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ABSTRACT Objective: To investigate the feasibility of improving the performance of an EEG-based
multistate classifier (MSC) previously proposed by our group. Results: Using the random forest (RF)
classifiers on the previously reported dataset of patients, but with three improvements to classification logic,
the specificity of our alarm algorithm improves from 82.4% to 92.0%, and sensitivity from 87.9% to 95.2%.
Discussion: The MSC could be a useful approach for seizure-monitoring both in the clinic and at home.
Methods: Three improvements to the MSC are described. Firstly, an additional check using RF outputs is
made prior to alarm to confirm increasing probability of a seizure onset state. Secondly, a post-alarm detection
horizon that accounts for the seizure state duration is implemented. Thirdly, the alarm decision window is
kept constant.

INDEX TERMS Epilepsy, clinical seizure onset, early detection, cross-frequency coupling features,
patient trial.

I. INTRODUCTION AND CLINICAL NEED
Features that could reliably identify a state prior to clinical
seizure from scalp EEG are desirable for home-monitoring
applications, as the engulfing fear of unpredictability of
seizures has a major impact on quality of life for subjects
living with epilepsy [1]. A recent paper from our group [2]
described a multistage state classifier (MSC) using cross
frequency coupling (CFC) features in human scalp EEG. CFC
markers in intracranial EEG (iEEG) have localized epilepto-
genic tissue (ET) [3], [4] and distinguished ictal and interictal
states [5]. In scalp EEG, source imaging assisted by CFC
measures localized the ET [6]. In animal work, CFC from
iEEG predicted drug treatment outcomes in mice [7] and
forecast canine seizures [8].

In the previous work, three states were identified to train
the MSC: II, interictal baseline; and S1, S2, 10s immediately
prior and subsequent to electrographic (EG) seizure onset
respectively. The MSC is based on three RF classifiers: IIS1
(outputs probability of S1 over II), IIS2, and S1S2. In prac-
tice, these classifiers detected CFC changes in advance of a
clinical seizure onset, not necessarily at the EG onset. This
suggested that state transitions similar to those occurring at
EG could also occur before EG onset.

In this paper, using the trained RF classifiers, we propose
three improvements to the logical framework of the MSC.
Firstly, an additional state check reduces false positives.
Secondly, a detection horizon prevents duplicate alarms.
Thirdly, the algorithm is restructured to use two consecutive
2s windows only. Using the same set of patient recordings
as previously published, we show that these modifications
significantly improve sensitivity and specificity of pre-clinical
seizure state classification.

II. RESULTS
An example alarm from the MSC is shown in Fig. 1 (A),
where an alarm is indicated 57s prior to clinical onset. The
improved structure of the MSC is shown in Fig. 1 (B).
Receiver-operator characteristic (ROC) curves are shown
in Fig. 1 (C) for two patient groups and three EEG electrode
configurations. Performance metrics across are summarized
in Table I. For Patient Group 1 (on which the classifiers
were trained), there is an improvement in all metrics. For
Patient Group 2 (on which the classifiers were not trained),
improvements in all metrics are seen, notably specificity
which rises from 79.9% to 89.5%. Across the entire patient
set, improvements across all metrics are seen. Performance is
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FIGURE 1. (A) Example of MSC operation on Patient 1, Seizure 2. The MSC operates using features from 19 10-20 scalp EEG electrodes;
1 electrode shown for brevity. The MSC signals an alarm prior to clinical seizure onset by detecting changes in cross-frequency coupling
features. (B) New MSC algorithm structure. The trained random forest (RF) classifiers (individual diamond boxes) are unchanged from the
original work, but the surrounding logic structure is modified in 3 ways. Firstly, a new check is introduced which tests that the RF outputs for
early-onset seizure states S1 and S2 states are both increasing vs interictal baseline II. This is intended to improve specificity of the alarm to
true seizure events. Secondly, the MSC now operates with a detection delay. Post-alarm, the algorithm skips a number of windows D to avoid
duplicate alarms for the same event. Thirdly, the MSC consistently operates on two consecutive 2s windows. (C) MSC receiver-operator
characteristic (ROC) performance across testing subsets. Green ROC = Group 1, on which the system received training. Turquoise ROC =

Group 2, on which the system received no training. Black ROC = All patient testing data. Purple / Orange ROCs = All patients, 8 or 10 electrode
rings respectively. Np = # of patients, Ns = # of seizure events, AUC = area-under-the-curve.

TABLE 1. Performance metrics of MSC across patient groups and electrode subsets.

TABLE 2. Sensitivity analysis on modifications using performance metrics across all patients.

also assessed using recordings from reduced electrode sub-
sets (8 or 10 electrode circumferential rings) appropriate for
headband-type home-monitoring devices. Performance on
these ring subsets is comparable to all electrodes.

III. DISCUSSION
Table 2 summarizes the impact of each change on the MSC
performance metrics. The additional logical state checks and
the detection delay lead to improved sensitivity and speci-
ficity of the MSC. Switching to a fixed window approach
improves alarm times. The MSC can identify a state prior
to clinical seizure from scalp EEG, making it suitable for
clinical and home monitoring of seizures.

IV. METHODS
A. NUMBER OF SUBJECTS AND RECRUITMENT
Patient EEG recordings were collected from 12 subjects
with temporal or extratemporal lobe epilepsy who under-
went pre-surgical evaluation at the Toronto Western Hospital
Epilepsy Monitoring Unit. The dataset is divided into two:
Group 1 (N = 6, patients 1-6) with recordings split between

both training and testing, and Group 2 (N = 6, patients 7-12)
reserved exclusively for testing purposes. Electrographic and
clinical seizure onsets were defined by an expert neurologist.
About 3 hours of seizure epochs (56 events) and 10 hours
of interictal recordings were collected. All available seizure
onset epochs were used, and all interictal data that was free
from large-scale movement artifacts was included in this
study. Seizure onset epochs were defined as the complete
clinical seizure plus 66s leading up to the clinical seizure
onset. 66s was selected because it was the greatest duration
observed between EG and clinical onset, and should include
seizure transition states.

B. INCLUSION AND EXCLUSION CRITERIA
Subjects were selected based on availability of video-EEG
recordings with at least one seizure, and interictal separated
from seizure by hours. Additionally, patients in Group 1 were
selected for availability of simultaneous scalp and iEEG
recordings. All patients meeting these criteria were included
in this study.
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C. CONFIDENTIALITY AND SAFETY PROTOCOLS
Informed consent was obtained from each patient. Patient
recordings were used with Research Ethics Board approval.

D. FEATURE EXTRACTION AND CLASSIFICATION
DEFINITIONS
Spectrograms in two ranges are generated for each 2s window
for a given channel using a complex Morlet wavelet trans-
form. The low range is fLε (1, 1.1, . . . , 10)Hz and the high
range is fH ε (20, 21, . . . , 150)Hz. Using the low-frequency
phase ϕ(t, fL) and high-frequency amplitudeA(t, fH ) from the
complex wavelet coefficients, a measure for phase-amplitude
is computed. In this case, we use Tort’s modulation index [8],
referred to as Icfc, which is averaged across channels to
produce the global spatial average Īcfc. This feature is used
for classification once a binary threshold is applied. The
threshold level was determined by a 5-fold cross validation
process during training. A completemathematical description
of this pipeline is described in previous work [2].

For the interictal data, every tested window is counted
toward the total of actual negative events N . An alarm at
any point is a False Positive (FP), and the lack of alarm is
a True Negative (TN). For the seizure onset epochs, the entire
epoch constitutes a positive event, so the number of seizure
onset epochs equals to the number of actual positive events P.
An alarm at any individual window during the seizure onset
epoch counts that epoch as a True Positive (TP) event. Con-
versely, every window during a seizure onset epoch must lack
an alarm to constitute that epoch as a False Negative (FN).
Sensitivity, specificity and accuracy can then be assessed as
in the previous work. The detection threshold thROC ε [0,1] is
then varied to produce ROC curves, as shown in Fig. 1.

E. MODIFIED CLASSIFICATION ALGORITHM
1) An additional state check implemented to reduce false pos-
itives, on the premise that there should be an increasing prob-
ability of leaving the baseline interictal state before an alarm.
As such, the outputs from IIS1 and IIS2 are assessed on con-
secutive windows wi and wi−1. Only if IIS1(wi) >IIS1(wi−1)
and IIS2(wi)>IIS2(wi−1) does the MSC proceed to the sub-
sequent test stages.

2) A detection horizon of D duration following an alarm
is included to prevent duplicate alarms for a single event.
Accordingly, D = 200s was selected because it is equal to
the duration of a convulsive human seizure state including the
duration of post-ictal generalized electrographic suppression
(PGES) [9] during which another seizure onset will not occur.

3) The alarm decision is based on using two consecutive
2s windows. The version proposed here has a fixed decision
window that is applied uniformly across every window of the
tested data, in contrast to the variable decision window in the
previous approach.

V. FUTURE DIRECTIONS AND POTENTIAL
CLINICAL IMPACT
The three modifications proposed above improve the per-
formance of the MSC algorithm. Across all patient testing

data, the specificity of the MSC algorithm is improved from
82.4% to 92.0%, with a corresponding improvement in sen-
sitivity from 87.9% to 95.2%. The alarm times prior to
clinical seizure onset are slightly improved from 45±16s to
50±14s, and the classifier performance is not deteriorated by
the choice of a reduced electrode ring configuration These
improvements make the approach more suitable for imple-
mentation in a headband-type wearable device, such as those
reported in [11] for home-monitoring applications that would
enhance the quality of life for epileptic patients.

A limitation of the current work is the relative scarcity of
interictal data used; the ratio of seizure to interictal recording
in this dataset is 0.17, higher than would be experienced
by most patients. Future work involving unabridged, unin-
spected, long-term EEG would help prove the clinical utility
of this approach. Furthermore, the algorithm needs to be opti-
mized for computational efficiency before it can be translated
to a wearable device. The current pipeline, implemented in
Matlab, running on a Core i5 CPU with 8GB RAM, takes
approximately 0.6s to process a single window,most of which
is used for feature extraction. Future work should attempt to
minimize this time.

We speculate that additional classifiers, each trained to
recognize the CFC signature of a given EEG artifact, could
further increase the specificity of this approach. If the dataset
can be increased, then replacing the RF classifiers with deep
neural nets may further improve specificity.
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