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ABSTRACT

We report the use of a deep learning model to design de novo proteins, based on the interplay of elementary building blocks via hierarchical
patterns. The deep neural network model is based on translating protein sequences and structural information into a musical score that
features different pitches for each of the amino acids, and variations in note length and note volume reflecting secondary structure
information and information about the chain length and distinct protein molecules. We train a deep learning model whose architecture is
composed of several long short-term memory units from data consisting of musical representations of proteins classified by certain features,
focused here on alpha-helix rich proteins. Using the deep learning model, we then generate de novo musical scores and translate the pitch
information and chain lengths into sequences of amino acids. We use a Basic Local Alignment Search Tool to compare the predicted amino
acid sequences against known proteins, and estimate folded protein structures using the Optimized protein fold RecognitION method
(ORION) and MODELLER. We find that the method proposed here can be used to design de novo proteins that do not exist yet, and that
the designed proteins fold into specified secondary structures. We validate the newly predicted protein by molecular dynamics equilibration
in explicit water and subsequent characterization using a normal mode analysis. The method provides a tool to design novel protein materials
that could find useful applications as materials in biology, medicine, and engineering.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5133026

INTRODUCTION

The design of hierarchical materials represents one of the fron-
tiers in materials science.1–3 In spite of nature’s extensive examples of
material designs, from silk, to bone, to cells and many others, we are
yet to have access to methods that can automatically extract design fea-
tures from such materials and implement them in new materials that
do not yet exist in nature. We propose that the use of machine learning
can be a powerful means to extract features and apply neural network
models in the design of novel materials. In this paper, we focus specifi-
cally on protein materials,4,5 which represents an important category
of building materials in living systems with important implications for
medicine, engineering, and many other fields. Proteins consist of 20
naturally occurring amino acid building blocks that are assembled into
hierarchical structures across many length-scales.5–7 Examples for pro-
tein materials with a structural (e.g., mechanical) function include

hair, silk, and tendon. There are many other protein materials with
unique optical, biological and tunable, and active properties, for
instance materials found in the cell like actin filaments or motor pro-
teins. One way to classify protein materials is by their abundance of
the secondary structure, such as alpha-helix, beta-sheet, or random
coil. Table I summarizes four different types of protein materials as
examples to explain the importance of proteins as the basis for materi-
als design in nature.

The use of artificial intelligence (AI) in understanding and classi-
fying proteins and predicting new sequences has been explored in
recent literature and presents an opportunity for further research
investigations.8–12 Other work in materials modeling and design has
applied AI to design new composites, which can offer an efficient
means to materials by design and manufacturing.13–15 Here, we apply
AI to learn hierarchical structures of protein sequences through a
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recently proposed model based on long short-term memory (LSTM),
one type of recurrent neural network (RNN).16 To capture the
hierarchical organization of proteins, we exploit an analogy between
protein design and music that was proposed earlier by one of the
authors.1,17–20 This analogy is composed of two major components,
the translation of protein structures into musical space and performs
design operations in that formulation, and uses a reversible mapping
to seamlessly exchange information between these representations.
Music represents a similar hierarchical structure as seen in materials
design, and may hence be suitable as a mechanism to conduct analysis
and design of materials.21–27 For instance, protein and music are both
made of a limited number of building blocks, which are arranged in
particular patterns across scales. Proteins are made of amino acids,
and musical pieces are composed of sounds and notes. Both systems
feature hierarchical structures: for proteins, all the amino acids are
organized in a three-dimensional spatial domain to realize secondary,
tertiary folding structures. Musical pieces are created based on differ-
ent sounding instruments that play certain notes, forming melodies,
chords, and other complex structures such as counterpoints in the
time domain.28 Figure 1 offers a summary view of the method used in
this study.

The plan of the paper is as follows. We begin with a description
of the translation of existing protein structures into musical scores,
used here to develop the training set for our deep neural network. We
then provide a description of the deep neural network model and
training set, and then present a variety of predicted amino acid
sequences, their structures, and further analysis to characterize the
designer proteins.

RESULTS

We now review the results of a variety of amino acid sequence
predictions and the resulting protein structures. We note that in the
mapping from the musical score back to the amino acid sequence,
we solely map the amino acid sequence, and do not capture any sec-
ondary or higher-order structural information. This serves as a con-
trol mechanism to confirm that the predicted secondary structure,
obtained through an analysis of the musical score (specifically, vol-
ume and timing of notes), agrees with the predicted protein
structures.

The first examples are generated using a small protein with PDB
ID 5xdj as a seed, generating 3000 steps. This protein is a small alpha-

helix protein consisting of 21 amino acid residues. For a temperature
choice close to 1.0, the predicted amino acid sequences match those
given in the training set; hence, no de novo sequences were generated.
For a temperature choice closer to 2.0 and higher, we obtain novel
amino acid sequences that are not part of the training set. For example,
for a temperature choice of 1.2 with the 5xdj seed, we predict the fol-
lowing sequence (all sequences given in the 1-letter FASTA amino
acid code):

GIFSKLAGKKIKNLLISGLKG#GSMKQLEDKVEELLSKNYHL
ENEVARLKKLVGE!GSMKQLEDKVEELLSKNYHLENEVARLK
KLVGE! GSMKQLEDKVEELLSKNYHLENEVARLKKLVG

Note that the symbol # describes the beginning/end of a new pro-
tein molecule, and ! describes the end of a protein chain. The first 21
letters reflect the protein that served as the seed, in this case 5xdj. The
first part of the sequence was provided by the seed (printed in gray
color; the sequence of the prediction always begins with the seed pro-
vided). The generated output yields three separate chains, marked in
red, green, and black color to separate them. Each of the generated
chains consists of the same amino acid sequence. This pattern of creat-
ing assemblies of multiple chains with identical sequences is com-
monly found in naturally occurring proteins, and produced here
directly through the neural network prediction. A basic local align-
ment search tool (BLAST)37 analysis reveals that the predicted protein
sequence GSMKQLEDKVEELLSKNYHLENEVARLKKLVGE has a
100% identify and 100% query cover with chain A of PDB ID 5iiv,
which was included in the training set. A structure prediction of
the single chain of the predicted amino acid sequence is shown in
Table III.

We now repeat the generation with a higher temperature of 1.4.
This results in the following sequence:

GIFSKLAGKKIKNLLISGLKG#GSMTISNMEADMNRLLKQREEL
TKRREKLSKRREKIVKENGEGDKNVANINEEMESLTANIDYIND
SISDCQANIMQMEEAK#DD SEQLQMELKELALEEERLIQ

As before, the predicted sequence begins with the seed printed in
gray color, followed by two chains. We analyze the red prediction:

GSMTISNMEADMNRLLKQREELTKRREKLSKRREKIVKENGE
GDKNVANINEEMESLTANIDYINDSISDCQANIMQMEEAK

We find similar as before this protein reflects a protein that exists
in the protein data bank, PDB ID 5d3a, which was also included in the
training set. A structure prediction of the single chain of the predicted
amino acid sequence is shown in Table III.

Once the temperature is set to 1.8 and higher, the predicted
sequences show greater variability and yield amino acid sequences
that do not exist in the training set or in the protein data bank,
hence leading to de novo proteins. The prediction for a temperature
of 1.8 yields:

GIFSKLAGKKIKNLLISGLKG#SEVELQRALEIARESGTLLA
VVLALEVVARVAIEAARKGNTDAVREALEVALEIARESGTKV
AVVLALEVVARVAIEAARRGNVLAVLALEVVARVAIEAARRG
NVLAVILALEVALEIARESGTE

TABLE I. Summary of different protein materials and their primary structural motif.
The focus of this paper is on alpha-helical proteins, which are found widely as the
basis of structural materials in nature.

Protein material Primary structural motif

Hair Alpha-helices (e.g., keratin protein)
forming coiled-coil motifs, cross-linked
by disulfide bonds

Intermediate filaments
(in cells)

Alpha-helices, assembled as coiled-coils

Spider silk Beta-sheet mixed with random coil, cre-
ating a nanocomposite

Tendon (collagenous
tissue)

Triple helix (three amino acid chains
forming a rope-like helical structure)
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A BLAST analysis shows that part of the sequence is similar
to PDB ID 6e9x. However, the first part of the sequence, specifi-
cally the amino acid sequence SEVELQRALEIARESGT, does not
match any known sequence. Table III includes the structure pre-
diction result of this small peptide, revealing that it forms an
alpha-helix protein. This indicates that the neural network is
capable of predicting de novo sequences that also feature the char-
acteristics of the class of proteins, in this case, alpha-helix rich
proteins.

We now select a temperature choice of 2.0 and generate long
musical scores with 10 000 steps length, and translate those back into
amino acid sequences. For a seed using the PDB 5xdj protein as for
the earlier examples, we predict this sequence:

GIFSKLAGKKIKNLLISGLKG#GSMEKEDKVEELLSKNYHLE
NEVARVKRLRLEVERDNLAEDIMRLREKLQEEKLRRCAVKGR
HQDRCLELTKRNQELEANKKLALTEIEKELEAETRAEFAELS
ALQEEKQRRKVEQQLADKAIQEEKARKCKVEELEAKKKNIDD
LEDKVEENQHRVDGAEKNGMLADVYQAELRRKVEELERALRA
VEEAARLAKRNLLKAVEENQEMLELKEKLSVELLTLAEFAEE
EIDDVEISQLAKKLLGGW!AAVLQQVLDDLAGLCAANIAGGV
LAQVARESSEIQEQIARRAIVLEKQARLLTQLADVKKQQQLG
ALKMIAAEEEERRRRQQQLMNKAIAAKKGNTDDLQKALRTKR
RVREAKKVLSLEEEEVTRLLRIEEEVREEARRKKQLHEAEAG
SARRRQLKMLALLVAEEAARRVAAERVREEARELLEVIRFRA
VELLEVEELLRVLEEEEIQALRNQQYILSVNNNATLARLDLL
AADLLNALLTLLEEEEEERRLLQQQLKIEEEIQL#

FIG. 1. Correspondence of the hierarchi-
cal structure of proteins and music (panel
a) and overall flow chart of the work
reported here (panel b). The approach to
reversibly translate between the language
of proteins and music allows us to close
the loop between different manifestation of
hierarchical systems in material and
sound, and the reversible translation in
between the two representations. New
musical expressions generated by human
composition offer another pathway to
design new materials, albeit it is not yet
explored in this paper.
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This prediction includes two new amino acid sequences, marked
in red and green. Based on the BLAST analysis, we find that the first
sequence in red does not match any protein in the training set, nor
does it match any known existing protein. This sequence:

GSMEKEDKVEELLSKNYHLENEVARVKRLRLEVERDNLAEDI
MRLREKLQEEKLRRCAVKGRHQDRCLELTKRNQELEANKKLA
LTEIEKELEAETRAEFAELSALQEEKQRRKVEQQLADKAIQE
EKARKCKVEELEAKKKNIDDLEDKVEENQHRVDGAEKNGMLA
DVYQAELRRKVEELERALRAVEEAARLAKRNLLKAVEENQEM
LELKEKLSVELLTLAEFAEEEIDDVEISQLAKKLLGGW

A detailed analysis of the BLAST results shows that a 96%
query cover leads to 37.97 sequence alignment with PDB ID 2efR.
However, in addition to showing only a 37.97% sequence align-
ment, we note that PDB ID 2efr was not part of the training set.
We find that the protein PDB ID 2efr is an alpha helical leucine
zipper. The highest sequence alignment is with 5iew but it covers
only 14% of the sequence queried, implying that the entire
sequence shows a variety of distinct patterns. The structure predic-
tion of this de novo sequence is shown in Table III, confirming that
this protein is indeed an alpha-helical protein. These results show
that the method is capable of generating new proteins from
sequences the neural network has learned. Also notable is that the
method predicts the correct space signals, i.e., new chains and pro-
tein structures separated by # and !. Similarly, we analyze the sec-
ond sequence predicted:

AAVLQQVLDDLAGLCAANIAGGVLAQVARESSEIQEQIARRA
IVLEKQARLLTQLADVKKQQQLGALKMIAAEEEERRRRQQQL
MNKAIAAKKGNTDDLQKALRTKRRVREAKKVLSLEEEEVTRL
LRIEEEVREEARRKKQLHEAEAGSARRRQLKMLALLVAEEAA
RRVAAERVREEARELLEVIRFRAVELLEVEELLRVLEEEEIQ
ALRNQQYILSVNNNATLARLDLLAADLLNALLTLLEEEEEER
RLLQQQLKIEEEIQL

This is also a de novo protein that does not exist in any of the
databases. The BLAST analysis shows that for the highest query cover
of 97% the sequence alignment is 30.41% with known proteins. The
highest sequence alignment is 39.56%, which covers 86% of the query.
Figure 2 shows the musical score generated for this case, from which
we extracted the green amino acid sequence, as well as the predicted
protein structure (the protein structure is the same as already shown
in Table III). Analyzing the musical score, we notice that the rhythm
and note volumes clearly indicate an alpha-helix secondary structure.
The musical score indicates three distinct alpha helical segments, cre-
ated by two breaks of the “helical rhythm,” in agreement with the pre-
dicted structure. This indicates that information about a higher-order
protein structure can be directly readout of the musical score, as con-
firmed in the folding prediction.

While the ORION and MODELER tools38,39 offer a useful way to
estimate structures of proteins, to refine the predictions molecular
dynamics simulations are required. We exemplify this based on the
second sequence reviewed above (the green sequence) and build a
molecular dynamics model using CHARMM and explicit solvent, at
neutral pH and 0.15mol/l NaCl concentration. Energy minimization
and equilibration confirm that the predicted structure is stable and

retains its alpha-helical geometry. Figure 3 depicts the initial and equil-
ibrated protein structure after 3.5 ls in explicit water. Further analysis
could be done using Steered Molecular Dynamics (e.g., to determine
the Young’s modulus of the protein) or other approaches. A simple
way to probe the nanomechanical properties of a molecule is using
normal mode analysis. Figure 4 shows an example analysis of the-
protein, carried out using an anisotropic elastic network model.46

To illustrate how this de novo protein sounds like in its musical repre-
sentation, please see PDB1_sonified.mp3 (in the supplementary
material).

To illustrate the versatility of the method, we briefly review a few
more results. For a seed using PDB 2ndk (human dermcidin, an anti-
microbial peptide secreted constitutively by sweat glands), and a tem-
perature of 1.2, we predict this sequence:

SSLLEKGLDGAKKAVGGLGKLGKDAVEDLESVGKGAVHDVKD
VLDSVL#EHEAERRDKNKLTAETEKGIMAYMAFLKEAERRSD
EGQTNTVTLQDLLNVKMALDIEIATYRKLLEG#S

As one can confirm from the gray sequence, the seed amino acid
sequence is longer than the previous examples. The predicted sequence
marked in red is a combination of a de novo sequence at the beginning
and a fragment of the vimentin intermediate filament sequence toward
the end (the QDLLNVKMALD IEIATYRKLLEG fragment; underlined
in the sequence above). The structure predicted based on this sequence
is also shown in Table III. It is noted that the structure of the first
sequence part alone yields a protein that is not fully alpha-helical, but
that consists of an alpha-helix and a random coil segment next to it
(structure also shown in Table III). However, when the entire sequence
is considered, as predicted by the neural network, a fully alpha helical
sequence is formed. This may imply that the method is indeed capable
of capturing longer-scale sequence to structure relationships in the
generated folds.

DISCUSSION AND CONCLUSION

In this paper, we reported a new approach to understand protein
structures in musical space. This translation may offer new avenues to
understand the protein function and how it changes under variations
of sequence, secondary structure, and other structural parameters. The
deep neural network is capable of training, classifying and generating
new protein sequences, ranging from reproducing existing sequences
and those included in the training set to completely new sequences
that do not exist yet. Unlike most other AI based models that focus
mainly on predicting the folding structure, our approach targets gener-
ating new proteins with an embedded secondary structure. Our
method opens an opportunity to understand patterns in various forms
of hierarchical systems and how they can be designed through distinct
representations. In general, other sonification approaches to translate
proteins into music (different from what we used in this paper) are
possible as well, as long as it is unique to enable reversibility.

Proteins are the most abundant materials of all living things.
Their motion, structure, and failure in the context of both normal
physiological function and disease are a foundational question that
transcends academic disciplines. In this paper, we focused on
developing a model for the vibrational spectrum of the amino acid
building blocks of proteins, an elementary structure from which
materials in living systems are built on. This concept is broadly
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FIG. 2. Musical score predicted by the neural network (center), translated into the amino acid sequence, and predicted protein structure (right). This protein does not exist in
any database and is completely de novo, designed by the neural network. The small protein on the very left is PDB ID 5xdj, used as the seed in the generation process. Note
that the sequence of the protein is played sequentially in its entirety.

FIG. 3. De novo protein with one chain equilibrated in explicit water for 3.5 ls. Original structure (panel a) and structure in equilibrium (panel b). The top representation shows
the results based on the NewCartoon method, and the lower plots the results using the Cartoon method. The data show that the protein is well equilibrated.
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important as at the nano-level observation, all structures continu-
ously move, reflecting the fact that they are tiny objects excited by
thermal energy and set in motion to undergo large deformations,
which we exploit here to extract new musical compositions as one
way to represent nature’s concept of hierarchy as a paradigm to cre-
ate function from universal building blocks. More broadly, the trans-
lation from various hierarchical systems into one another poses a
paradigm to understand the emergence of properties in materials,
sound, and related systems, and offers new design methods for such
systems where large-scale and small-scale relationships interplay.

In future work, the sonification method could be further
extended to address folded structures of proteins by including more
spatial information, such as the relative distance of residuals, angles, or
contact information into the audible signals. Figure 5(a) depicts an
illustration of potential musical coding of protein folding, reflecting
the incorporation of the higher order structure in music. The transla-
tion is achieved by reflecting the formation of close geometric interac-
tions between different regions of the protein (points i and j in the
example). Figure 5(b) shows how the neighbors of points i and j (and
vice versa) are coded, by marking a part of the sequence around j and
inserting it near i in the musical score (and vice versa). In musical
notation, the inserted notes are played much faster and softer than the
main sequence, with the note that reflects the amino acid of the neigh-
bor played slightly louder. This coding in audible measures enables
one to filter the relevant information from the notes played to ensure
reversibility of the mapping. In fact, by using an algorithm to find the
pattern inserted near i one can detect the location of its neighbor, mak-
ing the method reversible. The reason why sequence patterns are
inserted is to being able to detect—from matching the inserted
sequence—which amino acid is the neighbor. Altogether, this
approach leads to more complex melodies and depending on how
quickly the inserted melodies are played, to chord progressions

(similar to the strumming of a guitar). 1akg_folded.mp3 is an audio
file as an example for how this new type of music sounds like (see the
supplementary material), representing the score shown in Fig. 5(c).

Using this or similar approaches, one can directly translate
between music notes and protein structure as long as the embedding
information inside the protein-music mapping is self-consistent.

FIG. 5. (a) Illustration of potential musical coding of protein folding, reflecting the
incorporation of a higher order structure in music. The translation is achieved by
reflecting the formation of close geometric interactions between different regions of
the protein (points i and j in the example). (b) Illustration how the neighbors of
points i and j (and vice versa) are coded, by marking a part of the sequence around
j and inserting it near i in the musical score (and vice versa). This leads to overlap-
ping melodies, and hence the playing of multiple notes at the same time (chords).
By using an algorithm to find the pattern inserted near i, one can detect the location
of its neighbor, making the method reversible. (c) Example of a musical score for
protein with Protein Data Bank ID 1akg, reflecting a multi-track piece (upper—pri-
mary sequence, lower—inserted sequence patterns to code for folded geometry).
1akg_folded.mp3 is an audio file as an example (see supplementary material).
Note, in this small protein, amino acid residue 3 is close to amino acid residue 9,
and vice versa. Hence, there are two insertions in the music.

FIG. 4. Normal mode analysis of the de novo protein, plotting the frequency over the
normal mode number. The inset in the plot shows the deformation profile of the protein
in mode 1, as an example for nanomechanical deformations induced by the vibrations.
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Moreover, we do not have to change the structure of the deep neural
network adopted in the present study because a different sonification
method will only result in a different dataset that reflects the particular
representation of music, which can be directly used to train the deep
neural network. In preliminary testing, the representation of the folded
structure of proteins as sketched in Fig. 5 has enabled us to use the deep
neural network to generate musical patterns with identical structures as
the training set, specifically creating musical scores that reflect the pri-
mary sequence with inserted melodies. 5xdj_seed_folded.mp3 is an
audio file as an example for how a de novo protein generated from a
5xdj seed protein sounds like, whereas the inserted notes can clearly be
identified by listening to the audio (see the supplementary material).
Future work is needed to refine this approach, and it will be interesting
to test whether the newly generated music is capable of correctly pre-
dicting the folding of the protein by analyzing the score.

The AI based approach to design new proteins opens the door to
generative methods that can complement conventional protein
sequence design methods. In future work, the method reported here
can be further augmented by additional conditioning of the musical
scores generated, and could also be combined with optimization algo-
rithms such as genetic algorithms. New sequences predicted by the
algorithm could be scored against performance measures and evolved
further through the optimization method. This paper has focused on
alpha-helical proteins. Future work could develop deep neural net-
works that include other protein motifs and perhaps additional and
complementary classifications, so that more options for conditional
generation can be developed.

METHODS
Translating protein sequences into musical scores

We map amino acid sequences into musical scores that reflect
music composed in the “amino acid scale.” Using bioinformatics
libraries Biopython and Biskit, we developed a python script that

translates any sequence into a musical score. Sequences using the
1-letter amino acid code can be entered either manually or based on
lists of one or more protein PDB identifiers. We also implemented a
function by which proteins can be searched and grouped, using
PyPDB. This allows one to quickly build complex musical scores for
use as training sets for the neural networks. Musical scores are stored
as MIDI files that are used for the training.

To reflect a higher-order chemical structure in the musical repre-
sentation, we incorporate information about the secondary structure
associated with each amino acid in the translation step in affecting the
duration and volume of notes. We use DSSP to compute the secondary
structure from the protein geometry file and sequence.29,30 Table II
lists the complete set of parameters determined by this approach. We
use longer note durations for disordered secondary structures, very
short note durations for helices, and short notes for beta-sheets. We
also modulate the volume by rendering beta-sheets the loudest, and
others more softly. For instance, ALA residues in a BS will be played
loud and slower than ALA residues in an AH, which will be played in
a fast, repetitive manner. Similarly, ALA residues in random coils or
unstructured regions are played slowly and softly. These modulations
of the tone by volume and timing lead to a certain rhythmic character
that overall reflects the 3D folded geometry of the protein. For the
training of the neural networks, capturing these features is essential, as
it reflects the hierarchical nature of the protein fold from primary, sec-
ondary, to tertiary, and higher-order structures.

Deep neural network and training

The deep neural network model is formulated based on the con-
cept of using a translation of protein structures into musical space,
reflecting the 20 amino acids and secondary structures as distinct and
reversible audible expressions. A summary of the mappings from the
protein structure to musical scores is summarized in Table II. The

TABLE II. Incorporation of the secondary protein structure in the translation into musical score, affecting note timing and note volume. Each of the 20 amino acids is mapped
into a distinct musical note, from C-2 to A1, on a C major scale (the white keys on a piano). Additional musical features are introduced by mapping higher-order structural infor-
mation, as summarized in the table. Different amino acid chains within one protein are characterized by a B-2 note and a longer break, and different proteins are characterized
by a A#-2 note and even longer break. By classifying three major secondary structure classes, we can capture their representation in musical space, and also translate the
feature into the AI. The variations in pitch, volume, and note timing introduce musical characteristics that represent the hierarchical protein structure in that space.

Secondary structure Note assignment

Note duration (normalized by
a 1/8th note; i.e. there are

8 notes per bar)

Note volume (normalized by
reference MIDI note

volume¼ 100)

Beta-sheet (all types) N/A (notes assigned accord-
ing to mapping of 20 amino
acids into notes, see Fig. 6)

1.0 (i.e., 1/8th notes) 1.0

Helices (alpha helix and
others)

N/A (notes assigned accord-
ing to mapping of 20 amino
acids into notes)

0.5 (i.e., 1/16th notes) 0.5

Random coil and
unstructured

N/A (notes assigned accord-
ing to mapping of 20 amino
acids into notes)

2.0 (i.e., 1/4 notes) .25

Separation between different
amino acid chains

B-2 marked as ! in predicted
amino acid sequences

4.0 (long break to indicate
new amino acid chain)

1.0

Separation between different
proteins

A#-2 marked as # in pre-
dicted amino acid sequences

8.0 (long break to indicate
new protein)

1.0
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basis to mapping each of the 20 amino acids onto a unique musical
tone is the unique vibrational spectrum of the molecules as explained
in Ref. 26, each of the amino acids has a unique vibrational spectrum,
which allows us to distinguish each of them by its unique sound (or
timbre). Figure 6 summarizes the lowest vibrational frequencies (first
harmonic and two higher31) of each of the 20 amino acids in ascend-
ing order, showcasing the unique vibrational characteristic. For analy-
sis of the data in conventional music software, each of the 20 amino
acids is mapped into a distinct musical note, from C-2 to A1, on a C
major scale (the white keys on a piano). This representation is used to
create musical scores. An example of one of the proteins in the train-
ing set is shown in Fig. 7, showing the musical score of the protein
with PDB ID 3tnu (an intermediate filament protein).

We translate a set of alpha-helix rich proteins into musical scores
and use this representation to train a deep neural network, using the
Magenta framework.32 The recurrent neural network (RNN) we
employ in this work is adopted from language modeling, implemented
in the Performance RNN model33,34 using TensorFlow.35 This RNN
layers Long Short-TermMemory Units (LSTM) for time sequence fea-
tures, alongside a dynamical conditioning.36 The attention dynamical
conditioning model is able to monitor the note velocity changes of the
note sequences, which is important to capture a higher-order structure

of proteins. We use a batch size of 64, and three layers with sizes 512,
512, and 512. We use the “performance_with_dynamics” model to
model note pitches, note timing, and note velocity changes. Training is
done until convergence is achieved, typically around 100 000 steps.
The training and generations are done on a Dell Precision Tower 7810
workstation (Xeon CPU E5–2660 v4 2.0GHz, 32G memory with a
GeForce RTX 2080 Ti GPU).

Training set: Alpha-helix rich proteins collected from the
Protein Data Bank (PDB; https://www.rcsb.org/)

We use a training set consisting of alpha-helix rich proteins
(PDB IDS: 6A9P, 6F62, 6F63, 6F64, 6GAJ, 6GAK, 5VR2, 5TO5,
5TO7, 5XDJ, 5LBJ, 2NDK, 5WST, 5IIV, 5D3A, 5HHE, 2MG1, 2LBG,
2L5R,3V4Q, 2D3E, 2HN8, 2FXO, 3TNU, 4YV3, 1GK6, 3SSU, 3SWK,
2XV5, 3UF1, 3PDY, 1X8Y, 3TNU, 4ZRY, 6E9R, 6E9T, 6E9X, 2MG1;
a total of around 20 000 amino acid residues).

FIG. 6. First here vibrational frequencies associated with each of the 20 amino acids
(fundamental frequency and second and third higher modes). Original data for the
plot shown taken from Ref. 31, full analysis of audio spectrum in Ref. 20, whereas
the vibrations derived from density functional theory (DFT) are transposed to the
audible frequency spectrum using the music theoretical concept of transpositional
equivalence.47 For analysis of the data in conventional music software, each of the
20 amino acids is mapped into a distinct musical note, from C-2 to A1, on a C major
scale (the white keys on a piano). This representation is used in the sample musical
score of one of the proteins in the training set shown in Fig. 7. It is noted, however,
that the sound of each protein is not within any conventional musical scale. Rather,
the soundings of the amino acids create a unique associated “amino acid scale.”

FIG. 7. Musical score generated for the protein 3tnu (intermediate filament protein),
part of the training set. The musical score is 14 bars long. Note that the notes indi-
cated do not reflect a conventional musical scale, but that each note in the space of
20 admissible tones in the native amino acid scale is assigned to one of the 20
amino acids. The score is shown here only for visualization of the concept, and to
illustrate the timing, rhythm, and progression of notes as learned from the amino
acid sequence. A large number of musical scores are used as the training set to
train the neural network.
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The protein sequences are translated to musical scores using the
method described in Table II, recorded in MIDI format, and then used
for the neural network training.

Generation of new musical scores

Once the deep neural network described in the previous section
is trained properly, we use it to generate new protein sequences. The
neural networks will produce musical scores in the MIDI format,
which are mapped back into protein sequences using a Python script.
Different musical scores are used as a primer to seed the generation
process. We use either musical scores reflecting amino acid sequences
of entire existing protein structures or use short note sequences corre-
sponding to brief patterns of amino acid sequences. Varying the seed
enables us to generate different musical scores.

On the other hand, we use temperature, a hyperparameter of the
deep neural network, during the generation process to tune the gener-
ated musical scores. This parameter affects the randomness of predic-
tions. The use of temperature is a common way to achieve control of
the generated output. The baseline of temperature is set to 1.0. In this
case, the probability distribution we used to generate the AA sequence
is initiated according to the training directly. One can control the ran-
domness by manipulating temperature. We can reduce the random-
ness of probability distribution by decreasing the temperature value
(T < 1); or introduce more randomness by introducing a higher value
of temperature, say T > 1.

We find that using temperature values in the range from 1.0 to
2.0 results in good predictions, whereas a value closer to 1.0 yields
amino acid sequences closer or identical to patterns found in the train-
ing set and a value well in excess of 1.0 yields sequences that are dis-
tinct from any amino acid sequences of the training set. We also
discover that the predicted musical scores contain the same musical
notes as the training scores, and that similar musical patterns of vol-
ume and timing variations are generated. The higher the temperature
and the smaller the length of the seed note sequence, the greater the
variations from the training set. For higher temperature choices (in
excess of 2.0), some generated notes fail to fall on the set of 22 notes
used in the training set, reflecting the greater variations and error
introduced (this serves as a guideline to maintain the temperature val-
ues in the range from 1.0 to 2.0). Further studies could explore more
variations of the interplay of temperature and seed musical score on
the predicted proteins.

Mapping musical scores back into protein sequences

To map musical scores back into amino acid sequences, we devel-
oped a script that reads a Musical Instrument Digital Interface (MIDI)
file and maps the notes associated with the 20 amino acids back onto
amino acids, generating sequence outputs in the 1-letter codes. In the
translation of the musical scores back into amino acid sequences, we
solely capture the sequence of amino acids. This serves as a means to
test the predictive power of the neural networks as to whether or not
they are capable of predicting proteins with the desired secondary
structures. In principle, secondary structure information could be
extracted from the musical scores as well (in this paper, we use it as a
validation step to confirm that the musical structure agrees with the
folded protein structure, as explained in the Results section below).

Amino acid sequence analysis

Sequence similarities are analyzed using BLAST.37 We use the
blastp (protein-protein BLAST) algorithm for the examples discussed
in this paper. We assess various scoring functions in the analysis, spe-
cifically query cover, percent identical, and the overall Max score.

TABLE III. Summary of AI designed de novo proteins using the neural network
model developed. The name of the identifiers of the proteins corresponds to the PDB
ID as listed in https://www.rcsb.org.

Seed and temperature, notes on
predicted sequence

Image of folded protein
generated by AI

5xdj, temperature¼ 1.2, 3000
steps

5xdj, temperature¼ 1.4, 3000
steps

5xdj, temperature¼ 1.8, 3000
steps
Resulting sequence shows some
similarities with PDB ID 9e9x

5xdj, temperature¼ 1.8, first
amino acid fragment that
is de novo and not part of the
training set nor any databases

SEVELQRALEIARESGT
5xdj, temperature¼ 2.0, 10 000
steps
First sequence marked in red in
the text
4xdj, temperature¼ 2.0, 10 000
steps
Second sequence marked in
green in the text
2ndk, temperature¼ 1.2, 3000
steps

2ndk, temperature¼ 1.2, 3000
steps,
Predicted structure of the first
sequence pattern that is de novo
and not part of the training set
nor any databases
EHEAERRDKNKLTAETEKG
IMAYMAFLKEAERRS
DEGQTNTVTL
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Protein structure prediction

The sequence data generated by the neural network are used for
further analysis to examine similarities with known proteins and then
used to build 3D models using protein folding methods. We use a
homology method, ORION,38 to predict an estimated structure of the
designed protein sequences. A 3D structure is obtained using
MODELLER,39 reflecting the images shown in Table III (right col-
umn). We use the PDB95 database in ORION, representing a collec-
tion of 54 540 protein templates, gloloc alignment mode, and consider
up to 100 proposed structures. The top structure with the highest score
is used for further analysis and shown in the table.

In addition to using the aforementioned method, we also used I-
TASSER40,41 to compare against the ORION predictions. We carried
out this computation for select sequences (specifically, the predictions
for the 5xdj seed, temperature¼ 2.0, 10 000 steps) and confirmed the
emergence of alpha-helical proteins. The I-TASSER predictions tend
to include elongated alpha-helical structures rather than the folded
coiled-coil like geometries seen in ORION. However, it is seen that the
alpha-helical domains have very short “breaks” that may effectively act
as hinges, ultimately leading to the self-folding of the structure as sug-
gested in Ref. 42. The I-TASSER results also include information about
the possible protein function, including ligand binding sites and ligand
names, as well as active sites.

Molecular dynamics modeling

We use NAMD (implemented in CUDA for execution on a
GPU; version: NAMD_2.13_Linux-x86_64-multicore-CUDA)43 with
the CHARMM force field44 to minimize and equilibrate protein struc-
tures at 310K, using a Langevin thermostat. Visual Molecular
Dynamics (VMD)45 is used for pre- and post-processing and image
and movie generation. An explicit water solvent is modeled using
TIP3P water. The simulations are carried out at neutral pH and
0.15mol/l NaCl concentration. The molecular simulations are done
on a Dell Precision Tower 7810 workstation (Xeon CPU E5–2660 v4
2.0GHz, 32G memory with a GeForce RTX 2080 Ti GPU.

Normal mode analysis

We conduct a normal mode analysis using an anisotropic net-
work model46 of the protein PDB generated based on AI, using the
equilibrated protein structure as input.
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SUPPLEMENTARY MATERIALS

See the supplementary material for equilibration of the de novo
protein predicted using the recurrent neural network, in explicit water
(file accessible in Data Sheet 1.ZIP) (Movie M1 PDB1-equilibra-
tion.mpg); PDB File of the equilibrated protein structure (file
accessible as Video 1.MPG) (PDB1.pdb); audio file of the sonification
of the de novo protein designed here, as shown in Fig. 3
(PDB1_sonified.mp3); audio file reflecting the sonification of a folded
protein with Protein Base identifier 1akg, using overlapping melodies
to code for the overall 3D structure (as sketched in Fig. 5); in this
example, the inserted notes reflecting the amino acid sequence of the

geometric neighbor are added as inserted melodies, embedded within
the primary sequence (1akg_folded.mp3); and audio file as an example
for how a de novo protein generated from a 5xdj seed protein; the
inserted notes, played in rapid succession, can clearly be identified,
showing that a deep neural network trained based on a large set of
musical scores with folding information generates the appropriate
types of scores (5xdj_seed_folded.mp3).
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