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A B S T R A C T

Chemoinformatic studies were carried on some inhibitors of dopamine transporter to develop a predictive and
robust QSAR model and also to elucidate binding mode and molecular interactions between the ligands (in-
hibitors) and the receptor targeting schizophrenia as novel Antipsychotic agents. Density Functional Theory (DFT)
approach was utilized to optimize the ligands at B3LYP/6-31G* at the ground state and Multi-linear regression of
the genetic function approximation (MLR-GFA) method was employed in building Penta-parametric linear
equation models. The best model with statistically significant parameters has squared correlation coefficient R2¼
0.802, adjusted squared correlation coefficient R2

adj ¼ 0.767, Leave one out (LOO) cross-validation coefficient
(Q2) ¼ 0.693, lack of fit score (LOF) ¼ 0.406, R2

Test ¼ 0.77, Y-randomization test (cR2p) ¼ 0.714, Chi-squared
(χ2) ¼0.026, bootstrapping (Systematic errors ¼ 0.272) and Variance Inflation Factor (VIF) <2 . The obtained
results were compared with standard validation parameters to ascertain the predictivity, reliability, and robust-
ness of the model. Also, the mechanistic interpretation of the descriptors found in the model revealed that two out
of five descriptors; MATS7s (32.3%) and RDF95m (30.4%) having pronounced influence on the observed anti-
psychotic property of the compounds evidenced by their highest percentage contributions. More so, the molecular
docking investigation showed that the binding affinity of the selected ligands ranges from -10.05 to -9.0 kcal/mol
and with ligand 21 possessed the highest binding affinity (-10.05 kcal/mol). Furthermore, all the selected ligands
displayed hydrogen bonds and hydrophobic interactions with the amino acid residues of the target (4M48) which
could account for their higher binding energy. Our findings revealed that the developed model passed the general
requirements for an acceptable QSAR model and also satisfied the OECD principles for model development.
Hence, the developed model would be practically useful as a blueprint in developing novel antipsychotic agents
with improved activity for the treatment of schizophrenia mental disorder.
1. Introduction

Schizophrenia is a psychiatric disorder that frequently involves a
composite genetic tendency as well as susceptibility to certain environ-
mental factors [1, 2]. It is a chronic and debilitating mental disorder
characterized by disordered thoughts, abnormal behaviors, and
anti-social behaviors, meaning that the person with schizophrenia
problem does not identify with reality at times [3]. Meanwhile, Psychosis
refers to a state in which an individual experiences a false sensation and
this includes auditory, visual, and tactile sensations of things that are not
real, and feelings that something strange is going on [4, 5]. Symptoms of
Schizophrenia and Psychosis are related and they include; hallucinations,
po).
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delusions, incoherent speech, dangerous behavior, unusual movements,
problems at public places and detached manner with the inability to
express emotion, apathy and lack of enthusiasm [6, 7]. Persistent in
symptoms of Psychosis may be a risk that the affected individual could be
experiencing manifestations of schizophrenia or mental disorders that
are considered as the precursors of schizophrenia [6]. Antipsychotic
drugs (APDs) are the backbone in the treatment of schizophrenia. The
available APDs exhibit a broad range of mechanisms and act on receptors
of diverse biogenic monoamine neurotransmitters [8].

Dopamine is the main neurotransmitter involved in the pathophysi-
ology and treatment of schizophrenia [9]. Dopamine pathways have been
well interpreted by Positron emission tomography (PET) with different
July 2020
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radiotracers and these PET tracers have been used to elucidate various
aspects of divergent dopaminergic transmission in schizophrenia [10, 11,
12]. Dopamine (DA) receptor and transporter dysfunctions play an
important role in the pathophysiology of neuropsychiatric mental dis-
order including anxiety disorder (AD), major depressive disorder (MDD),
bipolar disorder or depressive state and schizophrenia disease [13]. All
effective antipsychotic medications achieve their efficacy by targeting
the dopaminergic system, sub-chronic blockage of 60–80% of dopamine
D2 receptors is considered to underlie treatment efficacy in schizophrenia
[14]. Clozapine was reported to be the most effective pharmacotherapy
for the treatment of schizophrenia since the introduction of conventional
antipsychotic drugs in 1950s [15, 16]. Despite its superior efficacy and
potential to reduce substantially the morbidity of schizophrenia and
improve the outcomes of patients, Clozapine has not been used on a
widespread basis due to its potential for agranulocytosis [15]. Even
though other antipsychotic drugs such as Cariprazine, risperidone, etc.
were discovered after Clozapine, none of the beneficial effects for any of
the medication strategies were considered to be of clinically significant
magnitude [15, 17, 18]. More worrisome is the incidence of “ultra--
resistance” cases where patients with schizophrenia respond neither
Clozapine nor any other antipsychotic drugs [7]. Since existing antipsy-
chotic drugs for the treatment of schizophrenia are faced with challenges
of adverse side effects, patients' ultra-resistance, and insignificant clinical
benefits, the need for a continuous search for potent and less toxic
antipsychotic drugs has become very necessary. Although, drug discov-
ery and development are very tedious scientific exercises owing to the
Table 1. Computed chemometric validation parameters of the model.

S/N Chemometric
validation
parameters

Description Threshold

1. R2 Co-efficient of determination for
internal validation (Training set)

�0.6

2. R2
Ext Co-efficient of determination for

external validation (test set)
�0.5

3. R2
adj Adjusted R-squared >0.6

4. Q2
cv Cross-Validation Co-efficient >0.5

5. R2-Q2
cv Difference between R2 and Q �0.3

6. Friedman LOF Friedman LOF -

7. χ2 Chi-squared <0.5

8. RMSE Root-mean squared error �1.0

9. cR2p Coefficient of determination for Y-
randomization

>0.5

10. NB No. of Bootstrap Models -

11. Biaŝ2 Bias or systematic errors -

12. MSE Mean square error -

13. RMSEP Root-mean squared error of
prediction

-

14. Variance Variance or errors introduced by
models

-

15. DF (5, 28) Degree of Freedom >2.09

16. |r0̂2-r'0̂2| <0.3

17. k slopes k (predicted against
experimental activity) of the
regression lines through the origin

0.85 < k

18. k' slopes k’ (experimental against
predicted activity) of the
regression lines through the origin

0.85 < k'

19. [(r̂2-r'0̂2)/r̂2] <0.1

20. r2m external predictability of the
selected model

�0.5 (or

21. [(r̂2-r0̂2)/r̂2] <0.1

22. VIF Variance Inflation Factor <10

23. t-test t-Statistic value >2

2

stupendous time factors and resources involved, thus the application of
chemoinformatic study to overcome these bottlenecks is very important
at this time. Because of these, some of the inhibitors (ligands) of Dopa-
mine Transporters and the receptor (Dopamine transporter elucidates
antidepressant mechanism) targeting schizophrenia that is well docu-
mented in the CHEMBL Database [19] and the Protein Data Bank
respectively were studied as to harness the structural features influencing
the observed antipsychotic activity of the inhibitors as well as to eluci-
date the binding mode and molecular interactions between the ligands
and the receptor targeting schizophrenia. In consequence, the results of
the study are hoped to provide necessary information for the identifi-
cation and development of novel Antipsychotic agents with improved
activity for the treatment of schizophrenia and other related mental
disorders.

2. Computational methods

2.1. Experimental data set

A data set of 44 inhibitors of DAT was collected from the CHEMBL
Database [19]. The general molecular structures of the compound's
vis-a-vis their CHEMBL number are contained in Supplementary
Table SD1. The anti-psychotic activities expressed in nM were converted
into the corresponding pKi (pKi ¼ -log10 pKi) values which are used as
dependent variables in this study.
value Calculated value Comments

0.802 goodness-of-fit

0.773 good predictivity

0.767 goodness-of-fit

0.693 Passed and model is acceptable

0.109 Passed and model is acceptable

0.406 statistically significance

0.026 good predictivity

0.448 good predictivity

0.714 Robustness

10,000 Good internal predictivity

0.272 Good internal predictivity

0.251 Good internal predictivity

0.50112 Good internal predictivity

0.055 Good internal predictivity

33 statistically significance

0.0512 Passed and model is acceptable

< 1.15 1.022 Passed and model is acceptable

<1.15 0.976 Passed and model is acceptable

0.067 Passed and model is acceptable

close to 0.5) 0.689 good external prediction

0.00067 statistically significance

<2 orthogonal and statistical significance.

>10 statistically significance
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2.2. Molecular optimization and descriptors calculation

2D structures of the compounds were drawn using Chemdraw soft-
ware and the spatial conformations of the compounds were determined
using the Spartan 14 V1.1.4 wavefunction software package [20]. The
molecular structures were minimized by Molecular Mechanics Force
Field (MMFF) calculations to remove strain energy before subjecting it to
complete geometry optimization with the aid of Density Functional
Theory (DFT) at B3LYP/6-31G* basis set. The molecular descriptors were
calculated using the PaDel descriptor tool kit, Spartan 14 software and
ChmBio3D Pro 12.0.1V software [21]. More than a thousand descriptors
comprising of 0D, 1D, 2D, and 3D types were generated for each mole-
cule. The descriptors were correlated with the antipsychotic activity of
the molecules using Pearson's correlation matrix to select the suitable
descriptors for Genetic Function Approximation (GFA) analysis based on
the correlation coefficients.

2.3. Experimental data set division

The data set (44 compounds) were split into a training set of 34
compounds (77%) which was used to develop the models and test set that
is made up of 10 compounds (23%) that was utilized externally to vali-
date the predictivity of the models [22, 23] by employing Kennard stone
algorithmmethod with the use of Dataset Division GUI 1.2” software [24,
25] in line with the optimum splitting pattern of data set in QSAR study
[26].

2.4. Model building and evaluation of chemometric parameters

Different possible combinations of descriptors were subjected to Ge-
netic Function Approximation (GFA) with the experimentally determined
biological activity on a logarithmic scale (pKi) as the dependent variable
and the descriptors as the independent variables. Out of the three
generated GFA models, the best (Model-1a) which is statistically signif-
icant and with the smallest LOF score was selected. The use of Friedman's
lack-of-fit (LOF) measure has several advantages over the regular least
square error measure in evaluating the quality and fitness of a model
[23]. Mathematically, the Friedman lack-of-fit (LOF) is expressed [27,
28] by Equation (1) below as;

LOF¼ SSE�
1� C�dp

M

�2 (1)

SSE ¼ sum of squares of errors, c ¼ number of terms in the model, other
than the constant term, d ¼ user-defined smoothing parameter, p ¼ total
number of descriptors contained in all model terms while M represents
the number of samples in the training set [29].

2.5. QSAR model validation and principles of OECD

Validation is a decisive step in a QSAR modeling in which the pre-
dictivity, reliability, and significance of the procedures are confirmed in
developing a model [30]. The principles of Organization for Economic
Co-operation and Development (OECD) that constitute a conceptual
framework for validating a QSAR model were employed in validating the
model, that is, a well-defined End-point measured must exist, a univocal
algorithm must be used, a defined applicability domain, appropriate sta-
tistical evaluation of the models must be carried out (i.e. internal and
external validations using the training set and the test set respectively) and
mechanistic interpretation of the models must be established [31, 32].

2.6. Model validations and procedures

A quest to develop a globally acceptable QSAR model and to ensure
compliance to OECD Principles of model validations, appropriate
3

statistical evaluation and validation of the models were investigated
using both internal and external validations procedures.

2.6.1. Internal and external validation methods
Internal validation is assessed using the data that created the model

via the methods of least squares fit (R2), cross-validation coefficient (Q2),
adjusted R2 (R2

adj), the difference between R2 and Q2 (R2 - Q2), Chi-
squared (χ2) and Root-mean squared error (RMSE). The values of these
parameters were compared with the minimum criterion for robust QSAR
models in Table 1 [30]. The R2 value is interpreted as the proportion of
variation in a dependent variable that is explained by the model. R2 is
expressed by this formula:

R2 ¼ SSR
SST

¼ SST � SSE
SSE

(2)

Where SST ¼ total sum of squares, SSR ¼ regression sum of squares, and
SSE ¼ minimum sum of squared residuals of any linear model. R2 value
varies directly with the increase in some descriptors, thus, R2 cannot be a
useful measure for the goodness of model fit. Therefore, R2 is adjusted for
the number of explanatory variables in the model [30, 33]. The adjusted
R2 is defined as

R2
ðadjÞ ¼ 1–

�
1�R2

� n� 1
n� p� 1

¼ðn� 1ÞR2 � 1
n� pþ 1

(3)

p ¼ number of descriptors in the model.
The LOO cross-validated coefficient (Q2) is given by;

Q2 ¼ 1�
P ðA� BÞ2P ðB� CÞ2 (4)

where A and B represent the predicted and observed activity respectively
of the training set and C ¼ mean activity value of the training set.

The Chi-squared (χ2) and Root-mean squared error (RMSE) for vali-
dating the models and error checking to determine if the model possesses
the predictive quality reflected in the R2 are expressed by Eqs. (5) and (6)
respectively as;

X2 ¼
Xn
i¼1

�ðyi � byi Þ2byi
�

(5)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Xn

i¼1

ðbyi � ymÞ2
n� i

!vuut (6)

y and ŷ represent the experimental and predicted activity for each
compound in the training set, ym denotes the mean of the experi-
mental activities, and n is the number of molecules in the study
compounds.

Since the real predictive ability of a QSAR model cannot be judged
or guaranteed solely base on internal validation [29], so the only way
to establish the true predictivity of a model is to compare the predicted
and observed activities of the external test set of compounds that were
not employed in the model building [30], hence, external validation
using test set data becomes a sine qua non to ascertain quality assur-
ance and predictive power of the model. Therefore, the predicted R2

ext
(external validation) of the model is computed by using the Equation
(7) below.

R2
ext ¼ 1 �

P ½w� T �2P ðT � XÞ2 (7)

W and T symbolize predicted and observed activity values respec-
tively of the test set compounds and X indicates the mean activity value of
the training set.



Figure 1. 3D chemical structure of ligand 30 with the highest experimental
activity (pKi ¼ 9.51).

Figure 2. A plot of experimental pKi against predicted pKi (Training set &
Test set).
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2.6.2. Prediction analysis
Bias-Variance Estimator software that uses bootstrapping as a

resampling technique obtained from DTC lab website was engaged to
examine the prediction error analysis which depends on bias-variance
estimation evaluate the role of both the prediction errors, that is, sys-
tematic error (bias) and random error (variance) in the developed model
[34]. The parameters bias2, variance and mean square error (MSE) were
computed by using equations 8a-d below;

Bias2 ¼ 1
nc

Xnc

i¼1

�
y predðiÞ � yexpðiÞ

�2 8a

Y
B
PredðiÞ ¼

PnB
j¼i yBðjÞPredðiÞ
nB

8b

Variance¼ 1
nc

Xnc

i¼1

1
nB

Xnc

j¼1

�
yBðjÞPredðiÞ � byBPredðiÞ�2 8c

MSE¼
Xnc

i¼1

�
yexpðiÞ � ypredðiÞ

�2
nc

8d

Where nc ¼ number of compounds in the test set, yexp(i) ¼ experimental

response value of the compound ‘i’, byB
PredðiÞ¼ mean predicted response

value of compound ‘i’ from ‘nB’ bootstrap models, yBðjÞPredðiÞ ¼ predicted

response value of compound i from the bootstrap model ‘j’, nB ¼ number
of bootstrapping models produced, ypred ðiÞ ¼ predicted response of
compound i from the model.

2.6.3. Evaluating applicability domain of the model
Assessing the applicability region of a model is a crucial procedure in

establishing the ability of the developed model weather it can make a
reliable prediction within the chemical region or otherwise for which the
model was built [23, 35]. For evaluating the applicability domain of the
model, both the leverage approach and Euclidean Based Applicability
Domain methods were adopted in this study.

The leverage of a given data set of compounds hi, can be defined
mathematically as;

Hi ¼ xiðXTXÞ�1XT
i (9)

where xi the descriptor row is the vector of the considered compound i, hi
is the n x k descriptor matrix of the training set compound used to
generate the model.

The warning leverage (h*) is the limit of normal values of x outliers
which can be estimated by the Equation (10) below;

h* ¼ 3ðpþ 1Þ
n

(10)
4

where n is the number of training compounds and P represents the
number of predictor variables in the model.

A developed model is adjudged to be reliably predicted if the leverage
hi < h* for the investigated compounds. The significance area of the
model in terms of chemical space is visualized by Williams's plot
(Figure 4: plot of standardized residuals versus leverage values) (see
Figure 1).

While the Euclidian distance is expressed mathematically as;

EDij¼
h
Σwk

�
xik � xjk

�2i1=2
11

The difference, xi
k� xj

k represents the distance of the test set com-
pounds from the training set compounds and wk is a weighted vector
corresponding to the importance of the kth descriptor in the model
calculated using auto-scaled descriptors, xi

k and xj
k represent compounds

from the test set and training set respectively [36]. The weighting makes
it possible to account for the relative contribution of each variable to the
similarity and improves the detection of the AD of the model [37].
Computed chemometric validation parameters [30, 38, 39] of the
developed model are reported accordingly.

Model 1:

pKi ¼ 2.534084591a þ14.767585116b þ 3.144595958c - 13.880313054d -
4.924640371eþ 6.463616422 12

n ¼ 34, Friedman LOF ¼ 1.072, R2 ¼ 0.802, R2adj. ¼ 0.767, Q2 ¼
0.693, F-value ¼ 22.691, Min. expt. error for non-significant LOF (95) ¼
0.406.

Using the formula in Equation (7), the predicted R2 value for the test
set is calculated as follows;

R2
ext ¼ 1�

P ½w� T �2P ðT � XÞ2 ¼ 1� 2:511
10:804

¼ 0:770

2.6.4. Molecular docking analysis
Molecular docking analysis was investigated on the studied com-

pounds to elucidate the molecular interactions between the target (re-
ceptor) and the inhibitors (ligands) and also to visualize binding
interactions as well as to identify the inhibitors with the best binding
affinity to the receptor. The X-ray structure of dopamine transporter
elucidates the antidepressant mechanism (receptor) obtained from Pro-
tein Data Bank (www.rcsb.org) with PDB code 4M48 [40] was used for
this investigation. 2D structure of the ligands (Dopamine Transporter
Inhibitors) were optimized and saved as PDB files (prepared ligands)
using Spartan 14V 1.1.4 software [23]. Also, the receptor was prepared
by importing the 3D crystal structure of the receptor (Dopamine

http://www.rcsb.org


Figure 3. A plot of standardized residual against predicted pKi of the com-
pounds (Training set).
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transporter elucidates antidepressant mechanism) downloaded from
Protein Data Bank into Discovery Studio Visualizer for the addition of
Hydrogen and removal of a water molecule, heteroatoms and co-ligands
from the raw receptor and consequently saved as PDB file (prepared
receptor).

The molecular docking analysis was successfully carried out by using
AutoDock Vina version 4.0 of Pyrex software [23]. The results of docking
investigations were computed, analyzed and visualized via Discovery
Studio Visualizer software.

3. Results and discussion

3.1. Chemoinformatic investigation and validations of the model

The best model (Model 1) was selected as the optimal model because
of its statistically significant output in predicting the antipsychotic ac-
tivity of the studied compounds vis-a-vis the validation parameters. The
details of the descriptors that appeared in the model are presented in
Table 3. The optimal model proves to be in excellent agreement with the
threshold for a generally acceptable model as reported in Table 1 (R2 ¼
0.802, R2

adj ¼ 0.767, Q2 ¼ 0.693, R2
ext¼ 0.77). This suggests that the

optimal model is very predictive and reliable [24, 30]. Also, the plot of
predicted pKi against observed pKi as depicted in Figure 2 shows that the
model is well trained and correctly predicted the antipsychotic activity of
the compounds, an indication of goodness and stability of a model [38].
More so, the plot of observed pKi versus residual pKi (Figure 3) reveals
that there was no systemic error in the model developed as the propa-
gation of residuals was observed on both sides of zero [23] [41]. To es-
timate the extent of prediction errors, the bootstrapping resampling
technique was employed in developing 10000 bootstrap samples [34].
The goodness of the prediction of the model was further established by
Table 2. Prediction Reliability Indicator parameters of the model.

Test Comp
No

Score
(MAE-LOO)

Score (Proximity
Train YObs Mean)

Score (Similarity
based AD)

Composite
Score

Prediction
Quality

1 2 3 3 3 Good

17 1 3 3 2 Moderate

19 2 3 3 3 Good

23 2 3 3 3 Good

26 2 3 3 3 Good

34 2 3 3 3 Good

35 2 3 3 3 Good

37 2 3 3 3 Good

42 1 3 3 2 Moderate

43 1 3 3 2 Moderate

5

the low estimated values of bias, variance and mean square errors as
reported in Table 1. Error checking by applying Chi-squared (χ2) and
Root-mean squared error (RMSE) procedures were also evaluated as to
prove the predictive quality of the model reflected in the R2. The
chi-squared (0.026) and RMSE (0.448) values obtained (Table1) are in-
dications of a good predictivity of the model [30]. Also, to ascertain the
quality assurance of the bioinformatics parameters in the model, Pre-
diction Reliability Indicator 1.0 software was utilized [42]. The model
displayed good prediction quality for seven of the test compounds with
composite score 3 and moderate prediction for the remaining 3 com-
pounds with composite score 2, more so, all the test compounds were fell
within the region of Applicability domain while the values for the data
set were in closeness with the mean value of the training set molecules
(Table 2). Furthermore, to determine the possibility of multicollinearity
between the descriptors used in the model, the variance inflation factors
(VIF) of all the descriptors in the model were computed (Supplementary
Table SD5) using Equation (13). The corresponding VIF values of the five
descriptors used in the optimal model (Model 1) were less than the
critical value of 10, a good indication that the developed model is sta-
tistically significant, and the descriptors were found to be reasonably
orthogonal [23, 43].

VIF¼ 1
1� R2

(13)

where R2 is the correlation coefficient of the multiple regression between
the variables within the model.

More so, the inhibitory activity (pKi) of the experimental, predicted
and residual values of the studied compounds were reported in Supple-
mentary Table SD1. Lower residual value (differences between experi-
mental and predicted activity) obtained also substantiate the good
predictivity of the model. Likewise, the Y-Randomization test was
investigated to examine the robustness and determine the stability of the
model. The results presented in Supplementary Table SD4 showed a low
R2 and Q2 values which are in agreement with chemometric validation
Yobs
(Test)

YPred
(Test)

Abs Prediction
Error

Score (Abs
Prediction Error)

AD status Closest Training
Compound

7.602 7.067 0.535 2 In 2

8.585 8.792 0.207 3 In 40

8.42 8.536 0.116 3 In 18

6.64 7.148 0.508 2 In 24

6.24 6.398 0.158 3 In 24

9.08 9.134 0.054 3 In 38

9.46 9.014 0.446 3 In 30

8.36 8.264 0.096 3 In 36

8.469 7.911 0.558 2 In 5

8.854 7.686 1.168 1 In 29

Figure 4. A William's plot of standardized residual against leverage.



Figure 5. (a) 3D structure of the prepared receptor (b) Docking grid of ligand 21.

Table 3. Symbols and definition of the descriptors found in the model.

S/N Descriptor Notation Descriptor Symbol Definition

1 A ATS7m autocorrelation descriptor, weighted by scaled atomic mass

2 B MATS7s Moran autocorrelation - lag 7/weighted by van der Waals volumes

3 c VR2_Dzp Normalized Randic-like eigenvector-based index from Barysz matrix/weighted by polarizabilities

4 d RDF95m Radial distribution function - 095/weighted by relative mass

5 e RDF150p Radial distribution function - 150/weighted by relative polarizabilities

Table 4. External validation table for model 1.

S/N T W X (W-T)2 (T-X)2

1 7.602 7.067 7.84 0.286 0.057

2 8.585 8.792 7.84 0.0429 0.555

3 8.42 8.536 7.84 0.013 0.336

4 6.64 7.148 7.84 0.258 1.44

5 6.24 6.398 7.84 0.025 2.56

6 9.08 9.134 7.84 0.003 1.538

7 9.46 9.014 7.84 0.199 2.624

8 8.36 8.264 7.84 0.009 0.270

9 8.469 7.911 7.84 0.311 0.396

10 8.854 7.686 7.84 1.363 1.028P ¼ 2.511
P ¼ 10.804

Table 5. Pearson's correlation matrix for descriptors in Model 1.

pKi a B c d E % contribution

pKi 1

A 0.007555 1 5.5

B 0.432019 -0.22716 1 32.3

C 0.229263 0.354901 -0.03857 1 6.9

D -0.32413 0.462982 0.094501 0.163562 1 30.4

e -0.40256 0.265401 0.180475 0.071903 0.138036 1 10.8
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parameters reported in Table 1. This is an excellent indication that the
derived model is very robust, good and dynamic while its cRp̂2 value of
0.7137, a value greater than 0.5 further proved that the model is not only
inferred by chance but also very predictive [24, 44].

The applicability domain of the optimal model (model 1) was equally
investigated for the training set and test set using both Euclidean based
and Leverage approach procedures. The results (Supplementary
6

Table SD3 and Figure 4) revealed that all the compounds of the test set
fell within the applicability domain of the model. However, compounds
44 and 9 of the training set were identified as possible outliers in the two
procedures employed as their normalized mean distance scores as well as
their leverage values fell outside the domain (Supplementary Table SD2
and Figure 4) which could be considered as structural outliers (influential
compounds) (see Figure 5).



Table 6. Binding affinity, RMSD values, amino acid residues, bond distance, type of bonds and type of interactions of the selected ligands.

Ligands no Binding affinity (kcal/mol) Activity pKi RMSD value Amino acids Bond distance Type of bond Type of interaction

21 -10.05 8.05 1.626 TYR123, VAL120 2.07297 Hydrogen Bond Conventional Hydrogen Bond

VAL126, TYR123 2.32725 Hydrogen Bond Conventional Hydrogen Bond

LEU474; ASP475; TYR123 4.02085 Hydrophobic Amide-Pi Stacked

TYR123; VAL120 4.7985 Hydrophobic Pi-Alkyl

TYR123 LEU474 5.34773 Hydrophobic Pi-Alkyl

39 -9.95 9.28 1.749 ARG52 2.17082 Hydrogen Bond Conventional Hydrogen Bond

ARG52 2.35234 Hydrogen Bond Conventional Hydrogen Bond

PHE319 3.90232 Hydrophobic Pi-Pi Stacked

PHE319 3.93778 Hydrophobic Pi-Pi Stacked

ALA117 3.40983 Hydrophobic Alkyl

ALA428 4.25202 Hydrophobic Alkyl

VAL327 4.32679 Hydrophobic Alkyl

ALA117 5.1901 Hydrophobic Pi-Alkyl

VAL120 4.33937 Hydrophobic Pi-Alkyl

1 -9.5 7.602 1.229 SER421 2.84844 Hydrogen Bond Conventional Hydrogen Bond

ASP46 2.98415 Hydrogen Bond Conventional Hydrogen Bond

ASP46 3.72532 Electrostatic Pi-Anion

ILE116 3.68729 Hydrophobic Pi-Sigma

TYR124 5.0905 Hydrophobic Pi-Pi Stacked

PHE325 4.28117 Hydrophobic Pi-Pi Stacked

TYR124 4.67821 Hydrophobic Pi-Pi Stacked

ALA117 5.47755 Hydrophobic Pi-Alkyl

VAL120 4.60622 Hydrophobic Pi-Alkyl

ALA479 4.59896 Hydrophobic Pi-Alkyl

ILE483 4.94668 Hydrophobic Pi-Alkyl

28 -9 9.30 1.853 ASP46 2.63847 Hydrogen Bond Conventional Hydrogen Bond

PHE43 2.70853 Hydrogen Bond Conventional Hydrogen Bond

SER320 2.98218 Hydrogen Bond Conventional Hydrogen Bond

ALA44 3.29041 Hydrogen Bond Carbon Hydrogen Bond

SER320 3.44795 Hydrogen Bond Carbon Hydrogen Bond

PHE43 2.70512 Hydrogen Bond Pi-Donor Hydrogen Bond

PHE325 4.84644 Hydrophobic Pi-Pi T-shaped

ALA117 4.76375 Hydrophobic Pi-Alkyl

VAL120 4.83084 Hydrophobic Pi-Alkyl

Figure 6. 2D and 3D molecular interaction for Complex 28.
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Figure 7. H-bond and Hydrophobic molecular interactions between ligand 28 and the receptor.
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3.2. Mechanistic interpretation and elucidation of descriptors in the model

The bioinformatics analysis result revealed that the antipsychotic
activity of the studied compounds is influenced by the descriptors;
ATS7m, MATS7s,VR2_Dzp, RDF95m and RDF150 denoted as a,b,c,d and
e respectively in Table 3. Since pKi¼ -log10[pKi], the positive coefficients
of the descriptors; a, b, and c imply that the pKi of the compounds against
DAT decreases with an increase in values of these descriptors. Thus, to
enhance the antipsychotic activity of these compounds, the values of
these descriptors should be appreciably high since the activity is
inversely proportional to the concentration. Conversely, the descriptors;
d and e have negative coefficients as depicted in the model (Equation
(12)) (see Table 4). It suggests that the inhibitory activity (pKi) of the
ligands decreases with a decrease in the values of these descriptors.
Hence, to enhance the inhibitory potency of DAT, the values of these
descriptors should be significantly low. More so, Pearson's correlation
matrix was employed to examine the inter-correlation among the de-
scriptors of the model and also the percentage contribution of the de-
scriptors to the observed antipsychotic activities of the compounds was
also determined (Table 5). The fact that the obtained results for Pearson
correlation coefficients for each pair of descriptors were less than 0.5, is a
clear indication of insignificant inter-correlation among the descriptors
in the model [23]. The descriptors MATS7s and RDF95m displayed a
predominant effect (32% and 30.4% respectively) on the observed
antipsychotic activity of the compounds. Descriptor MATS7s is a
descriptor of molecular volume and is defined as Moran autocorrelation
weighted by van der Waals volumes. Van der Waal volume is the volume
occupied by a molecule or individual atoms of a molecule. Its positive
correlation with pKi in the model implies that the higher the descriptor
value in a molecule, the lesser the pKi of the molecule and the better its
inhibitory activity against the target protein (receptor). Likewise, the
descriptor RDF95m is a descriptor of molecular mass and is also defined
as a Radial distribution function weighted by relative mass. The negative
correlation of the descriptor with pKi in the optimal model shows that the
lower its value in a molecule, the lesser the pKi of the molecule and the
better the inhibitory activity against the receptor.
3.3. Result of molecular docking analysis

Molecular docking analysis was performed on the receptor (protein
crystal structure of dopamine transporter elucidates antidepressant
mechanism, PDB code 4M48) and the inhibitors (ligands) to elucidate the
molecular interactions between the target protein (receptor) and the
inhibitors and also to evaluate the performance of Docking Algorithms
used in the study. Computed binding affinity (docking scores) of all the
8

complexes which range from -3.9 to -10.05 kcal/mol and their corre-
sponding RMSD values when docking the ligands into the active site of
the receptor were contained in Supplementary Table SD1. Some of the
selected ligands (1, 21, 28 and 39) of higher binding affinity (-9.0 to
-10.05 kcal/mol) and their experimental activity, RMSD values, amino
acid residues, bond distance, bond type as well as the type of molecular
interactions were presented in Table 6. On visualizing the complexes by
using the discovery studio visualizer 2016 version in other to elucidate
the type of molecular interactions and binding mode, our findings
showed that all the ligands were strongly bounded and fully occupy the
active site of the receptor with the formation of major interactions
(hydrogen bond, hydrophobic and electrostatic interactions) as reported
in Table 6. Ligand 21 with highest docking score (-10.05 kcal/mol)
showed two distinct interactions (Hydrogen bond and hydrophobic in-
teractions) with the hydrogen bonding pocket consisting of amino acid
residues; TYR123 (2.073 Å), VAL120 (2.073 Å), TRY123 (2.327 Å) and
VAL126 (2.327 Å) while the hydrophobic pockets were surrounded by
LEU474, ASP475, TYR123 and VAL120 (amino acid residues) of the
target protein. More so, all the selected ligands displayed hydrophobic
interactions with amino acid residue VAL120 common to all the selected
complexes and the selected complexes have a computed RMSD value �
2Å, this implies a successful and an excellent docking predictions [45].
Figure 6 depicts 2D and 3D molecular interactions of the ligand 28 while
Figure 7 shows the hydrogen bond and hydrophobic interactions when
the ligand occupied the active site of the target protein (PDB: 4M48).
Ligand 28 revealed two significant interactions (Hydrogen bond and
hydrophobic) with the formation of the highest number of hydrogen
bonds (6 hydrogen bonds) among the selected ligands. The complex (28)
formed three (3) Conventional Hydrogen Bonds, two (2) Carbon
Hydrogen Bonds and one (1) Pi-Donor Hydrogen Bond surrounded by
amino acid residues (ASP46, PHE43, SER320, ALA44, SER320 and
PHE43) and with hydrophobic interactions (1 Pi-Pi T-shaped and 2
Pi-Alkyl) surrounded by the amino acid residues (PHE325, ALA117 and
VAL120) in the active site of the target protein (Table 6). The observed
higher number of hydrogen bonds formed by the complex 28 compare to
other selected ligands may inform its higher inhibitory value (pKi¼ 9.30)
of the ligand. The observed hydrogen bond, as well as hydrophobic in-
teractions in the complexes, suggests that the selected ligands are potent
inhibitor against the target protein (PDB: 4M48).

4. Conclusion

Chemoinformatic studies were successfully investigated on some in-
hibitors of Dopamine Transporter (DAT) to develop a predictive, reliable
and statistically significant model. The results showed that the model
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passed the minimum requirements for a globally acceptable QSAR model
(R2 ¼ 0.802, R2adj ¼ 0.767, Q2

cv ¼ 0.693, R2
Test ¼ 0.77 and cR2p ¼

0.714). The mechanistic interpretation and elucidation of the descriptors
in the model also revealed that two of the molecular descriptors; MATS7s
(32.3%) (Moran autocorrelation weighted by van der Waals volumes)
and RDF95m (30.4%) (Radial distribution function weighted by relative
mass) played predominant roles in the observed anti-psychotic activities
of the studied compounds, this implies that in the future design of a novel
and highly potent antipsychotic agents, the molecular volume of a
compound should be appreciably high while its molecular mass should
be significantly low. More so, the predictivity, reliability, stability,
robustness, and applicability of the QSARmodel were established and the
developed model proved to satisfy the OECD principle for a QSAR model
development. Furthermore, in elucidating the molecular interactions
between the inhibitors and the receptor (PDB:4M48) targeting schizo-
phrenia via Molecular dockings analysis, our findings showed that the
study molecules had excellent binding affinities (ranges from-3.9 to
-10.05kcl/mol), good docking predictions (RMSD � 2Å) and very sig-
nificant interactions with the protein target. Likewise, ligand 28 (3-
phenoxy-N-(2-(m-tolyloxy)ethyl)propan-1-aminium) with the highest
experimental activity (pKi¼ 9.30) exhibited the highest number of
hydrogen bonds when compared to other selected ligands. Hence, the
obtained results from this study are envisaged to provide necessary in-
formation on the structural requirements and physicochemical parame-
ters/ properties needed to develop novel and more potent antipsychotic
therapeutic agents with improved activity for the treatment of schizo-
phrenia and other related mental disorders.
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