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Colorectal cancer (CRC) is one of the most common cancers worldwide. However, the
treatment outcomes of immunotherapy in microsatellite-stable (MSS) CRC remain
unsatisfactory. As the majority of CRC cases display a molecular MSS/mismatch repair-
proficient (pMMR) profile, it is particularly meaningful to explore the clinical applications of
adaptive immune therapy in MSS CRC patients. In this review, we summarized the
therapeutic approaches of adoptive immune therapies, including cytokines, therapeutic
cancer vaccines, adoptive T-cell therapy, and immune checkpoint inhibitors, in the
treatment of MSS CRCs.
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INTRODUCTION

Colorectal cancer (CRC) has a high incidence and is the third leading cause of cancer-related death
worldwide (1). In recent years, despite the decrease in the overall incidence of CRC patients (2), the
incidence of CRC in young patients has nearly doubled (3). Unfortunately, therapeutic options for
colorectal cancer patients are still limited despite current systemic chemotherapy, targeted therapy,
and local therapy tools. Recently, immunotherapy has become increasingly popular in the field of
cancer therapy. The adaptive immune response plays an important role in the response to
immunotherapy. The adaptive immune response always presents as specific and long-term
memory, which result in durable responses. It has been confirmed that the presence of tumor-
infiltrating lymphocytes (TILs) is associated with improved overall survival (4, 5), and the success of
TILs in one patient with KRAS G12D mutation indicates the promise of adaptive immunotherapy
in CRC patients (6). In addition, immune checkpoint inhibitors (ICIs) have shown great success in
cancers such as melanoma and lung cancer (7–9). However, microsatellite-stable (MSS) metastatic
colorectal cancer (mCRC) is usually considered to be a typical “cold” cancer that presents a poor
response to immunotherapy. Indeed, MSS mCRC accounts for approximately 95% of all mCRC
cases (10). It is important to explore how these patients can benefit from adaptive immunotherapy.
This review highlights the current role of adaptive immune therapies, including cytokines, vaccines,
cell therapies, and ICIs and their potential clinical applications in patients with MSS
mCRC (Figure 1).
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CYTOKINES AND COSTIMULATORY
RECEPTORS

Extracellular cytokine components dynamically regulate the
tumor microenvironment. The aberrant expression of
cytokines is strongly correlated with the pathogenesis and
progression of CRC (11). Cytokines have direct antitumor
effects and have been used as cancer immunotherapies for
decades, especially in metastatic melanoma and metastatic
renal cell carcinoma (12, 13). Regarding CRC, evidence has
shown that IL-6 can activate autophagy through the IL-6/
JAK2/BECN1 pathway and promote chemotherapy resistance
in CRC (14). One recent study showed that combined treatment
with IL-2 and Akkermansia muciniphila leads to stronger
antitumor efficacy in CRC patient-derived tumor tissue and
proposed this novel therapeutic strategy with prospecting
application in the future (15). Another study showed that IL-2
combined with TNFSF14 results in an increase in CD8+ central
memory cells and a decrease in tumor size in preclinical
exploration (16). Several clinical studies have proven that
cytokines are tolerable safe, and more clinical trials are
underway to explore their efficiency (11).

Another immunotherapy type is costimulatory receptors;
among them, OX40 and 4-1BB are members of the TNF
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receptor and have the ability to activate stimulatory receptors
and have shown promising antitumor effects in preclinical
studies (17, 18). However, OX40 antibodies only show strong
tumor suppressive effects when the tumor load is low, and
further studies indicate that costimulatory receptors can
improve treatment efficiency when combined with ICIs (19). A
clinical trial (NCT 02179918) of multiple solid tumors was
conducted on the combined treatment of a 4-1BB agonist plus
a PD-1 inhibitor.
THERAPEUTIC CANCER VACCINES

Therapeutic cancer vaccines are diverse and include cell-based
vaccines, protein/peptide vaccines, and genetic vaccines. Cancer
vaccines are divided into tumor-associated antigen (TAA) vaccines
and tumor-specific antigen vaccines. Currently, no significant
breakthrough has been found in CRC vaccines, and no such
vaccines have been approved for clinical treatment. However, as
research continues, vaccines can present more potent antigens and
activate both CD4+ and CD8+ T cells.

The most mature TAA vaccines in CRC are carcinoembryonic
antigen (CEA) vaccines, melanoma-associated antigen (MAGE)
vaccines, and intestinal protein guanylyl cyclase 2C (GUCY2C)
FIGURE 1 | Application of multiple adaptive immunotherapies in MSS CRC. ICI monotherapy is often ineffective, and the combination of chemotherapy,
antiangiogenesis therapy, anti-EGFR antibody, and other systemic therapies is expected to achieve better therapeutic outcomes.
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vaccines. CEA is regularly overexpressed in CRC, but it is not
cancer specific and is also expressed by normal epithelial cells
(20). One of the first studies of CEA vaccines showed preliminary
clinical benefit: two of 12 patients experienced dramatic tumor
regression (21). Subsequently, studies suggested that different
CEA peptide or mRNA vaccines can generate or boost specific
T-cell responses and may provide clinical benefit in CRC patients
(22, 23). However, the treatment outcome of CEA vaccines is not
satisfactory because the clinical response rate does not exceed
17% (24) and consequently autoimmunity occurs. MAGE
vaccines have the ability to induce an orchestrated CD4+ and
CD8+ immune response. However, only one case report showed
that MAGE-A4-H/K-HELP could induce Th1-dependent cells
and decrease tumor growth and CEA tumor markers in colon
cancer patients (25). Due to the poor response to a single vaccine,
more combination treatment regimens of vaccines and
personalized peptide vaccines have been studied and
investigated in clinical trials. Most vaccines in these studies
were combined with chemotherapies, such as 5-fluorouracil.
Sato et al. (26) found that this combination therapy could
actually maintain or augment immunological responses, but
there was no confirmed decrease in tumor burden. GUCY2C
vaccines focus on minimum residual disease in colon cancer
patients and aim to reduce the recurrence rate (27). A preliminary
phase I study suggested that the GUCY2C vaccine was safe and
effective at inducing the CD8+ T-cell response in early-stage
patients (28).

Regarding tumor-specific antigen vaccines, the number and
quality of neoantigens are high (29). Tumor-specific vaccines
have the advantage of recognizing cancer cells from normal
cells and minimizing the risk of vaccination-reduced severe
adverse events. However, MSS CRC usually shows fewer gene
alterations than CRC with microsatellite instability-high (MSI-
H) status or POLE mutations. In addition, heterogeneity exists
and remains a challenge for developing a tumor-specific
antigen vaccine. Neoantigens caused by KRAS are common
in CRC, and peptides derived from mutated KRAS show
certain anticancer activity in vaccination trials. In one case
report, CRC lung metastasis patients quickly exhibited
tumor regression after treatment with activated T cells
recognizing G12D KRAS (6). Another clinical trial found
that two out of seven patients were responsive after vaccine
infusion (30).

Vaccines are able to activate cytotoxic T lymphocytes (CTLs),
and the correlation between infiltrating lymphocytes and overall
survival is significant in patients with MSS disease (31, 32).
Therefore, a combination of ICIs and vaccines could be a new
treatment strategy in the future. Preliminary animal studies have
Frontiers in Immunology | www.frontiersin.org 3
shown encouraging results (33), and several clinical trials are
ongoing (Table 1).
ADOPTIVE T-CELL THERAPY

The patient’s T cells can target a specific antigen that is expressed
on the surface of tumor cells. Thus, several types of T cells have
been used for adoptive T-cell therapy, including TILs, chimeric
antigen receptor (CAR)-engineered T cells and cancer-specific
T-cell receptor-engineered T cells. These modified cells are
reintroduced into the human body to fight against cancer cells
and have achieved great success in hematological malignancies
(34). However, the role of adoptive T-cell therapy in CRC is still
unclear, and the treatment efficacy and safety remain to be
verified in clinical studies.

CAR T-cell therapy has become increasingly popular in the
last decade, and we are currently in the fourth generation of CAR
T-cell immunotherapy (35). In the course of treatment, the
patient’s immune cells are first harvested and cultured in vitro,
and then CARs are artificially integrated into the T cells. Finally,
the CAR T cells are infused back into the patient. The complexity
of the entire process leads to the high cost of CAR T-cell therapy
and high requirements for companies. Another significant
problem with CAR T-cell therapy is toxicity. Cytokine release
syndrome (CRS), which is not observed with traditional
chemotherapy, is the main side effect and is caused by the
release of inflammatory cytokines by continuously proliferating
CAR T cells.

Multiple ongoing clinical trials of various potential targets of
CAR T-cell therapy for colorectal cancer, including solid tumor
targets such as GUCY2C, CEA, and TAG-72 and circulating
tumor cell targets such as EpCAM, are shown in Table 1.

Different clinical studies have also employed different
administration methods for CAR T cells, such as intravenous
infusion, intraperitoneal infusion, and direct hepatic artery
infusion (36). One of the first human CAR T-cell trials on
metastatic colorectal cancer reported by Hege et al. (37) found
that CART72 showed good safety and tolerance despite quick
clearance from the blood. Another preclinical study (38) focusing
on GUCY2C found certain effectiveness against mCRC in mouse
models and in xenograft models of human CRC, and further
human clinical trials are currently being recruited in China.
Preliminary antitumor activity is also reflected in CAR T-133
cells, EpCAMCAR T cells, NKG2D CAR T cells, and HER2 CAR
T cells (36, 39–42). Ongoing clinical trials of CAR T-cell therapy
in the treatment of mCRC are shown in Table 2.
TABLE 1 | Current clinical studies of vaccines combined with ICIs.

Vaccination strategy Therapy No. of pts Trial identifier

Nivolumab, MVA-BN-CV301 FOLFOX 78 NCT0357999
Atezolizumab, RO7198457 567 NCT03289962
Avelumab + Ad-CEA FOLFOX, bevacizumab 81 NCT03050814
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To date, there have been no particularly encouraging results
about CAR T-cell therapy in mCRC. Although several promising
CAR T-cell therapies have shown success in preclinical models,
additional human data are still needed.
IMMUNE CHECKPOINT INHIBITORS

The most well-studied immune checkpoints include PD-1, PD-
L1, CTLA-4, LAG-3, and TIM-3. Despite the great success of the
KEYNOTE 177 study (43) on MSI-H CRC, the majority of
clinical trials of ICIs in MSS CRC have ended in failure. ICI
monotherapy did not obtain positive results in MSS CRC
patients in the KEYNOTE 016 and phase 2 CheckMate 142
trials. ICIs also failed as maintenance therapy in the MODUL
study (44). PD-1 and CTLA-4 antibody combination therapy is a
third-line treatment compared with best supportive care (45).
The lack of mutant neoantigens, immune evasion, and
neoangiogenesis are responsible for poor responses (46–49). In
addition to treatment regimen exploration, the effect of
metastatic sites on the efficacy of immunotherapy is also
worthy of further study. Several studies have found that
patients with liver metastasis often have a poor response to
immunotherapy (50, 51). To overcome these problems, several
new combination regimens have been explored. The rationale for
combination therapy is that chemotherapy or targeted therapy
can alter the tumor microenvironment (TME). Although
different factors, such as low neoantigen burden and alterations
in JAK/STAT pathways, may influence the treatment efficiency
of ICIs, it is believed that the insensitivity of MSS CRC to
immunotherapy could be reversed by altering the TME. The
TME is a dynamic environment and is composed of cancer cells,
extracellular matrix, immune cells, nutrients, and other
components (52, 53).

Regarding combined checkpoint inhibitors, a phase I study
found manageable safety and promising antitumor activity with
the antilymphocyte activation gene (LAG-3) antibody plus
pembrolizumab in MSS mCRC (54). Anti-TIM-3 antibody
combined with anti-PD-1 antibody showed preliminary signs
of antitumor activity in solid tumors (55).

Combination With Chemotherapy
Chemotherapeutic drugs seem to reduce the levels of Tregs
and increase the proliferation of homeostatic T cells (56).
Oxaliplatin was proven to feasibly and substantially expand
the response to ICIs in lung adenocarcinoma mouse models
Frontiers in Immunology | www.frontiersin.org 4
(57). Therefore, the phase II study POCHI (NCT 04262687) of
the combination of oxaliplatin, capecitabine, bevacizumab, and
pembrolizumab in CRC patients is ongoing.

Another study found that 5-fluorouracil could increase tumor
visibility to immune cells, and the treatment response improved
with sequential administrationof 5-fluorouracil and ICIs compared
with concurrent administration of ICIs with 5-fluorouracil (58).

Combination With Radiotherapy
Radiotherapy can release neoantigens and inflammatory
cytokines during treatment (59) and influence nonirradiated
sites by activating the immune response (60), which is called
the abscopal effect. However, the abscopal effect was observed in
melanoma when ipilimumab was combined with localized
radiotherapy (61). Regarding CRC, a phase II study enrolled 22
patients with MSS/mismatch repair-proficient (pMMR) CRC,
and only one patient experienced regression at nonirradiated
sites (62). There are a growing number of clinical trials exploring
the combined efficiency of radiotherapy and immunotherapy. A
phase II clinical trial of short-course radiotherapy combined with
mFOLFOX6 chemotherapy and avelumab immunotherapy in
Lebanon and Jordan enrolled 13 patients with MSS rectal cancer.
One patient had preoperative progression, three patients
achieved pCR, and three achieved near pCR (TRG1 score).
That is, half of the patients achieved very significant
tumor regression.

Combination With Anti-EGFR Antibody
The combination of immunotherapy and EGFR antibodies can
also enhance the immune response due to antibody-dependent
cell-mediated cytotoxicity (ADCC) (63). One phase Ib/II trial of
cetuximab combined with ICIs in nine mCRC patients showed
that 67% of patients achieved stable disease (64). Another phase
II trial of panitumumab plus ipilimumab and nivolumab in 56
refractory mCRC patients achieved a 35% 12-week response rate
and 5.7-month progression-free survival (PFS) time (65).
Combination With Antiangiogenesis
Therapy
Immunotherapy is most commonly combined with VEGF
inhibitors. Patients treated with antiangiogenic therapy had
higher infiltration of CD4+FOXP3+ regulatory T cells and
enhanced expression of checkpoint ligand programmed death-
ligand 1 (PD-L1) in renal cell carcinoma specimens than the
TABLE 2 | Ongoing clinical trials of CAR T-cell therapy in CRC.

Target Pathology Study phase No. of pts Trial identifier

aPD-1-MSLN mCRC I 10 NCT04503980
CEA Stage III and LM CRC I 18 NCT04513431
CEA mCRC I 75 NCT02349724
CEA mCRC I 18 NCT03682744
CEA mCRC I/II 40 NCT04348643
EGFR EGFR positive CRC I/II 20 NCT03152435
MUC1 mCRC II 20 NCT02617134
NKG2D mCRC I 10 NCT04550663
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corresponding control (66). This phenomenon may be related to
improved nutrient supply and oxygen demandwith antiangiogenic
therapy.However, an increasing number of studies have found that
antiangiogenic drugs can modulate the TME, independent of their
antiangiogenic effects. Regorafenib was found to have the ability to
inhibit JAK1/2-STAT1 andMAPK signaling by targeting the RET-
Src axis and to induce PD-L1 and IDO1 expression in melanoma
(67). Another study found that regorafenib could reverse M2
macrophage polarization and the regorafenib dosage may be
halved when combined with ICIs (68).

The REGNIVO study (69) showed a 36% overall response in
25 MSS CRC patients treated with regorafenib and nivolumab.
However, among 48 patients in the REGOMUM study, no
patient showed a partial or complete response. Therefore, this
combination regimen still needs validation in a phase III study,
and many clinical trials are ongoing.

Combination With TGF-b Antibody
TGF-b upregulation plays an important role in the immune
evasion of MSS mCRC. It has been reported that TGF-b can
promote T-cell exclusion and block the acquisition of the Th1
effector phenotype (70). TGF-b inhibitors can render tumors
susceptible to ICIs. Preclinical studies support the potential use of
anti-PD-L1/TGF-b trap fusion proteins in clinical use, and related
clinical trials are ongoing. Src homology 2 domain-containing
tyrosine phosphatase 2 (Shp2) (71) and prostaglandin E2 (PGE2)
receptor 4 (EP4) (72) are both potential strategies for enhancing
Frontiers in Immunology | www.frontiersin.org 5
the efficacy of immunotherapy for MSS mCRC by regulating
immunosuppressive myeloid cells.
CONCLUSION

Immunotherapy has a confirmed survival benefit for MSI-H
mCRC. For MSS CRC, trials of monotherapy with ICIs and ICIs
combined with other treatments, such as MEK inhibitors, have
failed in the past decade. However, explorations of adaptive
immune therapy in MSS CRC are ongoing. Clinical trials of
cytokines, costimulatory receptors, CAR T cells and different
combinations of anti-VEGF or anti-EGFR agents plus ICIs are
ongoing. Preliminary data have indicated the great promise of
combined adaptive immune therapy in MSS mCRC, and this type
of treatment is expected to transform cold tumors into hot tumors.
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