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Abstract

Coral recruitment refers to the processes allowing maintenance and renewal of coral com-

munities. Recruitment success is therefore indispensable for coral reef recovery after distur-

bances. Recruitment processes are governed by a variety of factors occurring at all spatial

and temporal scales, from centimetres to hundreds of kilometres. In the present context of

rising disturbances, it is thus of major importance to better understand the relative impor-

tance of different scales in this variation, and when possible, the factors associated with

these scales. Multiscale spatio-temporal variability of scleractinian coral recruitment was

investigated at two of the Mascarene Islands: Reunion and Rodrigues. Recruitment rates

and taxonomic composition were examined during three consecutive six-month periods

from regional to micro-local scales (i.e. from hundreds of kilometres to few centimetres) and

between two protection levels (no-take zones and general protection zones). Very low

recruitment rates were observed. Rodrigues displayed lower recruitment rates than

Reunion. Recruit assemblage was dominated by Pocilloporidae (77.9%), followed by Acro-

poridae (9.9%) and Poritidae (5.2%). No protection effect was identified on coral recruit-

ment, despite differences in recruitment rates among sites within islands. Recruits were

patchily distributed within sites but no aggregative effect was detected, i.e. the preferentially

colonised tiles were not spatially grouped. Recruits settled mainly on the sides of the tiles,

especially at Rodrigues, which could be attributed to the high concentration of suspended

matter. The variability of recruitment patterns at various spatial scales emphasises the

importance of micro- to macro-local variations of the environment in the dynamics and main-

tenance of coral populations. High temporal variability was also detected, between seasons

and years, which may be related to the early 2016 bleaching event at Rodrigues. The low

recruitment rates and the absence of protection effect raise questions about the potential for

recovery from disturbances of coral reefs in the Mascarene Islands.
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Introduction

Coral recruitment processes, i.e. settlement of larvae and early post-settlement events occur-

ring in the first weeks and months of benthic life largely shape coral reef community structure

[1], allowing maintenance and renewal of coral communities through replacement of dead

adults [2,3]. An essential component of reef resilience, recruitment largely influences reef

recovery following mass mortalities induced by large-scale disturbances [1,4,5]. Coral recruit-

ment success is thus necessary for coral reef recovery after disturbances, and recruitment fail-

ure is a known factor of phase shift [2,6].

Recruitment processes are governed by a variety of factors occurring at all spatial and tem-

poral scales, from centimetres to hundreds of kilometres, and from seasons to decades. This

creates spatio-temporal variability in measures of recruitment descriptors at all scales that have

been investigated so far [7–11]. Among factors that can be cited, recruitment depends upon

spawning of adults, that is generally initiated by increasing sea temperature [12], moon phase

[13] and wind fields [14]. Fertilization success and embryo survival are influenced by local

environmental factors [15,16]. Larval dispersal is mainly driven by larval survival and pelagic

larval duration, associated with oceanographic conditions experienced by larvae, like tidal or

wind-driven currents [17]. Larval settlement and survival depend on local (metric scale) and

micro-local (centimetric scale) parameters such as the presence of biological inducers or com-

petitors [18–21], light [22], sedimentation [23] or herbivorous grazing [24]. At large geo-

graphic scales, the biological and ecological processes that sustain coral communities may be

affected by disturbances such as cyclones, bleaching events or outbreaks of the coral predator

Acanthaster planci [25,26]. Moreover, anthropogenic impacts interfere with recruitment pro-

cesses at the local scale. For example, stressors such as pollution, eutrophication, sedimentation

or overfishing have been linked to deleterious effects on coral recruitment [11,27–29]. In the

present context of rising disturbance frequency and intensity, coral reefs will have to recover

more often than in previous decades [30–32]. It is thus of capital importance to better under-

stand the relative importance of different scales in the spatial and temporal variation of recruit-

ment, and where possible, the factors associated with these variations.

A growing body of literature describes spatio-temporal variability of coral recruitment.

Even if long-term studies are scarce (but see [33]), important year to year variation has been

documented [1,33,34]. Seasonal variation is also well established, with summer periods typi-

cally more favourable for coral settlement [e.g. 8,34,35]. Regarding spatial variability, regional

variation appears to be important; six-fold differences were observed among reef regions on

the Great Barrier Reef (GBR) [1], and five-fold differences reported among islands of the Soci-

ety Archipelago (French Polynesia [36]). Within a region or an island, at the scale of a few kilo-

metres, some reefs or sites also typically receive more recruits than others, and these large-

scale patterns seem to be consistent in time, among seasons and years [1,34,36,37]. At a much

smaller scale, settlement and recruitment vary among micro-habitats as described by differ-

ences in recruitment rates among tile orientations [34,37,38]. Between these two scales, local

variation patterns, i.e. within-site variation, at the scale of the metre, and its consistency in

time has rarely been investigated (but see [39]). This overlooked scale of variation deserves bet-

ter investigation since many biotic and abiotic factors like competition, predation, light or

hydrodynamic conditions vary greatly at this scale (e.g. [24,29,38,40]).

In recent decades, management tools, such as marine protected areas (MPAs), have been

developed around the world to limit the anthropogenic impacts on the marine environment.

In general, these MPAs delimit different areas in which certain activities, and fishing in partic-

ular, are allowed or prohibited [41]. While fishing bans generally improve fish biomass and

diversity when enforced [42,43], their effects on coral abundance, while generally positive, are
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more tenuous [44,45]. Mechanisms involved in positive effects on corals include lower damage

from fishing gear [46] and higher rates of herbivory, tipping the coral-algal competition bal-

ance towards coral success [43]. Increases in coral recruitment rates can be expected in this

context of lower competition with turf and macroalgae, which are known to limit settlement

and survivorship [29,47–49]. In contrast, higher herbivorous fish biomass in MPAs can be

linked with higher incidental predation of early stage corals by herbivores [50], but see

Mumby [51]. While some studies have compared recruitment rates inside and outside MPAs

(e.g. [10,11,52,53]), few have concluded a positive effect of MPAs on coral recruitment (but see

[54]).

The present study aims to evaluate (i) the temporal variability of coral recruitment at inter-

annual and seasonal scales, as well as the spatial variation of coral recruitment between two

islands of the Mascarene Archipelago (hundreds of kms), among sites of each island (km),

among tiles within sites (m), and within settlement tiles (cm); as well as (ii) the effects of MPA

status (fishing ban) on coral recruitment. Recruitment rates and taxonomic composition were

thus examined during three consecutive six-month periods at regional (between two islands,

Reunion and Rodrigues), island (between four sites at each island), local (between 20 artificial

settlement tiles at each site) and micro-local levels through the orientation of recruits on artifi-

cial settlement tiles. The variation of recruitment rates and composition were also examined

within and outside no-take zones (NTZs) at both Reunion and Rodrigues reefs.

Material and methods

Ethics statements

Fieldwork was conducted within the Réserve Naturelle Marine de La Réunion (MPA) at

Reunion, under research authorization N˚2014–27 DEAL/SEB/UBIO, and within South East

Marine Protected Area at Rodrigues, under Rodrigues Regional Assembly research authoriza-

tion N˚RA 402/17 Vol II.

Study sites

Reunion and Rodrigues islands are part of the Mascarene Islands, along with Mauritius, in the

South-Western Indian Ocean (SWIO). Reunion (21˚ 07’ S, 55˚ 32’ E), one of the overseas

French territories, is a volcanic island (ca. 70 km long and 50 km wide) located 700 km east of

Madagascar. Fringing reefs line the island in a 12 km2 area along 25 km of coastline on its west

and south coasts [55]. Rodrigues (19˚ 43’ S, 63˚ 25’ E) is a small isolated island that is part of

the Republic of Mauritius (18.3 km long and 6.5 km wide), and is the easternmost of the Mas-

carene Islands. It is surrounded by an almost continuous 90 km long reef rim and constitutes a

reef area of ca. 200 km2 [56]. Deleterious effects of coral bleaching are growing stronger over

the decades in the Mascarene Islands (see [57] at Rodrigues). Reunion and Rodrigues reefs are

not immune to other anthropogenic stress either. Increased urbanisation of the Reunion coast-

line during the last decades drove noticeable eutrophication in the reef environment [58] and

a decrease in reef fish stocks in some areas [59]. These phenomena have led to an increase in

the relative cover of algae compared to corals [58,60,61]. Consequently, a multiple-use MPA

(Réserve Naturelle Marine de La Réunion) was set up in 2007 to address the deterioration of

reefs. This MPA, covering an area of over 35 km2, is divided into three levels of protection:

open areas for human activities (general protection zones or GPZs), restricted areas where

only some traditional and commercial fishing activities are allowed, and sanctuaries where no

activity is allowed, thus corresponding to NTZs (Fig 1). Human pressure is less documented

for the Rodrigues reef. In response to overfishing 10 years ago, the local government of Rodri-

gues implemented four MPAs to the north of the island, but only partial management has
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been set up and fishing still occurs in these areas [62,63]. In addition, the South East Marine

Protected Area (SEMPA) is an area in the south-eastern of Rodrigues designated as an MPA in

2009. It includes both inner and outer lagoon covering a total 43.7 km2 divided into different

multiple-use zones, including NTZs where fishing is prohibited (Fig 1).

Fig 1. Location of the sampling sites (black dots) on Reunion and Rodrigues reefs. Light grey: land; dark grey: reef flat; orange: MPAs boundaries; red:

NTZs boundaries. Underlined sampling sites belong to NTZs. SS: Sanctuaire Sud; SB: Souris Blanche; VS: Varangue Sud; MA: Marine; IF: Ile aux Fous; RB:

Rivière Banane; MO: Mourouk; PE: Port Sud-Est.

https://doi.org/10.1371/journal.pone.0214163.g001
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Sampling strategy

The sampling strategy used four sites on the outer reef slopes at both Reunion and Rodrigues

islands, including two sites within a NTZ and two sites outside NTZ for each island (Fig 1).

Eight sites were thus sampled and coded as follows: Reunion (SS: Sanctuaire Sud and VS: Var-

angue Sud in the NTZ; SB: Souris Blanche and MA: Marine in GPZs); Rodrigues (MO: Mour-

ouk and PE: Port Sud-Est in the NTZ; IF: Ile aux Fous and RB: Rivière Banane in GPZs). At all

sites, the abundance and taxonomic composition of coral recruits was characterised at 12 m

depth on unglazed terracotta settlement tiles [64–68]. For each site, 20 individual tiles (ca.

10 × 10 × 2 cm) were immersed for six months over two austral summer periods (October

2015–March 2016, October 2016–March 2017) and one winter period (April–September

2016). Tiles were deployed and spatially referenced within each site at Reunion by measuring

distances and azimuth between each tile and a reference point. Typical distance between two

consecutive tiles was 1–2 m, while most distant tiles were around 15 to 20 m apart from each

other. At the end of the immersion periods, the tiles were retrieved, bleached and sun dried to

expose the skeleton of coral recruits (coral spats) for identification and counting under a dis-

secting microscope. Recruits of the families Acroporidae, Pocilloporidae and Poritidae were

discriminated according to morphological traits [69]. Other recruits were assigned to the cate-

gory ‘others’ if not associated with one of the previously cited families, or to the category ‘bro-

ken’ when the skeleton was too damaged for identification [34].

Data analyses

In all the analyses described hereafter, abundance of recruits counted per tile was expressed as

recruitment rate per m2 (recruitsm–2). Spatio-temporal variation of overall recruitment rates

(all taxa combined) was evaluated at three different spatial scales: between islands, between

protection levels (i.e. within NTZ or outside MPA), and between sites, for three periods (two

summers and one winter) using an ANOVA model (Eq 1).

Tijkl ¼ mþ Ii þ Prj þ Sk þ Pel þ ðIPeÞil þ ðPrPeÞjl þ εijkl ðEq1Þ

where i, j, k and l stand for the island, the protection levels, the sites and the periods, respec-

tively, and ε is the residual variance (within sites). The spatial factors correspond to a three-

level nested design with protection levels within islands and sites within protection levels. Sites

were considered as a random factor. Prior to analyses, normality and homogeneity of the vari-

ance of the data set were tested using Shapiro-Wilk and Bartlett tests, respectively. Recruitment

rate variable was log(x+1) transformed to meet the assumptions of normality. To analyse dif-

ferences between levels of the significant factors, Student Pairwise t-tests (SPT) were used.

Spatio-temporal variation of the taxonomic composition was also evaluated at the three dif-

ferent spatial scales (between islands, between protection levels and between sites) for three

periods using Chi-squared tests or Fisher’s exact test when assumptions for Chi-squared test

were not met.

The spatial variation of coral recruitment between tiles was determined by evaluating the

effect of geographical distance between pairs of tiles using a Mantel test. These tests will be

referred to as Mantel 1 for overall recruitment rates and Mantel 2 for taxonomic composition.

Temporal variations of overall recruitment rates were then tested using a Spearman rank cor-

relation test to compare the overall recruitment rates between all period pairs, for each site.

Spatio-temporal variation of recruitment within tiles was assessed by comparing the orien-

tation of recruits over the different surfaces of the tiles (upper, sides and lower) between

islands, protection levels and periods independently for four taxonomic categories
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(Acroporidae, Pocilloporidae, Poritidae and other families) using Chi-squared tests or Fisher’s

exact test when assumptions for Chi-squared test were not met.

Results

Spatio-temporal variations of recruitment rates

Recruitment rates ranged from 48 to 150 recruitsm–2 during the first summer (October 2015–

March 2016) at Reunion while fewer than 7 recruitsm–2 were recorded over the same period

at Rodrigues (Fig 2). Over the following summer (October 2016–March 2017), recruitment

rates were slightly lower at Reunion (20–98 recruitsm–2) compared to the previous summer,

while they were higher than observed the year before at Rodrigues, reaching 11–40 recruitsm–2.

During the winter (April–September 2016), recruitment rates were extremely low, with fewer

than 11 recruitsm–2 recorded at Reunion and no recruits at all at Rodrigues. Recruitment

rates (all taxa pooled) varied significantly between islands (ANOVA, P< 0.0001; Table 1) and

among periods (ANOVA, P< 0.0001; Table 1). Moreover, the island × period interaction was

significant (ANOVA, P< 0.0001; Table 1). These differences between periods were mainly

due to recruitment variation between both summers and the winter (SPT, P< 0.0001; Fig 2),

while there were no significant differences between the two summers (SPT, P> 0.05; Fig 2).

Also, recruitment rates were slightly higher in the NTZ in Rodrigues compared to the GPZ,

while it was the contrary at Reunion (Fig 2). Nevertheless, effects of protection level or

Fig 2. Recruitment rates observed during three consecutive 6-month periods on artificial settlement tiles at 12 m depth among reef slope sites on

Rodrigues and Reunion reefs (recruitsm–2 ± SE). P1: period 1, i.e. summer 2015–2016 (October 2015–March 2016); P2: winter 2016 (April–September 2016);

P3: summer 2016–2017 (October 2016–March 2017). NTZs are underlined. No recruits were observed at Rodrigues (at any site) or at SB site during winter

2016. SS: Sanctuaire Sud; SB: Souris Blanche; VS: Varangue Sud; MA: Marine; IF: Ile aux Fous; RB: Rivière Banane; MO: Mourouk; PE: Port Sud-Est.

https://doi.org/10.1371/journal.pone.0214163.g002
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protection × period interaction on recruitment rates were not significant (ANOVA, P> 0.05;

Table 1).

A significant inter-site variability of recruitment rates was recorded (ANOVA, P< 0.001;

Table 1). While no differences were found between Rodrigues sites, post-hoc tests revealed sig-

nificant differences between each pair of Reunion sites except between MA and VS, and MA

and SS (SPT, 0.0001 < P< 0.05; Fig 2).

Moreover, an important variability of recruitment rates among individual tiles was

observed within each site at Reunion, whatever the protection level (Fig 3). However, no aggre-

gative effects were highlighted among groups of tiles; the geographical distances between tiles

were not related to recruitment rates observed on tiles (Mantel 1, P> 0.05; Fig 3). From a tem-

poral point of view, there was no relationship in recruitment rates on individual tiles within

each site between the two summers (2015–2016 and 2016–2017; Spearman rank tests,

P> 0.05; Fig 3). This means highest recruitment rates were not observed on the same tile spots

over the two consecutive summers.

Spatio-temporal variations of taxonomic composition

The relative contribution of the different families varied significantly between islands (Chi-

squared test, P< 0.0001; Fig 4). During the two summers, a large dominance of Pocilloporidae

(86% on average) was observed at Reunion (Fig 4). At Rodrigues, a shift of the dominant fam-

ily between summers was noted. Poritidae recruits dominated the first summer (October

2015–March 2016, 80%) while Acroporidae recruits dominated the second summer (October

2016–March 2017; 69%). Consistently, taxonomic composition only varied significantly

between the two summers at Rodrigues (Fisher’s exact test, P< 0.04; Fig 4) and not at Reunion

(Fisher’s exact test, P> 0.05). During the winter, all recruits recorded at Reunion (n = 10)

belonged to the Pocilloporidae family.

At both islands, taxonomic composition did not differ significantly between NTZs and

GPZs (Fisher’s exact tests, P> 0.05; Fig 4). Moreover, no difference of taxonomic composition

was observed for each pair of sites within both islands (Fisher’s exact tests, P> 0.05; Fig 4).

As with recruitment rates, taxonomic composition was not related to the relative position

of tiles within sites (Mantel 2, P> 0.05; Fig 3), implying that tiles close to each other did not

display more similar relative proportions of taxa than distant ones.

Spatio-temporal variations of the orientation of recruits

Orientation of recruits on tiles varied significantly between islands (Fisher’s exact test,

P< 0.01). At Rodrigues, recruits settled mainly on the sides of the tiles, to a lesser extent on

Table 1. ANOVA table of the analyses of spatio-temporal variations of coral recruitment rates.

Factor Df Mean Square F P-value

Island 1 90.378 75.9253 2.20E-16

Protection (within Island) 2 5.153 4.3292 0.67

Site (within Protection) 4 5.864 4.926 5.92E-04

Period 2 48.318 40.5911 2.20E-16

Island x Period 2 26.175 21.9896 3.50E-10

Protection (within Island) x Period 4 2.046 1.719 0.14

Residuals 2204 1.19

Df: degrees of freedom; F: F-statistic.

https://doi.org/10.1371/journal.pone.0214163.t001
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Fig 3. Spatio-temporal variations of number and composition of recruits observed on settlement tiles as they were

arranged on the field. Data presented for the four sites at 12 m depth at Reunion, for the three studied periods. Size of

pie chart is proportional to numbers of recruits. NTZs sites are underlined. SS: Sanctuaire Sud; SB: Souris Blanche; VS:

Varangue Sud; MA: Marine.

https://doi.org/10.1371/journal.pone.0214163.g003
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the upper side and never on the lower surfaces where light availability was the lowest. At

Reunion, recruitment was more evenly distributed, although recruitment rates were higher on

the sides of the tiles than on other orientations. The orientation of recruits on tiles was not

influenced by the protection level nor by the time period for both islands (Fisher’s exact tests,

P> 0.05).

Discussion

Abundance of recruits

The present study is the first published on coral recruitment within the Mascarene Islands.

Results reveal that overall recruitment rates measured on outer reef slopes at Reunion and

Rodrigues islands from 2015 to 2017 were low, not exceeding 150 recruitsm–2 at Reunion and

40 recruitsm–2 at Rodrigues, during the summer. When compared to other reefs in the SWIO,

recruitment rates from the present study were much lower than those on the Nyali reef in

Kenya (908 recruitsm–2 y-1; [53]), along the coast of South Africa (1000 recruitsm–2 during

peak settlement; [70]), or on the reefs of Vamizi island in Mozambique (1130 recruitsm–2 y-1;

[10]). However, the recruitment rates at Reunion and Rodrigues islands were similar to those

recorded at Coral Gardens in Kenya (101 recruitsm–2 y-1; [53]). Recruitment rates observed in

this study were also comparable to levels observed in Moorea, French Polynesia [34,66,71] and

in some locations of the Red Sea [8]. Even if artificial settlement tiles have been commonly

used as a standardised assay of coral recruitment, the comparison of coral recruitment on arti-

ficial materials is challenging, due to varying methodology, as noted by Edmunds [72].

Variations of recruitment through protection level

Contrary to what was expected, no significant differences in recruitment rates were found

between the NTZs and GPZs. Preservation of fish stocks by NTZ implementation is known to

Fig 4. Taxonomic composition of coral recruits observed on artificial settlement tiles at 12 m depth among reef slope sites on Rodrigues and Reunion

reefs. P1: period 1, i.e. summer 2015–2016 (October 2015–March 2016); P2: winter 2016 (April–September 2016); P3: summer 2016–2017 (October 2016–

March 2017). NTZs sites are underlined. SS: Sanctuaire Sud; SB: Souris Blanche; VS: Varangue Sud; MA: Marine; IF: Ile aux Fous; RB: Rivière Banane; MO:

Mourouk; PE: Port Sud-Est.

https://doi.org/10.1371/journal.pone.0214163.g004
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foster herbivore communities and consequently to promote recovery potential and thus resil-

ience of coral reefs [73–75]. Indeed, herbivory is one of the major factors controlling algal

development, which inhibits coral recruitment through competition for space and smothering

of recruits by trapped sediments [76]. However, herbivorous grazers, like fish and urchins, can

also exert incidental predation on young coral stages [24,77–79]. Overall, most authors con-

sider increasing herbivory as beneficial for coral recruitment (see reviews by [44,80]).

Lack of protection effect on coral recruitment rates in the studied locations may have sev-

eral causes. The NTZs of both Reunion and Rodrigues islands were set up less than 10 years

ago and the direct role of fishing pressure reduction on coral recruitment might not be effec-

tive yet. Absence of positive effects on the coral communities in recently protected areas has

been previously highlighted [81,82]. In addition, Graham et al. [44] noted that spatial differ-

ences in recruitment rates may not necessarily align with NTZs placement and therefore, even

if NTZs are effective at enhancing coral cover, this would not necessarily translate into higher

local recruitment. These results support the idea that coral recruitment is sensitive mainly to

large-scale disturbances whose deleterious effects cannot be directly mitigated by the establish-

ment of a NTZ. In this context, it may be worthwhile to investigate the benefits of placing

NTZs in areas of high recruitment, as they are more likely to recover from disturbances than

areas with low recruitment rates.

Spatial variability of recruitment

We found significant differences in recruitment rates among Reunion sites while both recruit-

ment rates and taxonomic composition were similar in all sites at Rodrigues. This was surpris-

ing as sites at Reunion were all facing west, but sites at Rodrigues faced south-east and north.

Thus, differences in recruitment rates could not be attributed to site configuration alone. At

Rodrigues, the similarity in taxonomic composition may be mainly due to the low number of

recruits.

Rodrigues is a very small and isolated island (about 600 km eastward from Mauritius and

several thousand kilometres away from the land towards the other cardinal points). Reefs of

the Mascarene Islands are under the influence of the South Equatorial Current (SEC) flowing

east to west. Larval dispersal simulations highlighted connections within the Mascarene

Islands from Rodrigues to Reunion [83,84]. This is consistent with some recent genetic studies

conducted on Pocillopora damicornis type beta (Pocilloporidae) in the SWIO highlighting that

unidirectional gene flows occur, even if limited, from east to west [85]. Moreover, Gélin et al.

[86] showed that populations of P. damicornis type beta from the south of Reunion were genet-

ically differentiated from those located in the north and the west of the island. The authors

attributed this genetic isolation to a particular connection between the southern reefs of

Reunion and Mauritius or Rodrigues reefs through the SEC. However, it was also suggested

that the complex currents occurring along the west coast of Reunion might prevent non-local

larvae from reaching the western reef, and instead only retain local larvae [86]. Thus, it could

be interesting to (i) add sites on the south coast of Reunion to determine whether recruitment

rates and taxonomic composition are closer to those observed at Rodrigues and (ii) to combine

recruitment and genetic analyses to determine the origin of the recruits and to better under-

stand gene flow occurring among the Mascarene Islands.

Among the different settlement tiles of each site, recruitment rates and taxonomic composi-

tion varied greatly, reflecting a patchy distribution, as previously observed in French Polynesia

[34] and on the GBR [87]. This variability has also been observed in the structure of adult and

juvenile corals in many reefs (e.g. [88,89]), and is likely to be related to the strong environmen-

tal heterogeneity encountered at small scales in reef ecosystems [90] and induced by different
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factors, such as local-scale hydrodynamic regimes [91], disturbance history [92] or predation

[50]. However, no aggregative effect was revealed among spatial groups of tiles when tested

within sites at Reunion. This means that tiles with high numbers of recruits were not located

in the same area of the site, or particularly close to each other. In parallel, tiles close to each

other did not display more similar relative proportions of taxa than distant ones. In terms of

methodology, this shows that spatial variability at the scale of the site is correctly sampled. At

the same spatial scale, highest recruitment rates were not observed on the same tile spots over

the two consecutive summers, suggesting that processes responsible for spatial variation at this

scale are not spatially consistent among years.

Within tiles, higher recruitment rates were found on the sides of the tiles deployed both at

Reunion and Rodrigues islands, compared to the upper and lower surfaces. These observations

were especially true at Rodrigues, where recruits rarely settled on the upper and lower faces of

tiles. This may be linked to the higher concentration of suspended matter at Rodrigues than at

Reunion (Jouval, pers. obs.). Indeed, this could (i) increase sedimentation on the upper surface

of tiles, preventing the recruits from settling on this face and (ii) limit light penetration

through the water column, which can prevent recruits from settling on the shady (lower) sur-

face of the tiles. The effects of sedimentation and light availability on coral larvae settlement

are often invoked as factors influencing the position of recruits over tiles [11,38,93]. The very

weak presence of Pocilloporidae recruits on the upper faces of tiles, while being the most repre-

sented recruits in our study, illustrates their sensitivity to sedimentation, as previously

observed [94]. The low proportion of recruits found on the upper surfaces of the tiles at both

islands may also be a consequence of grazing by herbivorous fish and/or urchins [34,71]. Lar-

val sensitivity to high-intensity light highlighted by other studies (e.g. [95,96]) is unlikely to

have inhibited settlement of recruits on upper surfaces of the tiles in our study because of the

depth of immersion of the tiles.

Temporal variability of recruitment

At each spatial scale, from regional (between islands) to micro-local (within tiles), a strong

period effect was highlighted both on recruitment rates and taxonomic composition, linked to

the very low recruitment rates during the winter (April–September 2016), with only Pocillo-

poridae recruits at Reunion and the complete absence of recruits at Rodrigues. These results

were consistent with observations made in the Indo-Pacific, where larval settlement is highly

seasonal (e.g. reviewed in [97], [34] in French Polynesia, [98] on the Great Barrier Reef). The

dominance of Pocilloporidae recruits on Reunion reefs was consistent with many observations

across tropical and sub-tropical reefs of the Indo-Pacific [34,50,53,70,99]. The presence of

some Pocilloporidae recruits during the winter at Reunion may have resulted from local asex-

ual reproduction of adult colonies, already documented for this family, by polyp bail-out (Ser-
iatopora hystrix, [100]) or by the production of parthenogenetic larvae (Pocillopora
damicornis, [101]). In particular, at Reunion, Gélin et al. [86] suggested that the lagoonal spe-

cies P. damicornis produces parthenogenetic larvae, but information is lacking for other Pocil-

loporidae species present on reef slopes. During the two summers (October to March),

recruitment rates were higher and the taxonomic composition more diversified compared to

the winter (April to September). On Rodrigues reef, recruits of Poritidae were dominant in the

first summer, but Acroporidae recruits were highest in the second, while recruitment rates

were slightly higher. The first summer studied corresponded to the massive bleaching event of

2016 that affected coral communities of Reunion and Rodrigues islands, thus potentially modi-

fying coral recruitment rates and taxonomic composition. Indeed, numerous studies have

revealed that adults of the Acroporidae family are among the most susceptible to bleaching
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events [102–104]. The 2016 coral bleaching greatly affected adults of Acroporidae species,

especially Acropora abrotanoides, which was dominant in some sites at Rodrigues, leading to

the death of the majority of them (Jouval, pers. obs.). Since recruitment at Rodrigues is likely

to rely mainly on local coral populations, based on the observations about connectivity and

currents, this could explain the greater representation of Poritidae recruits in the year of

bleaching in Rodrigues. Nevertheless, these observations are related to an overall very low

number of recruits at Rodrigues, and thus need to be considered with caution. On the tiles, the

highest or lowest recruitment rates were not detected on the same tile from one period to the

next. Spatial patterns of variation of recruitment rates within sites were not consistent over the

three consecutive periods studied.

Conclusions

Our results demonstrate that recruitment rates were low in the Mascarene Islands, especially

at Rodrigues. Recruitment patterns varied greatly at several spatial scales: between islands, and

between and within tiles. To a lesser extent, recruitment rates also varied between sites only at

Reunion. Both recruitment rates and taxonomic composition displayed great seasonal varia-

tion, with very low recruitment rates during the winter. These observations suggested the

importance of studying a minimum number of sites, each represented by several replicates (i.e.

tiles), to correctly assess the spatio-temporal variability of recruitment patterns between or

within reefs. The spatio-temporal variations of recruitment patterns described here have direct

implications in terms of conservation, showing that some sites present higher overall recruit-

ment rates, potentially giving these sites a higher capacity for recovery following disturbances.

Our study did not highlight any effect of protection on coral recruitment. With low recruit-

ment rates, versatile taxonomic composition over time, and high concentration of suspended

matter, Rodrigues appears to be particularly vulnerable to large-scale disturbances.
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