

, (2)

where l was equal to 3 or 4. Again, the values of Epidex3
i and

Epidex4
i were normalized to the range of [0, 1].

2.5. SVM Features and Model Selection. In this study, we
adopted the SVM as a learning method to classify the
epitope and non-epitope peptides. We employed the open
source LIBSVM toolbox for executing this classification. In
LIBSVM, each instance in the training set possessed one
target value (class label) and several features (attributes).
In the testing set, only the features were required for each
instance. The objective of SVM was to generate a model
from the training set that facilitated the prediction of the
target value of each instance in the testing set. In this
study, a peptide corresponded to an instance, and the target
value (1 or −1) represented whether that peptide was an
epitope. Each peptide contained three feature values based
on Epidex2

i , Epidex3
i , and Epidex4

i . For example, a 20-mer
peptide was decomposed into 19 AAS2

i subsegments, and the
corresponding epitope index of this peptide was obtained
by taking the average of 19 Epidex2

i from the corresponding
AAS2

i . Similarly, the feature values of Epidex3
i and Epidex4

i

could be obtained by calculating the averages of 18 Epidex3
i

and 17 Epidex4
i subsegments, respectively.

The Chen dataset was used to construct an SVM model
based on three feature values and the target values of
each epitope and non-epitope. There were four common
kernel functions provided by LIBSVM, including linear,
polynomial, radial basis function (RBF), and sigmoid. We
examined these four kernel functions with a 5-fold cross-
validation. The training dataset was equally divided into 5
different subsets; four of the subsets were used for training
the model, and the last one was used for testing the model.
These processes were repeated five times with each individual
subset used as the testing subset. Here, the RBF kernel was
selected as the default kernel function, because it provided
the best cross-validation accuracy with the training data.
Subsequently, the RBF kernel function was applied to train
the whole testing dataset for constructing the final SVM
classifier in the LEPS.

2.6. Performance Measurement. To evaluate the performance
of the LEPS at the level of the amino acid residue, five
indicators were used to measure effectiveness at the default
settings. These indicators were (1) sensitivity (SEN), defined
as the percentage of epitopes that were correctly predicted as
epitopes; (2) specificity (SPE), defined as the percentage of
non-epitopes that were correctly predicted as non-epitopes;
(3) positive predictive value (PPV), defined as the probability
that a predicted epitope was, in fact, an epitope; (4) accuracy
(ACC), defined as the proportion of correctly predicted pep-
tides; (5) Matthews’ correlation coefficient (MCC), which was
a measure of the predictive performance that incorporated
both SEN and SPE into a single value between −1 and +1
[26]. These parameters were calculated with the following
equations:

Sensitivity = TP
TP + FN

, (3)

Specificity = TN
TN + FP

, (4)

Accuracy = TP + TN
TP + FP + TN + FN

, (5)

PPV = TP
TP + FP

, (6)

MCC = TP× TN− FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (7)

where TP represented the true positive; TN, the true negative;
FP, the false positive; FN, the false negative.

3. Results and Discussion

3.1. A New Linear Epitope Dataset: PC. The new dataset,
called the PC dataset (collected by Pai and Chang), contained
12 sequences that did not overlap with other datasets. It
was generated and analyzed in this study. The experimental
epitopes in the PC dataset were identified with the peptide
scan methodology, a conventional method for epitope
determination. The average length of the identified epitopes
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Figure 2: Comparison of the performances of LEPS, BepiPred, ABCPred, BCPred, and FBCPred systems. The best performance for each
indicator is marked with a star.

in the PC dataset was 18.9 residues. This was considered
a practical length for an epitope to be used in peptide
vaccine development or antibody generation. The average
epitope lengths in the HIV and AntiJen datasets were 26.4
and 16.3 residues, respectively. All sequences in the PC
dataset were analyzed with the LEPS, and the predicted and
experimentally verified epitopes are listed in Table 1.

3.2. The Performance of LEPS. The epitope information
collected from the PC, AntiJen, and HIV datasets were
utilized to verify the performance of LEPS. The PC dataset
was described in the previous section. The original AntiJen
dataset comprised 3619 epitopes, of which 3168 were found
in the Swiss-Port database. As in our previous report, we
regenerated the original AntiJen dataset by removing the
repeated epitopes [12]. The HIV dataset focused on one
infectious pathogen and was recognized as a useful tool
in the field of HIV immunology [39]. The AHP dataset
combined these three datasets to balance the variations
in each dataset including variations in epitope length and
the physico-chemical properties of antigens. With these 4
datasets, we compared the performance of five LE predictors,

including LEPS, BepiPred [20], ABCPred [26], BCPred [21],
and FBCPred [22].

As expected, LEPS provided favorable results in all
four datasets (Figure 2). Table 2 shows that LEPS displayed
the best specificity (SPE), with values of 88.33%, 84.48%,
74.84%, and 84.22% in the PC, AntiJen, HIV, and AHP
datasets, respectively. Moreover, LEPS showed the best PPVs,
with values of 45.12%, 28.85%, 71.44%, and 32.07% in the
PC, AntiJen, HIV, and AHP datasets, respectively. The PPV
indicated the rate of identifying real epitopes among all
positive predicted candidates. It is one of the most important
factors in conducting vaccine development. Reduction of
the false positive candidates can improve the effectiveness
and efficiency of identifying the real epitopes. Therefore,
the LEPS will outperform the other predictors in terms
of biological experiment cost effectiveness. In the field of
computational science, prediction accuracy is one of the
most concerned factors for system evaluation. Except in the
HIV dataset, LEPS displayed the best ACCs, with values
of 61.66%, 73.81%, and 72.52% for the PC, AntiJen, and
AHP datasets, respectively. These results showed that LEPS
displayed excellent performance for LE prediction. The LEPS
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Table 2: Comparison of the performances of LEPS, BepiPred, ABCPred, BCPred, and FBCPred systems.

Systems SENa SPEa ACCa PPVa MCCa

PC dataset

LEPS 12.78 88.33 61.66 45.12 3.65

BepiPred 48.23 59.72 55.33 38.19 7.49

ABCPred0.8
b 65.46 40.26 48.89 36.21 5.13

BCPred 50.92 59.35 52.83 36.07 4.43

FBCPred 51.03 52.55 52.20 35.26 3.17

AntiJen dataset

LEPS 26.72 84.48 73.81 28.85 10.10

BepiPred 51.79 57.61 55.52 22.02 6.04

ABCPred0.8 67.33 40.40 44.70 21.83 5.46

BCPred 58.84 54.87 53.92 23.34 8.93

FBCPred 60.31 51.21 51.45 22.33 6.73

HIV dataset

LEPS 48.33 74.84 63.45 71.44 22.76

BepiPred 50.16 60.85 56.72 61.22 9.72

ABCPred0.7 87.97 14.65 56.59 56.33 5.64

BCPred 80.18 54.57 66.57 65.55 29.80

FBCPred 73.20 58.20 67.13 65.56 27.81

AHP datasetc

LEPS 26.97 84.22 72.52 32.07 10.36

BepiPred 51.48 57.91 55.57 25.06 6.32

ABCPred0.8 68.28 39.06 45.58 24.51 5.45

BCPred 59.45 54.80 54.50 26.32 9.73

FBCPred 60.40 51.66 52.31 25.38 7.60
a
SEN: sensitivity; SPE: specificity; PPV: positive prediction value; ACC: accuracy; MCC: Matthews’ correlation coefficient, unit, %.

bThe subscripts of ABCPred denote threshold values according to the highest accuracy.
cThis dataset is a merge of the other 3 datasets.

(a) (b)

Figure 3: The LEPS server. (a) Users can input a query sequence and manually adjust the weight and window size of each propensity. (b)
The output information of HIV integrase predicted by LEPS shows 17 candidates, and only 9 candidates were retained after SVM filtration.
The final predicted epitope segments are labeled in yellow at the bottom.
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Figure 4: The predicted LEs of HIV integrase mapped onto a
simulated 3D structure. The predicted epitopes are labeled in
yellow, and the selected epitopes (number 1 and number 3) are
shown in yellow spheres.

also showed the best performance in the MCC for the AntiJen
and AHP datasets (10.10% and 10.36%), and the MCC was
only a little lower (22.76%) than BCPred (29.80%) and
FBCPred (27.81%) for the HIV dataset. Taken together, LEPS
displayed excellent performance in SPE and PPVs for all four
datasets; it also showed the best or equivalent ACCs for all
datasets. However, it showed relatively low SEN compared to
the other predictors, mainly due to less number of predicted
LEs.

3.3. The LEPS Platform. The LEPS provides a user-friendly
interface for biologists to predict linear epitope candidates
(Figure 3(a)). LEPS will accept either FASTA format or text,
and the default parameters were set as indicated. In this
system, several physicochemical propensities can be dynam-
ically modified by users, including secondary structures,
hydropathy, surface accessibility, flexibility, polarity, and
other factors. The scanning window size for each parameter
is also adjustable. After executing the prediction, the overall
antigenicity of the query protein and the predicted LE candi-
dates are displayed. For example, Figure 3(b) shows the LEs
in HIV integrase predicted by LEPS. Seventeen candidates
were initially predicted by LEP based on the global and local
distributions of antigenicity. These candidates were further
filtered by SVM selection, with only 9 remaining candidates.
Within these 9 epitope candidates, number 1 (residue 5–19),
number 2 (residue 41–50), numbers 7 and 8 (residue 227–
239, and residue 243–247), and number 9 (residue 261–266)
overlapped with the experimental epitopes at residues 1–
16, residues 42–55, residues 228–252, and residues 262–271,

(a)

(b)

Figure 5: The experimental and predicted epitopes of 10 kDa
chaperonin. The structural surfaces display the true epitopes (a) and
predicted epitopes (b) in yellow spheres. The red and blue spheres
represent the remainder of the protein. Both figures were created
with PyMOL.

respectively. To verify the surface conditions of the predicted
LEs within the query protein sequence, a protein structure
was simulated based on homologous modeling approaches.
This structure can be viewed and analyzed by clicking on the
button labeled “predicted structure.”

3.4. Visualization of the Predicted LEs on 3D Structures. Pre-
dicted structures of the query sequences can be rendered by
Jmol (http://www.jmol.org/) in LEPS, and the corresponding
PDBs and PyMOL script files (http://www.pymol.org/) are
downloadable by request. For example, Figure 4 shows
the simulated structure of HIV integrase as predicted by
Modeller, with the predicted epitope segments displayed in
yellow solid spheres. Because there is a high probability
that true epitopes will be exposed on the protein surfaces
for binding with antibodies, visualization of the predicted
LEs on 3D structures can facilitate the selection of suitable
epitopes from predicted candidates according to their surface
distributions. Figure 5 shows an example of the experimen-
tally verified epitopes and predicted epitopes for the 10 kDa
chaperonin protein in the AntiJen dataset. The yellow spheres
in both Figures 5(a) and 5(b) show the true and predicted
epitope atoms, respectively. The position of the remaining
protein is shown in red and blue solid balls in the two
simulated structures. In both cases, most of the epitope
residues are located on the protein surface.

http://www.jmol.org/
http://www.pymol.org/
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3.5. Acceptability of Low Sensitivities. Although LEPS can
provide a highly accurate prediction of LEs, the low
sensitivity is an issue that remains to be investigated. In
general, epitope datasets confront a challenge that biological
experiments would not cover all the true epitopes within
an individual antigen. Peptide scanning data could only
identify potential epitopes that were recognized by a specific
antibody. However, different antibodies to the same antigen
might recognize different epitopes. These biological varia-
tions caused low coverage of epitopes within an antigen [43].
This situation implies that the sensitivities of an LE predictor
should generally be low. Alternatively, a LE predictor might
ubiquitously predict more epitopes to regain the sensitivities
accompanying with the reduction of specificities. This will
definitely lead to higher experimental costs in general.
Nevertheless, to persuade biologists to conduct in vitro
experiments on the predicted potential LEs, the accuracy and
MCC values could provide balanced statistics for evaluating
the performance of a prediction system.

In this study, LEPS displayed high accuracy, MCC,
specificity, and PPV, although the sensitivity was a little low.
However, the reduced sensitivity was offset by the high PPV.
Therefore, the LEPS provides a high probability of success for
molecular biologists in predicting and selecting functional
epitopes effectively and efficiently.
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