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Abstract
Malaria is a disease induced by parasites of the 
Plasmodium genus, which are transmitted by Anopheles 
mosquitoes and represents a great socio-economic 
burden worldwide. Plasmodium vivax is the second 
species of malaria worldwide, but it is the most prevalent 
in Latin America and other regions of the planet. It is 
currently considered that vaccines represent a cost-
effective strategy for controlling transmissible diseases 
and could complement other malaria control measures; 
however, the chemical and immunological complexity 
of the parasite has hindered development of effective 
vaccines. Recent availability of several genomes of 
Plasmodium species, as well as bioinformatics tools are 
allowing the selection of large numbers of proteins and 
analysis of their immune potential. Herein, we review 
recently developed strategies for discovery of novel 
antigens with potential for malaria vaccine development.
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Resumen 
La malaria es una de las enfermedades transmisibles 
de mayor impacto socio-económico a escala mundial, 
y es inducida por parásitos del género Plasmodium 
transmitidos por mosquitos del genero Anopheles. El 
Plasmodium vivax ocupa el segundo lugar en prevalencia 
mundial, pero es la especie más frecuente en América 
Latina y otras regiones del planeta. Se considera que 
las vacunas representan una estrategia costo-efectiva 
para el control de enfermedades transmisibles y que 
podrían complementar las demás medidas de control 
de la malaria; sin embargo, la complejidad química e 
inmunológica del parasito han dificultado el desarrollo 
de vacunas efectivas. La reciente accesibilidad a los 
genomas de varias especies de Plasmodium, y el desarrollo 
de herramientas bioinformáticas están permitiendo 
la selección de numerosas proteínas y el análisis de su 
potencial inmunológico. Aquí revisamos las estrategias 
recientes para el descubrimiento de nuevos antígenos para 
el desarrollo vacunas contra la malaria. 
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Epidemiological importance of malaria

Malaria represents a global public health problem that hinders 
socio-economic development in vast regions of the world, 
particularly of the planet’s Tropical and sub-Tropical areas. It 
is calculated that ~3-billion people from over 100 countries are 
exposed to the infection by one or more Plasmodium1 species 
and it is estimated that in 2010 there were over 216-million 

clinical cases, over 650,000 of which were lethal. P. falciparum 
is the most abundant and virulent species, followed by P. 
vivax, which although producing lower mortality causes 
incapacitating and recurrent disease2. Plasmodium vivax, 
coexists with P. falciparum in vast zones of the planet and it is 
prevalent in regions of Asia, Oceania, and Latin America where 
it is estimated to produce between 70 and 80-million clinical 
cases each year2. Mortality produced by malaria is higher in 
Africa, mainly in children younger than five years of age and 
in pregnant women infected by P. falciparum and although 
mortality is present to a lesser degree in infections by P. vivax, a 
significant number of lethal cases has been recently documented 
in high-transmission regions like India and Brazil3,4.
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Strategies and global programs of malaria control

Although the classical measures of malaria control, like 
early diagnosis, timely and efficient treatment, and mosquito 
control have contributed significantly to reducing the 
malaria distribution map5, it is currently considered that the 
development and possible application of malaria vaccines 
would contribute significantly and cost-effectively to reduce 
the impact of malaria in zones more affected by the disease, 
and would favor its elimination in zones that currently have 
lower transmission. During the last decade, several global 
initiatives aimed at efficient malaria control have been 
developed including: the program denominated Roll Back 
Malaria (RBM), the Malaria Elimination Group (MEG), and, 
more recently, the Malaria Eradication Research Agenda” 
(malERA). Additionally, the Global Fund (GF) has been, since 
2002, perhaps the main funding source for malaria control 
Worldwide. 

Until now, no malaria vaccine has been licensed for massive 
application in populations; however, rising evidence indicates 
the feasibility of developing vaccines. Firstly, in individuals 
exposed to malarial infection in endemic areas, the naturally 
acquired immunity accumulates progressively during the 
first two decades of life and results in decreased clinical 
severity of the disease and mortality6. Secondly, experimental 
immunization of non-immune volunteers with sporozoites 
previously attenuated through irradiation has demonstrated 
that up to 90% of the individuals vaccinated develop sterile 
protection against the experimental infection7. Thirdly, it has 
been shown that passive transfer of immunoglobulin from 
immune adults to naive volunteers eliminates the circulating 
parasites8. Additionally, it has been recently shown that it is 
possible to protect endemic communities from P. falciparum, 
at least partially, through immunization with an experimental 
vaccine, the RTS,S based on the P. falciparum CS protein9. 

Importance of vaccines as control strategy

At least three levels have been contemplated of the Plasmodium 
cycle in which the parasite would be most susceptible to 
the immunological attack induced by a vaccine: the pre-
erythrocytic stage (sporozoites and liver stages) and the asexual 
erythrocytic phase based on its capacity to stimulate humoral 
and cellular immune response. During the pre-erythrocytic 
stage, antibodies can inhibit invasion of sporozoites to the 
liver10 and, hence, prevent hepatic development of the parasite 
and the ulterior disease; cytokines like IFN-γ produced 
by T CD4 + and T CD8 + cells would contribute to halt 
intracellular development of hepatic schizonts11. During the 
erythrocytic stage, the presence of antibodies can, through 
different mechanisms, prevent invasion of the parasite to the 
erythrocytes12 and also, in red blood cells, oxygen radicals can 
destroy intracellular parasites13. 

A third level in which the parasite’s life cycle can be interrupted 
is the sporogonic phase, which occurs in the mosquito’s 
intestine. During this phase, it is possible to interrupt the 
fertilization process and ookinete invasion to the mosquito’s 
intestinal cells, preventing development of the parasite within 

the mosquito and, hence, its transmission to other susceptible 
individuals14.

Although vaccines must individually prove their efficacy, it is 
considered essential to focus efforts on generating formulations 
that include all the stages of the parasite’s cycle. Additionally, 
given the epidemiological distribution of malaria throughout 
the world, a functional vaccine against it must include 
components from at least the two most abundant species, P. 
falciparum and P. vivax. Accomplishing this aim in the near 
future is not easy because of the differential development of 
research on P. falciparum and on P. vivax. This review seeks 
to describe the use of high-performance tools and recent 
progress in identifying new antigen candidates for vaccines 
against P. falciparum and P. vivax during erythrocytic and pre-
erythrocytic stages.

Strategies to discover antigens with potential for 
vaccine development

Classical strategies: Vaccine production from inactive living, 
attenuated, or dead organisms, which have been employed 
to develop several of the vaccines for use in humans is not 
functional for diseases like malaria due to numerous factors 
like: contamination of the formulation with components from 
human cells, loss of immunogenicity, and difficulty in logistics 
for their production15,16. Thereby, the approach used during 
the last two to three decades to design a malaria vaccine has 
been based on identifying “subunits” of the parasite, such 
as complete antigens or their fragments, which have been 
mainly produced as synthetic peptides and recombinant 
proteins derived from sporozoite, merozoite, or gametocyte 
stages. Additionally, other methods have been tried like the 
production of vaccines from DNA and recombinant virues. 
Numerous antigens, particularly from P. falciparum have been 
produced and analyzed in preclinical studies (on animals) 
in which their immunogenicity and lack of toxicity have 
been determined; essential conditions for their advance to 
the clinical development phase in humans. This process has 
given way to currently most advanced proteins being tested in 
clinical and preclinical phases (Table 1). Particular emphasis 
has been made on the P. falciparum circumsporozoite (CS) 
protein, which has reached maximum progress in its clinical 
development, recently accomplishing its analysis during Phase 
III clinical studies. This vaccine denominated Pf-RTS,S has 

Table 1. Description of malaria antigens in advanced phases of development, 
RTS,S: CS repetitive region, T-cell epitopes, hepatitis B surface antigen, AMA: 
apical membrane antigen, MSP: merozoite surface protein, CSP: Circumsporozoite 
protein, LSP: Long synthetic peptide, Rec: Recombinant, Vec: vector

Plasmodium 
species Parasite phase Antigen Type

Clinical 
studies Ref

P. falciparum Pre-erythrocytic RTS,S Rec Phase III 9

P. falciparum Pre-erythrocytic AMA-1 Rec Phase I 46

P. falciparum Erythrocytic MSP-1 Viral Vec. Phase Ia 47

P. falciparum Erythrocytic MSP-2 Rec Phase I 48

P. falciparum Erythrocytic MSP- Rec Phase Ib 49

P. vivax Pre-erythrocytic CSP LSP Phase Ia/b 17, 50

P. vivax Sexual Pvs25 Rec Phase I 51
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demonstrated the capacity to induce protection against clinical 
and severe malaria in African children9, and although most 
recent studies registered protection of ~30%, the progress and 
learning accomplished during its analysis is of great value. The 
homologous protein in P. vivax has been analyzed in clinical 
trials in Phases I17 and, currently, a Phase II study is under way. 
Several other vaccines have reached clinical phases and are 
reviewed in available literature18,19.

New strategies of antigen discovery: Use of the Expressed 
Sequence Tags (EST) technology permitted, during 2000-2003, 
describing the human genome and the genomes of multiple 
microorganisms of biological, agricultural, archaeological, 
and medical interest20-22. This vertiginous development 
permitted learning that parasites from the Plasmodium genus 
have genomes composed by between 5000 and 6000 genes. 
Availability of genomes from P. falciparum, P. vivax and from 
some other species, as well as progress in bioinformatics, 
genomics, and proteomics, are permitting the development 
of high-performance methods to select, clone/synthesize, and 
analyze a large number of proteins of these parasites, and it is 
probable that it accelerates development of malaria vaccines. 
Specifically, proteomic analyses have indicated that throughout 
the parasite’s life cycle at least 5,440 proteins are expressed by 
P. falciparum and 5,321by P. vivax23,24. Given this enormous 
multiplicity of proteins, it becomes more evident that the 
clinical immunity developed under natural and experimental 
conditions against human malaria is probably induced by 
multiple components of the parasite whose identification and 
analysis is only possible by using high-performance techniques. 

Proteomics-based tools for discovery of new vaccine 
candidates

As a result of this important progress, the development of 
high-performance technologies has emerged as great promise, 
and terms like transcriptomics, metabolomics, lipidomics, 
and proteomics are increasingly more common in biomedical 
literature, and it is expected that in the following years we 
will see the huge scope of such technologies25. In light of the 
need to analyze the big volume of information produced on 
only one experiment based on high-performance technology, 
recent numerous tools have been developed for information 
analysis, which currently facilitate data mining and efficient 
development of complex studies employing “omic” technology.

Microarrays of proteins

Consist of protein libraries assembled on a same format 
generated through cloning and expression of large fragments 
of the genome of microorganisms, in this case of P. falciparum 
and P. vivax, available to simultaneously conduct studies, 
for example, of reactivity with antibodies. In contrast to 
classical techniques that permitted analysis of individual 
genes and proteins, this proteomic technology permits 
simultaneous analysis of immunoreactive profile of hundreds 
of the organism´s significant proteins or of its fragments and 
represent one of the most attractive approaches for large-
scale discovery of new vaccine candidates. One of the pioneer 
laboratories in malaria proteomics research is led by Dr. P. 

Felgner at the University of California (USA). His group 
developed a high-performance system for protein expression 
called “PCR Express”, through which complete proteomes of 
any microorganism are generated26 (Fig. 1).

Compared to conventional cloning methods in plasmid 
expression, transformation, and growth vectors in bacteria, 
“PCR express” offers various advantages for the production of 
transcriptionally active genes, given that these use up a large 
amount de time and require intensive labor, above all when 
seeking to simultaneously clone a large number of genes. The 
difference lies in that PCR express is based on a sound and 
practical approach for production transcriptionally active 
PCR fragments (TAPF) in two sequential PCR reactions. 
Technically, the process consists of two stages; a first stage uses 
gene-specific primers to amplify the gene of interest, while a 
second stage carries out nested PCR, which uses a mix of DNA 
fragments to add promoter and terminator sequences to each 
fragment. This makes the TAPFs equally active to super-coiled 
plasmid DNA, produced in in vitro and in vivo transfection 
assays and, hence, can be used as DNA vaccines27.

As in DNA vaccines and in recombinant viruses containing 
Plasmodium protein inserts previously described28, TAPFs 
can also be quickly transferred to plasmid vectors through 
homologous recombination, offering a high-performance 
cloning method that does not require using restriction enzymes 
or ligation reactions. 

The TAPF technology has been used with different pathogens 
to evaluate serum antibody titers from people or animals, 
vaccinated or infected naturally, to identify antigens recognized 
by the immune system after vaccination or infection with such 
microorganism29. 

Based on this technology, the most reactive antigens are selected 

Table 2. Microorganisms evaluated via micro-arrays

Pathogen Ref

Human Immunodeficiency 1 and 2 52

Virus vaccine 53

Human Papilloma Virus 54

Herpes simplex virus 1 and 2 55

Varicella virus 56

Dengue virus (4 types), 57

Brucella melitensis 26

Chlamydia muridarum 29

Mycobacterium tuberculosis 58

Salmonella typhi 59

Leptospira interrogans 60

P. falciparum 32

P. vivax 33
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for evaluation in different kinds of studies, e.g., immunogenicity 
to determine their potential for vaccine development or to 
design immune-diagnostic methods. Until now, micro-arrays 
corresponding to ~30 microorganisms have been assessed, 
including viruses, bacteria, and pathogen parasites (Table 2).

Progress in the discovery of new Plasmodium 
antigens using protein microarrays

During the Plasmodium life cycle, over 5,000 proteins are 
expressed and it is not exactly clear which of these antigens 
mediate the clinical immunity and the protective immunity 
observed in individuals from endemic areas or in individuals 
vaccinated with the parasite attenuated via irradiation7. 
Preliminary studies suggest that a large number of antigens are 
recognized30,31 by the host’s immune system, highlighting the 
importance of identifying the repertoire of antigens and epitopes 
from the different development phases of the parasite implied 
in induction of clinical immunity. Recently, high-performance 
tools have been used to identify immunodominant antigens 
and preliminary definition of immunoreactivity profiles 
among groups of individuals with different levels of immunity 

to malaria32. 

A first study selected a panel of 250 P. falciparum proteins 
chosen specifically to evaluate immune response in volunteers 
immunized with sporozoites attenuated via radiation, mainly 
in hepatic stages and with sporozoites, representing 4.75% of 
the totality of the genome, which were cloned, expressed and 
included in protein micro-arrays32. 

The reactivity of these micro-arrays was then evaluated against 
serum samples from individuals vaccinated with irradiated 
sporozoites and compared to that of serum from individuals 
from endemic areas of Kenya, with different degrees of exposure 
to malaria. In this study, it was noted that subjects naturally 
exposed to malaria in Kenya reacted with greater intensity to 
a large number of antigens than individuals vaccinated with 
irradiated sporozoites. Also, among the group of subjects 
immunized with irradiated sporozoites, those protected against 
infectious challenge react with greater intensity and at a higher 
number of antigens than those unprotected. Additionally, it 
was noted that 56 of a total of 72 proteins that were the most 
highly reactive had not been previously characterized, which 
could represent a potential for development of malaria vaccines 
toP. falciparum.

In another study held in Mali with serum samples from 220 
individuals ranging in age between 2 and 10 years and between 
18 and 25 years31, it was observed that the average number of 
proteins recognized by individuals exposed to the infection 
increased with age. Furthermore, it was found that reactivity 
in children increases dramatically during periods of high 
transmission of malaria. In contrast, the number of proteins 
recognized by the adults does not vary significantly during 
these periods. Finally, these analyses provided information 
about the patterns of reactivity against P. falciparum proteins 
based on the phases of the life cycle in which the proteins 
are expressed, as well as their sub-cellular location and other 
proteomic characteristics. 

For P. vivax, few genes of the ~5,500 encoded by the genome 
from the Salvador I (Sal I) strain23 have been assessed. Recently, 
10 proteins from pre-erythrocytic stages were identified, which 
were widely recognized by serum from individuals from 
endemic regions of the Colombian Pacific Coast (n =60). 

These proteins were identified from a panel of 91 antigens 
evaluated in micro-arrays33 that are currently available for 
additional characterization. 

Similar to the protein micro-arrays, the peptide micro-arrays 
are now being used for functional evaluation of proteins. 
Peptides are quite stable functionally, capable of maintaining 
their activity under most reaction conditions, which gives 
them advantages in application like micro-array. In general, 
depending on the peptide micro-array preparation method, 
these can be classified into: (a) in situ, or (b) synthesis followed 
by immobilization. 

As the name implies, in situ micro-arrays are synthesized 
directly on the solid surface. The technique consists of 
dispensing a small volume of solutions containing amino acids 

Figure 1. Production scheme of protein micro-arrays to identify antibody tar-
get proteins 1. From the parasite genome bioinformatic predictions are made of 
protein expression sites. Specific primers are synthesized for each region. 2. With 
primers ready, distinct protein expression regions are amplified. An adapter se-
quence is added to each of the primers to facilitate its insertion into a vector. 3. The 
different amplicons are inserted into an expression vector with a T7 promoter and 
a marking tail like Poly-Hist or HA. 4. The plasmids containing the sequences are 
placed upon an in vitro system free from protein expression cells. 5. The proteins 
are attached to a chip. 6. Serum from the patients is made to react with the chip. 
Then, a secondary antibody is served and it binds to the antibodies attached onto 
the proteins. 7. The reaction is visualized in a computer. From this technique, it is 
possible to observe in a whole proteome that proteins generate immune response 
in patients.
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and other coupling reagents to a designated point a membrane. 

In the second case, peptides are previously synthesized by using 
conventional equipment and methods and then nanoliters 
of peptide solutions are transferred to the solid surface. This 
approach is much more efficient because each peptide needs to 
be synthesized only once34. 

Peptide micro-arrays have been used in identifying ligands or 
substrates of target molecules of interest, as well as in evaluating 
activity and enzyme and protein bonding35. 

Peptide micro-arrays can be used, for example, to identify 
epitopes and evaluate the response of the immune system 
to different pathogens. Using this technology, Wiley et al., 
demonstrated that the recognition profile of different epitopes 
from a P. vivax protein changes en individuals vaccinated with 
the antigen formulated in different adjuvants35.

Using bioinformatic tools to select structural motifs 
in Plasmodium proteins

In spite of the great value of massively identifying 
immunodominant proteins, direct identification of relevant 
epitopes represents a high value complementary strategy. 
Many of the epitopes recognized by antibodies represent three-
dimensional surfaces of an antigen molecule that precisely 
interact with the bonding surfaces of the corresponding 
antibodies; these epitopes can be linear or conformational. 
Linear epitopes are formed by a continuous sequence of amino 
acids, while conformational epitopes depend on the position of 
the amino acids in the protein’s three-dimensional structure, 
which is determined by the combination of its alpha (α) helix, 
folded beta (β) sheet, or β coil structures. It has been shown 
that α double-helix structures contain abundant epitopes 
from B cells that have proven to be targets of Plasmodium 
growth inhibiting antibodies36 and other pathogen agents37. 
Additionally, it is estimated that most B epitopes are structural 
and that only 10% of the antibodies induced by immune 
response are aimed against linear epitopes38.

Production of protein fragments containing conformational 

epitopes is of great importance, but it represents a huge 
synthesis technical challenge39. Fragments of synthesized 
proteins need to acquire stable structures that mimic the 
native structure and, hence, can be recognized by antibodies. 
Further, the challenge exists of identifying said fragments in 
protein sequences throughout the genome/proteome. Recently, 
specific bioinformatic algorithms have been developed to 
select sequences containing α double-helix motifs. These 
motifs form stable structures characterized by the presence of 
repetitions from seven residues from amino acids (abcdefg) 
with hydrophobic residues located in positions a and d, and 
hydrophilic residues in the remaining positions (Fig 2)45, which 
are generally monomorphic and react with antibodies that 
are reactive with the native form of the native protein. These 
structures are easily identifiable with bioinformatic tools40, 
which significantly reduces antigen selection time. 

Recent progress in chemical synthesis techniques have 
permitted the production of 95 fragments of 30-40 amino 
acids of length corresponding to P. falciparum proteins, which 
contained α double-helix motifs. All the antigens selected were 
evaluated to determine their antigenicity by using a panel of 
serum from donors from endemic zones41, which permitted 
identifying ~70 new proteins with variable length between 
200 and 10,000 amino acids. Thereafter, the immunogenicity 
of some of these fragments was evaluated in murine models. 
Functional assays conducted using specific antibodies against 
the different fragments, demonstrated their capacity to inhibit 
in vitro development of the parasite in Antibody-Dependent 
Cell mediated Inhibition (ADIT), and it was also demonstrated 
that these structures are highly conserved42. A Phase 1 clinical 
trial is currently analyzing fragment P27A of 104 amino acids 
derived from the P. falciparum protein PFF0165c selected by 
using this methodology43; in addition, the immunogenicity 
of the Pf-P181 polypeptide, also selected through this 
methodology and which contains fragments from three 
different proteins bound by a nonimmunogenic connector 
(diethylene glycol), was recently evaluated during preclinical 
trials44.

The same technology is being currently used in identifying 
P. vivax antigens. A total of 52 peptides containing α double-
helix motifs were recently selected from 150 proteins of P. vivax 
erythrocytic stages. Fragments of variable lengths between 
30 and 50 residues were synthesized by using F-moc solid 
phase chemistry and used to determine their antigenicity 
by comparing their reactivity with serum from individuals 
naturally exposed to malaria in hyper-endemic areas of Papua 
New Guinea (PNG) (District of Maprik) and from areas of 
medium and low transmission in Colombia (Tumaco and 
Tierralta). In general, higher reactivity was observed when 
using serum from individuals from PNG; a total of 10 fragments 
have been preselected because of their high reactivity with 
serum from PNG and from Colombia and they are being used 
in immunogenicity assays in mice.

Conclusions

The large number of proteins produced by Plasmodium and 
their great diversity demand the use of high-performance Figure 2. Schematic representation of alpha double-helix motifs
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tools for their identification, production, and analysis. During 
the last decade, important progress in bioinformatics and 
biotechnology has permitted the construction of micro-
arrays of proteins produced via recombinant technology or as 
synthetic peptides, which have permitted identifying over 400 
new antigens from pre-erythrocytic and erythrocytic phases 
with possible functions in the natural immunity acquired for 
P. falciparum and P. vivax. However, although this progress 
permits studying more efficiently the response profile of 
antibodies associated to immunity acquired naturally or 
through vaccination (antigenicity), immunogenicity analyses 
of proteins or epitopes selected still require in vivo models 
which are not currently scalable. The important progress in the 
study of immune response against Plasmodium through high-
performance methods now generates exceptional conditions 
for identifying new vaccine candidates for their clinical 
development. 
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