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Abstract: Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and
phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program,
as they provide substantial dividends per unit time in both pre-breeding and breeding phases.
Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This
review provides a comprehensive overview of the established omics methods in five major cereals,
namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in
each omics section independently and concentrate on their use to improve economically important
agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification,
mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to
study gene expression patterns; (3) global and targeted proteome profiling to study protein structure
and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and
their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are
surveyed in this review.

Keywords: cereals; omics; genomics; transcriptomics; proteomics; metabolomics; phenomics

1. Introduction

Our better understanding of the genetic and molecular principles in major cereal
crops, including rice (Oryza sativa L.), sorghum (Sorghum bicolor L.), maize (Zea mays L.),
barley (Hordeum vulgare L.), and bread wheat (Triticum aestivum L.), have resulted in a
continuous growth in their production (https://www.fao.org; accessed 13 August 2021).
The genetic gain in cereal crops can be ascribed to their superior breeding as well as
agronomic and crop-protection management practices. Omics as a set of technologies
that encompass genomics, transcriptomics, proteomics, metabolomics, and, most recently,
phenomics has contributed fundamentally to the breeding part. As summarized in Figure 1,
the use of omics has led to extensive data production and, consequently, enhanced our
understanding of the (1) morphology and growth patterns, (2) genetical underpinnings
of various qualitative and quantitative traits, (3) the expression of different genes, and (4)
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mechanisms as to how the complex interactions among genes, proteins, and metabolites
contribute to the resulting phenotype.
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Omics applications—because they often result in the production of massive data
points—have also resulted in advancement of analytical tools, large-scale computational
facilities, and high-throughput data analyses pipelines [1]. From a purely applied breeding
standpoint, the use of omics has and continues to contribute to (1) increased genetic
gain and (2) shortened life of a breeding cycle. For example, the use of high-throughput
phenotyping and genotyping platforms contribute not only to higher accuracy of the
genetic mapping of valuable traits but also predicted genetic/breeding values of the cereal
crops. The use of marker-assisted or genome-wide selection thus results in improving the
breeding pipelines. On the other hand, transcriptomic, proteomic, and metabolomic data
inform us about the expression patterns and protein profiling of the identified loci as well
the metabolic pathways of the genes.

Here, with the objective to provide the reader an overview of the omics technologies
and their uses, we summarize five different omics technologies. In every omics section,
we provide background as well as summarize the cutting-edge techniques/platforms. We
concentrate on five leading above-mentioned cereal crops and give a general overview as
to how these technologies have helped in addressing some abiotic and biotic stresses.

2. Cereal Genomics: Evolution from Sparse Genetic Markers to Whole-Genome
Sequencing

Identification of molecular markers—the observable polymorphisms within a given
DNA sequence among the individuals of a population—laid the foundations of modern
genomics. In the 1980s, the detection of restriction fragment-length polymorphisms (RFLPs)
and their subsequent association with several agronomically important traits forecasted the
promises of genomics to improve the genetic gain per unit time. Later, many other marker
systems—most notably microsatellite or simple sequence repeats (SSRs)—were used to map
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the quantitative trait loci (QTL). Nevertheless, albeit an excellent use of SSRs in applied
breeding, these systems were time and cost inefficient and low throughput. For example,
the first SSR map of bread wheat harbored only 279 loci [2]. Most economically important
traits, for example, grain yield, disease resistance, and grain protein content, are polygenic,
i.e., they are controlled by the concerted action of several small- to medium-effect genetic
loci [3]. Therefore, sparse genetic-linkage maps harboring a limited number of genetic loci
become inefficient for improving highly complex or quantitative traits mainly because of
the absence of trait-linked loci.

Detection of single nucleotide polymorphisms (SNPs)—the smallest unit of DNA
polymorphism—provides an opportunity to survey virtually millions of sites within the
DNA of a species. Thus, it has become a choice marker platform. High throughput, high
efficiency, reproducibility, and low cost per data point of SNPs have enabled large-scale
germplasm evaluations in many cereal crops and, consequently, have resulted in the
almost complete replacement of RFLPs or SSRs [4]. Major methods for SNP detection in
cereals include array-based genotyping and genotyping by sequencing. Several sequencing
technologies are available for both forms of SNP detection [4]. Thus, high-density SNP
genotyping is invaluable for identifying the genetic underpinning of economically relevant
traits and laying the foundation of whole-genome sequencing (WGS).

While WGS for hundreds of animal species had already been reported, it is only
recently that the genomes of major cereal crops were fully sequenced (available online at
NCBI [5]). The technological innovations coupled with international collaborative consortia
efforts have led to the construction of cereal genome assemblies that may be used for several
applied genetic purposes, such as genome-wide scans for genes controlling important traits.
However, sequencing the cereal genomes has been challenging mainly because of their
large sizes and abundance of repetitive sequences [6]. Three of the major cereals, namely
rice, sorghum, and maize, have been very well-sequenced using various technologies—the
foremost reason being their diploid nature and small genomes. For example, primarily
because of limited genome size and diploid nature, rice became a model choice for the WGS,
and in 2002, working genome drafts of domesticated rice subspecies (ssp. japonica and
indica) were published [7,8]. Following rice, seven years later, sorghum and maize genomes
were published [9,10]. Barley and bread wheat—among the most important members of
the Triticieae tribe—were difficult to sequence mainly because of their large genome sizes
(Figure 2a,b). The first draft assembly of barley (cultivar Morex) was assembled based
on genome-zipper, whole-genome shotgun contigs, and bacterial artificial chromosomes
(BAC) clones [11]. Bread wheat genome assembly was complicated primarily because
of its complex polyploid nature with many chromosomal duplications, rearrangement,
and the presence of a high percentage of repetitive sequence (~80%) [12]. In 2014, the
first wheat genome draft assembly based on chromosome-sorted whole-genome shotgun
sequences was released by the IWGSC [12]. More recently, in 2018, IWGSC released a
reference sequence of wheat cultivar Chinese spring (RefSeq v1.0). The RefSeq v1.0 resulted
in 94% coverage of the wheat genome and contained 107,981 high-confidence gene models
that could be used for constructing complex gene networks and pathways [13].

2.1. Genome Sequencing Technologies

Sequencing technologies have emerged to reveal the valuable information hidden
in plant genomes. First-generation sequencing technologies, e.g., Sanger sequencing
and Maxam–Gilbert chemical cleavage, marked the start of the genomic era. Sanger
sequencing remains beneficial to date, especially where high-throughput sequencing is
not required, such as verifying the plasmid construct or a PCR product. Nevertheless, the
need for high-throughput information for the large plant genomes at lower cost triggered
the development of the second-generation sequencing technologies that can be grouped
into two categories, namely sequencing by hybridization and sequencing by synthesis.
Examples of the second-generation sequencing technologies include 454 Pyrosequencing,
Ion Torrent, and Illumina Tech. Both first- and second-generation sequencing technologies
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generate short-reads ranging from 50 to 1000 bp fragments, making them suitable for
resequencing projects, SNP calling, and targeted sequencing of the short amplicons.
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Short-read sequencing is, however, not suitable for large-scale projects: this neces-
sitated third-generation platforms, such as large fragment single-molecule technologies.
The third-generation sequencing platforms include PacBio (or single molecular real-time;
SMRT) and Oxford Nanopore sequencing. In principle, both short- and long-read technolo-
gies can be used for genome assembly. However, the short-read technologies usually lead
to incomplete assemblies (draft) and, hence, missed sequencing, loss of gene information,
and reduction in the accuracy of the downstream analyses, such as detection of structural
variations (SVs) [14]. Highly accurate long reads, on the other hand, generate overlapping
sequences that (1) allow generation of complete genome assemblies, (2) span large struc-
tural variations, and (3) sequence extreme GC regions that otherwise cannot be sequenced
with the short-read sequencing technologies. These next-generation sequencing (NGS)
platforms aid in resequencing as well as de novo genome assembly that can be used to find
genomic variants either by aligning the draft genome to a reference genome or assembling
a new genome sequence from the overlapping reads.

Nonetheless, the long-read sequencing by both PacBio and Oxford Nanopore tech-
nologies produces reads that are still not sufficient to cover some large, repetitive, and
complex genomic regions. To overcome the assembly problems, Hi-C sequencing and
optical mapping can be used. Hi-C is a recent version of the chromosome conformation
capture (3C) with NGS techniques. The 3C technology was adopted in plants in 2009. In
Hi-C technique, the contact probability of the two loci that are closer in the 3D-nuclei space
is higher compared to the loci that are far from each other. By using the Hi-C principle,
physical mapping data was generated in wheat and barley that was utilized for genome
assembly projects [15]. The methodology advancement led to chromosome conformation
capture on chip (4C) and chromosome conformation capture carbon copy (5C) technologies.
Tethered chromosome conformation capture (TCC), capture Hi-C, in situ Hi-C, and single-
cell Hi-C are variants of the Hi-C technology developed to enhance the signal to noise
ratio [15]. Even though the cost of Hi-C is low, the technology suffers from sequencing
biases that make it error prone. Moreover, Hi-C can also lead to misassemblies, such as
scaffold misplacement and false inversions.

In contrast to Hi-C, a light microscope-based technology is used in optical mapping to
physically locate specific enzyme or sequence motif. These enzymes and motives are then
used to produce DNA sequence fingerprints. The DNA molecule is fluorescently labelled
by selected enzymes, and later on, the optical maps are produced using the images of the
fluorescent signal patterns from the labelled enzymes. Generally, the optical map is larger
than the reads produced by both short- and long-read sequencing techniques, and the

https://phytozome-next.jgi.doe.gov/
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average molecular length of an optical map is ~225 kb. Therefore, these optical maps span
genomic regions that are challenging to resolve by other DNA sequencing technologies
and are used for genome assembly improvement, to identify large SVs, and in haplotype
phasing [16]. Most recently, optical mapping was used to refine the assembly of the wheat
genome by producing RefSeq v2.1 [17].

2.2. Types of Genomic Variants: Applications in Genetics and Breeding

Every applied plant breeding program’s success hinges on artificial selection—a
process that involves the selection, preservation, and propagation of plants possessing the
most desirable characters from a diverse population. Artificial selection is determined by
the considerable genotypic variation in a population that results in the high heritability
of the traits under selection. Variation and, in this case, genotypic variation is a type of
variation that is directly ascribed to the genetic differences among individuals of a given
population. Therefore, genomics can help to improve crops because it assesses the genetic
or genomic polymorphisms among individuals.

Differences in the plant species arise from SNPs to larger SVs within its genome. These
SVs include insertions, deletions, copy number variations (CNVs), and many more. Some
of these variants are described below as well as in Figure 2c.

2.2.1. Single Nucleotide Polymorphisms

With high-throughput and cost-effective sequencing, it is relatively easier to discover
millions of SNPs in a plant species. SNPs are frequently found in the genomes and primarily
lay the foundations of the genetic diversity among individuals of a given population. Both
coding and non-coding regions of the genome can harbor SNPs that can consequently alter
the expression profile. Therefore, uncovering the functional SNPs in gene/s and finding
their effects on the phenotype can help to understand the gene function and, subsequently,
its product.

Rice—along with other cereals—presents one example to showcase SNPs’ abundant
nature. Approximately 20 million SNPs were discovered by aligning the sequences of
~3000 rice genomes against the Nipponbare reference sequence [18]. SNPs’ use in cereal
breeding programs is indisputable where high-density genotyping resulted in associations
of SNPs with several traits of central agronomic value via linkage mapping and genome-
wide association studies (GWAS; described later in this section). In sorghum, a large SNP
database SorGDS is available that can be exploited for genetic studies [19]. Similarly, barley
tool BRIDGE can be exploited for SNP discovery [20]. Recently, Sun et al. [21] presented a
comparison of different wheat arrays for SNP discovery.

2.2.2. Variants Apart from SNPs

While SNPs are an essential source for identifying and mapping traits of interests,
studies show that “only” SNPs do not represent all the genomic variation that contributes
to the resulting phenotype, and therefore, other variants, for example, SVs—that may be
up to 1-kb long—play an essential role as well. Inversion, translocation, deletion, insertion,
and CNVs all come under the umbrella of SVs. Maize is the first cereal in which hundreds
of SVs were identified. However, later, this number was found to be underestimated, and
efforts were initiated to discover more SVs among higher eukaryotes.

The studies of SVs were recently accelerated in the crop plants primarily due to the
reference genome sequence generation. Based on the sequence similarity at the DNA break-
points, SVs are formed mainly by two mechanisms: non-homologous end-joining (NHEJ)
and non-allelic homologous recombination (NAHR) [22]. Apart from these mechanisms,
transposons also generate SVs. In general, SVs can be detected mainly by three methods: (1)
re-sequencing, (2) the de novo assembly, and (3) the pangenome assemblies. The resequenc-
ing approach mainly identifies CNVs and presence-absence variations (PAVs), whereas the
de novo approach—along with CNVs and PAVs—also identifies inversions. Nevertheless,
the resequencing approach remains the preferred approach to detect the SVs due to its low
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cost and lack of de novo assembly generation for each variety under investigation. The
CNVs arise from the unbalanced DNA modifications that lead to the variable number of
copies of a specific DNA sequence [23]. CNVs may vary from 1- kb to several Mbs. Studies
show that, along with SNPs and InDels, CNVs are key contributors to intra-species genetic
variation. The PAVs can be considered as the extreme form of the CNVs. In PAV, a genomic
sequence is present in one individual and absent from the other. In the past few years,
SVs affect several traits in different cereals. For instance, 17.1-kb tandem duplication of
GL7 locus in rice leads to an increase in the grain size [24], CNVs of Vrn-A1 and Ppd-B1
affect the flowering time in wheat [25], a 7-bp deletion on HvGA20ox2 gene reduces the
plant height and delay flowering time in barley [26], and a complex tandem repeat array
inserted upstream of the mlo-11 locus confers resistance to powdery mildew in barley [27].

2.3. Genetic Mapping

Several statistical methods can be employed to link the polymorphism to the traits
under investigation—most common of which are regression analyses. In cereal crops, poly-
morphisms or variations among individuals can be (1) artificially generated via crossing
different parents and (2) surveyed in a natural population consisting of a set of elite lines,
or gene bank accessions, etc. In the following, we provide the most common methods to
link the genetic polymorphisms to the traits under investigation.

2.3.1. Genome-Wide Linkage Mapping

Genome-wide linkage mapping (GWLM) refers to mapping the QTL in mostly ar-
tificially created segregating populations. Many traits of economic importance, such as
grain yield, stress tolerance, and disease resistance, are of quantitative nature [3]. There-
fore, segregating populations harboring virtually hundreds of individuals are required to
dissect the genetic nature of a quantitative trait. Different types of segregating populations,
such as F2 population, recombinant inbred lines (RILs), doubled haploid (DH) population,
heterogeneous inbred family (HIF), near-isogenic lines (NILs), advanced intercross recom-
binant inbred lines (AI-RIL), backcross inbred lines, and multiparent advanced generation
intercross (MAGIC), are developed based mainly on the available resources and research
objectives. These segregating populations are mainly based on crosses between contrasting
parents, resulting in a limited genetic diversity. GWLM is the most commonly used method
to detect genes underlying essential traits. Nevertheless, resources and time to develop
these mapping populations coupled with a narrow genetic base plus low allelic richness
and mapping resolution are some drawbacks of GWLM.

2.3.2. Genome-Wide Association Studies

Genome-wide association studies (GWAS) take advantage of the long history of
recombination events in the diverse natural population to dissect the genetic nature of a
trait. The use of natural population overcomes the constraints of the GWLM as it increases
the mapping resolution and reduces the research time [28]. GWAS was initially used to
study the complex traits in humans, and then, it was adopted for animals and some model
organisms. In the last decades, with the improvements in genotyping techniques, decreased
cost of sequencing, and robust statistical methods, researchers have adopted the GWAS for
dissecting the genetic architecture of complex traits in plants. GWAS identifies marker-trait
associations (MTA) that can be attributed to the strength of linkage disequilibrium (LD)
between polymorphic markers across a set of diverse germplasm. In a nutshell, GWAS
analysis is performed to evaluate each genotyped marker’s association with a trait of
interest that has been scored across a diverse natural population. GWAS analysis can be
used to study both qualitative and quantitative traits. Several aspects must be considered
for starting the research, such as selection of genotyping platform, sample or population
size and structure, statistical analyses, and correction for multiple testing (e.g., Bonferroni
correction, false discovery rate, etc.). Although not an exhaustive list, Table 1 enlists the



Plants 2021, 10, 1989 7 of 34

use of GWLM, GWAS, or both for some agronomically important traits for cereal crop
improvement in the last few years.

Table 1. Examples of some traits studied via genome-wide linkage mapping (GWLM) and genome-wide association studies
(GWAS) in five major cereals.

Crop Mapping Method Trait or Gene Studied Reference

Rice GWLM and GWAS Seed vigor [29]
Rice GWLM and GWAS Bacterial blight-resistant gene, Xa43(t) [30]
Rice GWLM and GWAS Grain shape and grain weight [31]
Rice GWAS Plant architecture [32]
Rice GWAS Salt tolerance, OsSTL1 and OsSTL2 [33]

Wheat GWLM Plant height and yield [34]
Wheat GWLM Grain shape and size [35]
Wheat GWLM Reduced plant height gene, Rht24 [36]

Wheat GWAS Floret fertility, assimilate partitioning,
and spike morphology traits [37]

Wheat GWAS Total spikelet number [38]

Maize GWLM Resistance to northern leaf blight [39]
Maize GWLM and GWAS Plant and ear height [40]
Maize GWLM and GWAS Male inflorescence size [41]
Maize GWAS Lipid biosynthesis [42]
Maize GWAS Root morphology traits [43]

Barley GWLM Plant height [44]
Barley GWLM Awn length [45]
Barley GWAS Photoperiod response [46]
Barley GWAS Nitrogen use efficiency [47]
Barley GWAS Spikelet number and grain yield [48]

Sorghum GWLM Plant height, node number, panicle length, flag leaf length,
and flag leaf width [49]

Sorghum GWLM and GWAS Grain quality traits [50]

Sorghum GWAS Plant architecture traits (e.g., tiller number,
panicle length, seed number, internode length) [51]

Sorghum GWAS Kernel composition [52]
Sorghum GWAS Grain size [53]

2.4. The Study of Species-Level Variations via Pangenomes

The pangenome aims to discover genic PAVs within a species [54]. A pangenome
contains a core genome, i.e., genomic sequences present in all the individuals of a species
and a variable genome, i.e., genomic sequences present in some individuals. The first
step to establish a pangenome in any crop species is selecting a diverse set of genotypes,
including domesticated and wild progenitors, for sequence assembly. It is also wise to
choose genotypes of high breeding or genetic value to increase the pangenome’s importance
for future breeding programs. Genotypes belonging to secondary and tertiary gene pools
of a particular species are added to form a genus-level pangenome. The reference-quality
genomes are then generated for the small set of accessions and aligned to a reference
genome to detect the SVs. The k-mers present in the SVs are extracted and determined
in the form of short-read data from a diversity panel to genotype the underlying SVs,
and the matrices of the k-mers count are used as biallelic markers for the GWLM or
GWAS [55]. Pangenome has already been established in various cereal crops, such as
rice [56], wheat [57], and barley [54]. For example, a pangenome of 20 assemblies was
constructed in barley, single-copy k-mers from the structural variants in these 20 assemblies
were detected, and a k-mer abundance matrix was used to perform the GWAS for lemma
adherence [54].
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2.5. Challenges and Prospects in Crop Genomics

In the past, WGS efforts were hindered mainly by the (1) extensive and repetitive
genome sequences of the cereals and (2) the absence of current technologies and algorithms
that are robust and exact in generating and assembling the large and correct sequences.
Therefore, this has perhaps been the most crucial reason why considerable international
consortia efforts were required. Although large-scale genome sequence production and
assembling are currently costly, with continuous innovation in technologies, future large-
scale, reference-quality genome assemblies will be easier mainly because of the small cost-
outcome differential. It can be safely speculated that the construction of genome assemblies
will continue to the point where the difference between whole-genome genotyping and
WGS will be negligible [6]. With the improvements in sequencing and computing facilities,
the production per unit of input will be improved, which will be beneficial for cereal
geneticists and breeders. As described elsewhere, robust QTL mapping and gene cloning
hinge on dense genetic/physical maps’ availability. Advances in genomics will help in fast
and accurate mapping of the traits. Additionally, with the availability of the dense marker
information, the methods of prediction of genotypic or breeding value will become more
efficient to improve the genetic gains per unit time and cost.

3. Cereal Transcriptomics

Genomics provide details about the genetic content and existing variation of an
organism. However, genomics does not inform about the portion of the expressed genome
and level to which a gene is expressed. It is important to note that only 1–2% of the
genome of an organism is expressed that encodes for functional or regulatory proteins. The
extensive study of this expressed genome is provided by transcriptomics that measures the
expression of genes in an organism in different conditions, tissues (spatial transcriptome)
and time points (temporal transcriptome).

3.1. Transcriptomics Techniques

The first attempt to study RNA transcripts was made in the 1970s, when mRNA
libraries of silk moths were converted to cDNA using reverse transcriptase [58]. Later, in
the 1980s, Sanger sequencing was used to sequence the RNA transcripts, called Expressed
Sequence Tags (ESTs) [59]. EST was used as a technique to determine the gene content
of an organism. Later, RNA transcript quantification was also performed using various
techniques, such as northern blotting and qRT-PCR [60]. However, these techniques do not
cover the entire transcriptome but only a small part of it. In 1995, the first method developed
and used for transcriptomics was sequencing-based and wascalled Serial Analysis of Gene
Expression (SAGE) [61].

SAGE methodology involves preparing a short sequence tag (10–14 bp) from each
transcript’s unique position which can be used to identify the transcript. Sequence tags
are linked together to form long serial molecules: these molecules are then cloned and
sequenced. To check the expression of a specific gene, a total number of tags are counted.
Quantification of a particular tag provides the expression level of the corresponding
gene. SAGE can also help to identify new genes expressing in a tissue or under specific
conditions [61].

Later, well-defined techniques for example microarrays, massively parallel signature
sequencing (MPSS), and RNA-seq that provide high-throughput transcriptomics data came
into existence. Microarray quantifies a set of the RNA transcripts by their hybridization to
complementary probes fixed on a platform. It was used to assay thousands of genes with
a low cost per unit gene. Advancements in designing arrays and fluorescence detection
systems have boosted the sensitivity and accuracy of this technique. A microarray consists
of several probes on a solid platform, i.e., a glass or a silicon chip. The fluorescent-labeled
transcripts then hybridize on these chips to complement the probes. The amount or
intensity of fluorescence at each probe quantifies the respective transcript [62]. Microarrays
are broadly of two categories: low-density spotted array and high-density probe array.
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Low-density spotted arrays use large probes and various fluorophores for test and control,
whereas high-density probe arrays have higher resolution and use a single fluorophore
for the test [63]. Initially, Affymetrix (Santa Clara, CA, USA) Gene chip array developed
a high-density array, and later, Nimble Gen developed a more advanced high-density
array by mask-less photochemistry. Other commercially available microarray platforms are
Agilent, Exiqon, and Miltenyi, etc. Even though this technique is efficient in revealing the
transcripts in an organism, it requires prior knowledge of ESTs and an organism’s genome
assembly so that probes could be designed to generate the chip.

MPSS is a sequencing-based approach used to analyze gene expression by quantifying
mRNA transcripts present in the samples. MPSS uses a 17–20 bp signature sequence
adjacent to the 3′-end of mRNA to identify mRNA. Each signature sequence is first cloned
onto microbeads. This technique ensures that only one type of DNA sequence is on a
microbead. The microbeads are arrayed in a flow cell for sequencing and quantification.
Each signature sequence (MPSS tag) in a MPSS dataset is analyzed, compared with all other
signatures, and all identical signatures are counted. The expression level of any single gene
is calculated by dividing the total number of signatures for that gene present in the samples
with all signature sequences identified.

RNA-seq is defined as sequencing the mRNA transcripts of an organism by using
NGS platforms. High-throughput sequencing platforms have highly reduced the cost
of sequencing and increase the level of accuracy. New sequencing platforms, such as
Roche 454, Illumina, SOLiD, Pac Bio, and Nanopore (compared in Table 2), have aided the
RNA-seq technique to provide extensive genome coverage [64,65]. RNA-seq provides a
tremendous amount of information about the genes present and activation of these genes
at a particular time point under specific conditions. In recent years, the availability of NGS
technologies has boosted RNA-seq over microarray technique, illustrated by the number
of publications in the last ten years (Figure 3).

Table 2. Comparison of next-generation sequencing platforms used for RNA-Sequencing.

Platform Read Length
(in bps) Chemical Reaction Amplification

Method
Read
Pair

Overall
Error Rate

1st generation
Sanger sequencing 750 Chain termination PCR Yes —

2nd generation
454 Roche 400 Pyrosequencing Emulsion PCR Yes 0.5%

HiSeq Ilumina 150–300 (paired end) Reversible termination Solid-phase PCR Yes 0.2%

SOLiD 75 (single-end) or 50
(paired-end) Sequencing by ligation Emulsion PCR Yes 0.1%

Ion torrent 200–400 Proton detection Emulsion PCR Yes 1%

3rd generation

PacBio 25 kb (single-end) Real-time sequencing Real-time single-
molecular template Hi-Fi No 0.1%

Oxford Nanopore 30 kb Disruption of ionic current
flow through nanopores Not required No 3%

Only the mRNA transcripts are sorted out from different kinds of RNAs for RNA-seq.
The mRNAs with poly-A tail are separated out from the whole RNA by poly-A tail-specific
probes. Small RNAs are removed based on their size by using gel electrophoresis. The
mRNAs are fragmented as per the read-length limit of the sequencing technology through
hydrolysis or sonication. The selected mRNA is used to synthesize cDNA, which could be
amplified if the amount is not sufficient and finally used as reads for sequencing through
NGS platforms [66]. Presently, NGS techniques, such as PacBio and Oxford Nanopore, di-
rectly sequences RNA without conversion into cDNA. It is better than previous sequencing
techniques, as it detects the modified bases, which were otherwise masked during cDNA
synthesis, and prevents the biases introduced during the cDNA-amplification step. The
number of reads and amount of coverage of the genome determines the sensitivity and
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accuracy of RNA-seq. The Encyclopedia of DNA Elements (ENCODE) recommends 70×
coverage for standard RNA-seq and even 500× coverage for rare transcripts [67].
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NanoString is another newly developed hybridization-based method that uses two
probes for a target transcript, one capture probe (biotin labeled), and another reporter probe
(fluorescent barcode-labeled). The capture probe locks the transcript to a solid surface by
biotin-avidin binding, whereas fluorescent barcode-labeled reporter probe hybridizes with
specific mRNA transcript. The NanoString nCounter analysis system is used to quantify
the immobilized mRNA transcripts by their specific barcode. The NanoString has its high
utility in targeted transcriptomic studies. The edge of NanoString over NGS based tools is
that it does not require library preparation, enzymes, and processing.

3.2. Transcriptomics to Study Abiotic Stress Tolerance in Plants

With an increase in the whole-genome transcriptomic studies in plants, the genes
related to stress response, downstream signaling, and synthesis of stress response molecules
are undermined [68]. A plethora of information on transcriptomics of cereals crops, such
as rice, sorghum, maize, barley, and wheat, are available. This information has provided
insight into the coordination of different biological processes in various plant tissues under
stress conditions [69]. The study of drought stress during the flowering or fruiting stage of
the plant gives information about the reproductive system’s interaction, hormone signaling,
and metabolic pathways. Table 3 highlights the use of microarray and RNA-seq techniques
in different crops to identify differentially regulated genes during various abiotic stress
conditions.

The comparative transcriptome analysis between drought-tolerant and susceptible
cultivars indicates candidate genes and the mechanism of adaptations under drought
stress [70]. Earlier studies revealed that 20 CIPK genes are upregulated in rice, specifically
under drought stress conditions. A recent RNA-seq study reported the overexpression of
these CIPK genes under various abiotic stresses, such as salinity and cold [71]. RNA-seq
studies reported that rice cultivars tolerant to salinity have a quick response to salinity
and earlier induction of H2O2 and signal transduction than sensitive ones [72]. Salinity-
tolerant cultivars set up an adaptive program by limiting sodium to roots and old leaves
and activating the genes related to photosynthesis in new leaves. Two inbred lines with
extreme cold tolerance and sensitivity were used for whole-genome transcriptomics, and
bioinformatics analysis and the results indicated that 948 differentially expressed genes
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(DEGs) out of a total of 19,794 genes were mainly responsible for DNA binding, ATP
binding, and protein kinase [73]. RNA-seq of drought-resistant and drought-susceptible
cultivars of sorghum at seedling stage under PEG-induced drought revealed 180 DEGs;
70 genes were uncharacterized novel genes or associated with transcription factors and
signal transduction under stress [74].

Table 3. Transcriptome profiling in five major field crops in abiotic stresses condition.

Crop Tissue Technique Abiotic Stress Reference

Rice Leaves RNA-Seq Drought [75]
Rice Leaves Microarray Cold [76]

Rice Leaves and shoot RNA-Seq Adaptive and
salinity [72]

Wheat Roots RNA-Seq Drought [77]

Wheat Crown tissue and
leaves RNA-Seq Cold and light [78]

Wheat Shoots and roots Microarray Salinity [79]

Maize Tassels RNA-Seq Drought [80]
Maize Leaves RNA-Seq Salinity [81]
Maize Leaves RNA-Seq Cold [73]

Barley Leaves and roots Microarray Drought [82]
Barley Roots RNA-Seq Salinity [83]

Sorghum Seedlings RNA-Seq Drought [74]
Sorghum Seedlings RNA-Seq Salinity [84]
Sorghum Seedlings RNA-Seq Salinity [85]

3.3. Application of Transcriptomics for Crop Improvement against Biotic Stress

Crop yield is challenged by various biotic stressors, such as bacteria, viruses, fungi,
insect pests, and weeds [86]. Most plant-breeding programs target developing genotypes,
which are tolerant or resistant to plant pathogens and insect pests so that crop loss due
to biotic stress could be mitigated. Plants have evolved with various biochemical and
physiological mechanisms to escape biotic stresses [87]. In response to pathogen infection,
plants activate salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling, reactive
oxygen species (ROS) production, hypersensitive response, the release of toxic compounds,
and phytoalexins [88]. Therefore, understanding the molecular level changes in plants in
response to pathogen attack is crucial to develop disease-resistant crop varieties.

Various transcriptomic studies were conducted in cereals to decipher the disease-
resistance mechanisms and to identify resistance (R) genes. The whole-genome transcrip-
tome analysis of four wheat cultivars, namely Wuhan 1, Nyubai, HC374, and Shaw, after
head inoculation with Fusarium graminearum, revealed upregulation of leucine-rich repeats
receptor kinases (LRR-RKs), a class of receptor kinases involved in disease resistance dur-
ing different time points in resistant and susceptible cultivars. The differential expression
profile of these genotypes showed various genotype-specific defense responses [89]. Table 4
summarizes some important examples where transcriptome data was used to study the
plant response against various plant pathogens. Mangnaporthe oryzae, causing blast disease
in rice, was the first pathogenic fungus to be sequenced. Hence, Magnaporthe oryzae-rice is
considered as a model pathosystem to understand molecular host–pathogen interactions.
High-quality transcriptomic studies via RNA-seq provide essential information to dig out
genomic level interactions of host-pathogen systems [90]. It is well known that the Xa23
gene in rice confers broad-spectrum resistance to most of the biotypes of Xanthomonas
oryzae pv. oryzae (Xoo). The transcriptome profiling of NILs with Xa23 (CBB23) and without
Xa23 (JG30) before and after inoculation with Xoo provides insight into the downstream
genes and pathways involved in the resistance provided by the Xa23 gene. In total, 1645
DEGs were found, and most of these are associated with phenylpropanoid biosynthesis,
followed by flavonoid biosynthesis and phytohormone signaling [91].
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Table 4. Transcriptome profiling of five major field crops under biotic stresses.

Crop Tissue Biotic Stress Reference

Rice Leaves Magnaporthe oryzae [90]
Rice Leaves Xanthomonas oryzae pv. oryzae [91]
Rice Leaf sheath Rhizoctonia solani [92]

Wheat Spikes Fusarium graminearum [89]
Wheat Seedlings Puccinia triticina [93]
Wheat Leaves Puccinia striiformis f. sp. tritici [94]

Maize Leaves Cercospora zeae-maydis;
Cercospora zeina [95]

Maize Leaves Fusarium graminearum [96]
Maize Leaves Maize Iranian mosaic virus [97]

Barley Leaves Ramularia coolo-cygni [98]
Barley Leaves Blumeria graminis f. sp. hordei [99]

Barley Leaves Rhynchosporium secalis;
Cochliobolus sativus [100]

3.4. Challenges and Prospects in Transcriptomics

Transcriptomic studies faced various challenges from time to time; most of these were
resolved with the advancement of techniques, and some are still in the pipeline. Microarray
is limited to depict the expression level of only known genes. This was overcome by RNA-
seq that provides a complete profile of the transcript present at any stage or time of an
organism without missing any transcript. It also lowers the background noise and increases
the experiment’s clarity. Analysis of NGS data using RNA-seq is, however, time consuming
because read coverage may not be uniform along the genome due to variation in nucleotide
composition between genomic regions. In RNA-seq, a long transcript is estimated to have
more reads than a short transcript at the same expression level. To normalize the counts
with respect to transcript length, some software packages are used that represent RNA-seq
data by transformed quantities, such as RPKM (Reads Per Kilobase per Million mapped
reads) or the related FPKM (Fragments Per Kilobase per Million mapped reads). The
software, such as Cufflinks/Cuffdiff, provides an integrated analysis pipeline from the
aligned reads to the differential expression results, where the inference is based on FPKM
values. Further improvements in RNA-seq are revolutionizing the transcriptomics studies
in plants to develop crop varieties in the near future which can withstand biotic and abiotic
stress and produce a higher yield.

4. Cereal Proteomics

The advances in genomic techniques provide a blueprint of possible gene products
that have changed our way of studying biological systems. As the genome is static, it lacks a
correlation between mRNA and protein abundance due to post-translational modifications,
protein function, and localization. In addition, it does not give a biological snapshot of an
organism at a particular developmental time point. Therefore, it is essential to study the
protein structure, their interactions to explore their role during plant growth, and devel-
opment. Proteomics is a comprehensive, high-performance approach for identifying and
analyzing protein expression at a particular time and condition in a cell, tissue, or organelle
of an organism [101]. The first report of 2-DE dates back to 1975, which provided the first
glimpse of the protein levels and the isoforms of the cells. Marc Wilkins coined the term
“proteomics” in 1994 as an extension of the word “proteome” (PROTein complement of the
genOME) at the first two-dimensional electrophoresis (2-DE) meeting in Siena, Italy [102].
The study of proteome profiles provides deep insight into various metabolic processes and
their interaction with different regulatory pathways in a biological system. Proteomics is a
powerful tool providing robust and better representation of the cell functioning than other
techniques, including genomics tools.



Plants 2021, 10, 1989 13 of 34

The advancements in proteomics in the past decades have led to new and improved
technologies, such as two-dimensional polyacrylamide gel electrophoresis (2D-PAGE),
liquid chromatography (LC), and mass spectrometry (MS), which have enabled fast and
accurate protein identifications.

4.1. Technical Advances in Proteomics

In the recent past, various proteomics approaches have been developed and adopted in
plants. These tools paved the way for high-throughput proteome analysis for quantification
and localization of protein—protein interactions, and post-translational modifications
(PTMs). Most of the proteomics technologies have three main steps, including identification
or quantification (mass spectrometry; MS), protein extraction, and separation (gel-based
or gel-free/Column-based methods) [103]. The gel-free techniques can be label-free, such
as LC coupled with MS (LC–MS), or tag-based, such as ICAT, iTRAQ, etc. [104] (Figure 4).
A single technology cannot comprehensively analyze a complete plant proteome due to
its complex and dynamic nature. Therefore, multiple approaches are used to improve
the understanding, resolution, and coverage of plant proteome. Various factors such as
resource availability, facilities, and applications, e.g., global or targeted profiling, decide
the proteome’s study approaches [103].
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4.2. Global Proteome Profiling

Global proteome profiling is considered as one of the best approaches for comparing
two or more proteomes or generating a reference proteome map. Table 5 categorizes
the proteome profiling into gel-based and gel-free/shotgun approaches [105]. Gel-free
proteomics is gaining popularity with the passing years due to increased reproducibility
and less bias than gel-based proteomics [106].
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Table 5. Description of commonly used proteomics techniques.

Technique Application Advantages

2D-PAGE • Protein separation
• Expression profiling

• Information about post-translational
modifications (PTM)
• Relatively quantitative

DIGE • Separation of proteins
• Quantitative expression profiling

• Higher sensitivity as compared to 2D-PAGE
• Less gel-to-gel variability
•Multiplexing

3D-GE • Protein separation
• Quantitative expression profiling

• Overcome co-migration interferences
• High reproducibility

ICAT • Chemical isotope labelling for quantitative
proteomics

• High sensitivity and reproducibility
• Detects low abundant proteins

iTRAQ • Isobaric tagging of proteins
• High reproducibility
•Multiplexing
• High throughput

SILAC • Isotopic labelling of cells
• Differential expression studies

• Simple and straightforward quantitation
• Highly sensitive
• Robust
• Degree of labelling is high

MuDPIT • Identification of protein
–protein interactions • Large protein complex identification

2D-PAGE = Two-dimensional polyacrylamide gel electrophoresis, DIGE = Difference in-gel electrophoresis, 3D-GE = Three-dimensional
gel electrophoresis, ICAT = Isotope-coded affinity tagging, iTRAQ = Isobaric Tagging for Relative and Absolute Quantification, SILAC =
Stable Isotope Labelling by Amino Acid in Cell Culture and MuDPIT = Multi-Dimensional Protein Identification Technology.

4.2.1. Gel-Based Approaches

These are the most popular, versatile, and mature methods of protein separation
and quantification. They allow the identification of low-abundance proteins, characterize
protein isoforms on a large scale, and are less expensive than gel-free approaches.

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is considered the
workhorse of proteomics due to its affordability and acquaintance. It is widely used in
expression proteomics studies. It resolves proteins based on two independent parameters:
isoelectric point (pI) and molecular mass (M). Depending upon the M, the proteins can be
fractionated into two dimensions based on the presence or absence of 2-mercaptoethanol.
The proteins can be resolved by staining with dyes, such as Coomassie blue, silver nitrate,
or SYPRO Ruby, for their visualization.

The need to overcome the limitations of 2D-PAGE, like the gel-to-gel variation and less
reproducibility, led to the development of difference in-gel electrophoresis (DIGE). In this
approach, many protein samples labeled at their lysine residues by different fluorophores
(CyDye2, CyDye3, CyDye5), besides Coomassie Blue, silver nitrate, or SYPRO Ruby, are
simultaneously separated on a single gel [107]. DIGE is used to elucidate variations in
protein expression in response to various biotic and abiotic stresses.

Three-dimensional gel electrophoresis (3DGE) advances 2D-PAGE to overcome the
co-migration interferences [108]. It uses two different buffers with different ion carriers
and gives very accurate protein and PTMs’ identification [109].

Mass spectrometry (MS) is used to identify proteins of interest after the extraction of
peptides by in-gel digestion [110]. Various computer algorithms help in the identification
of proteins on the basis of peptide mass and fragmentation (MS/MS) information. The
overall process of protein identification by MS includes three steps. The transformation
of molecules to gas-phase ions, separation of ions based on mass to charge ratio (m/z) in
electric or magnetic field, followed by the measurement of separated ions with particular
m/z value. The methods used for ionization include matrix-assisted laser desorption ion-
ization (MALDI), surface-enhanced laser desorption/ionization (SELDI), and electrospray
ionization (ESI) [111].
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4.2.2. Gel-Free Approaches

Gel-free approaches are developed to overcome the limitations of gel-based ap-
proaches, such as the inability to separate the entire proteome, rare detection of low-
abundance proteins, and labor-intensive nature. These include quantitative approaches,
like tag-based labeling (ICAT, iTRAQ), metabolic labeling (SILAC), and label-free methods
(MudPIT) [105].

Isotope-Coded Affinity Tagging (ICAT) is an in-vitro isotopic labeling approach for
protein quantification, which involves the use of an affinity tag (biotin), linker having stable
isotope, and a reactive group that binds to thiol groups (cysteines) of proteins. The labeled
tryptic peptides are first fractionated by chromatography and then identified by mass
spectrometry (MS) [112]. ICAT mainly contributes to identify novel proteins controlling a
vital biological function in a particular cultivar [113].

Isobaric Tagging for Relative and Absolute Quantification (iTRAQ) is a multiplex
protein-quantification technique utilizing the isobaric tags for labeling the N-terminus and
side-chain amine groups of proteins. The sensitivity of protein quantification from different
sources in one test is much higher than ICAT [114]. Crop breeders use this technique to
elucidate markers for biotic and abiotic stresses, and those later can be used in designing
genetically modified crops [115].

Stable Isotope Labelling by Amino Acid in Cell Culture (SILAC) is a metabolic labeling
technique that is the most potent approach for dynamic quantitative plant proteome
studies. It utilizes in-vivo labeling of cell population grown in either N14 or N15 containing
medium [116]. It is advantageous to identify proteome changes in signaling pathways
triggered by PTMs in response to stress [117].

Multi-Dimensional Protein Identification Technology (MudPIT) is a shotgun pro-
teomics tool used for complex multi-dimensional protein analysis [106]. It is a less complex
and highly sensitive technique for the identification of low-abundance proteins. In this
approach, the biphasic or triphasic microcapillary columns are used to separate digested
proteins, followed by performing tandem MS. This technology has been used to unravel
the mechanisms involved in controlling tiller numbers in rice [106].

4.3. Targeted Proteome Profiling

It is a selective proteome analysis of interacting proteins or post-transcriptionally
modified proteins using PTM-specific stains, antibodies, or targeted MS assays [103]. It can
be classified into gel-based, affinity and reactive chemistry-based, and MS-based targeted
proteomics.

4.3.1. Gel-Based Proteomics

The global proteome analysis is undertaken using 2D-PAGE, followed by staining
with Phosphoprotein specific gel stain (Pro-Q Diamond; PTM specific stain). However,
these approaches are not used these days due to a lack of identification of less abundant
proteins [103].

4.3.2. Affinity and Reactive Chemistry-Based Proteomics

In this approach, specific proteins are isolated, enriched, and purified by different
techniques, such as immunoprecipitation (IP), strong cation exchange (SCX), strong anion
exchange (SAX), and immobilized metal affinity chromatography (IMAC). These tech-
niques can be used individually or coupled with one another to enhance efficiency.

4.3.3. MS-Based Proteomics

They are based on detecting signals resulting from transitions in the ions during the
fragmentation in the mass spectrometer. Various tools, like tandem MS, Quadrupole Trap
(Q-trap), triple quadrupole, and Linear Trap Quadrupole Orbitrap (LTQ-Orbitrap), are
commonly used. Selected Reaction Monitoring (SRM) is the process of detection of transi-
tions in triple quadrupole, whereas Multiple Reaction Monitoring (MRM) is the detection
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of multiple modifications [118]. However, the aforementioned techniques suffer from
precision errors between samples. To overcome this shortcoming, SRM/MRM techniques
are isotopically labeled [119]. Table 6 provides knowledge about different proteomics
techniques used to study abiotic and biotic stress responses in cereal crops, including
wheat, barley, rice, maize, and sorghum.

Table 6. Application of various proteomics technologies in studies of field crops response to abiotic
and biotic stresses in the last decade.

Crop Abiotic/Biotic Stresses Techniques References

Rice Drought LC–MS/MS [120]
Rice Bakanae disease TMT–MS [121]

Rice Bacterial blight 2DE/MudPIT,
MALDI–TOF/MS [122]

Wheat Drought 2D-PAGE [123]
Wheat Drought 2DE, MALDI–TOF–TOF–MS [124]
Wheat Yellow rust nanoLC ESI–MS/MS [125]
Wheat Tan spot 2D-PAGE [126]

Maize Salinization iTRAQ, LC–MS/MS [127]
Maize Heavy metal iTRAQ, LC–MS/MS [128]
Maize Ear rot disease iTRAQ [129]
Maize Maize rough dwarf disease LC–MS/MS, TMT labeling [130]

Barley Drought DIGE and LTQ-Orbitrap [131]
Barley Salinization 2D-PAGE [132]
Barley Leaf rust LC–MS/MS [133]
Barley Fusarium head blight 2D-PAGE, MS [134]
Barley Powdery mildew LC–MS [135]

Sorghum Heavy metal toxicity 2D-PAGE [136]
Sorghum Drought DIGE [137]
Sorghum Downy mildew 2D-PAGE, MLADI–TOF/MS [138]

Although the field of MS has advanced enormously, still, there are many shortcomings,
including lower detection limits and limited coverage of proteome in the characterization
of complex biological samples [139]. This technique demands very careful handling of
samples, as certain protease inhibitors can change pI and electrophoretic mobility of the
proteins [140]. Many technical replicates are required for the analysis due to the poor
reproducibility and low accuracy. MS-based techniques are not sensitive enough in order
to identify the low-abundant proteins in a sample. Future developments in MS and
identification methods will overcome these limitations.

4.4. Peptidomics, Phosphoproteomics, and Redox Poteomics

The vast variety of novel peptides, e.g., the ones derived from non-functional precur-
sors, functional precursors, and not derived from a precursor protein cannot be charac-
terized by standard analytical methods using MS. Peptidomics is the identification and
comprehensive analysis of these physiological and pathological peptides smaller than
10-kDa in size [141]. In this technique, the native peptides are used as such and are not
subjected to chemical or enzymatic cleavage. It has been utilized in plants like Arabidopsis
thaliana and Medicago.

Phosphorylations characterized by protein kinases (PKs) change the protein func-
tions such as enzyme activity, protein–protein interactions, subcellular localization, etc.
Phosphoproteomics is a technique for identification of uncharacterized PKs and their sub-
strates. There are three databases, namely PhosPhat, Pep2Pro, and PepBase, that include
information of plant phosphoproteome [142].

Redox proteomics is defined as the identification of PTMs involved in all stages of
plant development as a result of protein oxidoreduction, which helps in finding protein
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damage due to the oxidative stresses [143]. The dynamic nature of redox PTMs is the major
challenge in the development of this technique. The continuous development of protein
MS instruments along with quantitative proteomics will lead to the new possibilities in
these areas of proteomics.

4.5. Bioinformatics in Proteomics

The technical advances in proteomics approaches have made it possible to achieve
a massive amount of high-quality protein-expression data. It is challenging to associate
this data with other omics technologies, like genomics, transcriptomics, metabolomics, and
phenomics. Bioinformatics tools play a fundamental role in overcoming this bottleneck by
reducing the analysis time and providing statistically significant results. Some of the major
proteomics databases currently used are PRoteomics IDEntification database (PRIDE) [144],
Peptide Atlas [145], and Mass Spectrometry Interactive Virtual Environment (MassIVE).
Various comprehensive databases for plant proteomics, such as Plant Proteomics Database
(PPDB), 1001 Proteomes, Pep2 Pro Database, DIPOS, etc. [146–149], as well as different web-
based prediction tools, like GelMap [150], MRMaid [151], Peptide Atlas SRM Experiment
Library (PASSEL) [152], etc., have been developed to assist proteome analysis.

4.6. Challenges and Prospects in Proteomics

The proteomic analysis complements both transcriptomics and metabolomics for
elucidating plants’ cellular mechanism and thus is a vital tool for crop improvement. The
recent advancements in proteomics techniques have enabled us to unravel plant biology.
However, we still need to overcome the various limitations of these techniques to develop
smart crops with high grain quality capable of withstanding multiple stresses. New
emerging technologies, such as peptidomics, phosphoproteomics, and redox proteomics,
will provide in-depth insight into molecular interactions and protein function [153]. With
the ever-changing climate, new plant variants are being introduced continuously to cope
with ambient fluctuations. Novel proteomic tools will enable us to generate more stress-
tolerant or stress-adaptive cultivars.

5. Cereal Metabolomics

Metabolomics is a relatively new “omics” technology for deciphering the plant
metabolomes and understanding complex biological systems. Metabolomics allows com-
prehensive profiling and comparison of small molecules (<1500-Da) of a cell, tissue, organ,
or organism [154]. Metabolomics deals with identifying and quantifying metabolites in
a biological system to investigate their compositions and interactions with the environ-
ment [155].

Based on the purpose of the study, metabolomics can be differentiated into two types,
namely targeted and untargeted. Targeted metabolomics deals with the absolute quantifi-
cation of one or a few metabolites in a set of predefined known substances. Therefore, the
targeted approach tends to be highly sensitive and quantitative and can be helpful to trail
the metabolites known to be associated with specific stress. Thus, targeted metabolomics
is a discovery-based approach and measures the relative abundances of several hundred
to thousands of all detectable metabolites. The untargeted approach, on the other hand,
can measure mass spectrometric features of unknown metabolites and thus enhance the
chances of sensing unintended effects [155].

In recent years, metabolomics has been used to understand biotic and abiotic stresses
in crop plants, and many studies summarize the metabolomic advances in maize, sorghum,
wheat, rice, and barley, investigating the composition of these crops and/or their products
and their applications for crop improvement (reviewed in [156–158]). Understanding the
plant metabolomic processes would be beneficial for improving crop yield and human
nutrition aspects in crop-breeding programs.
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5.1. Overview of Metabolomic Pipeline

The workflow for metabolomics involves a series of steps, including experimental
design, sample preparation and extraction, metabolite detection using analytical techniques,
and data processing and analysis using bioinformatics techniques. Since metabolomics
involves a wide range of diverse compounds, variations in metabolite concentration (~106)
can complicate the downstream analyses [159]. Thus, it is essential to carefully choose
(1) the appropriate experimental design, (2) optimized sample preparation and extraction
protocols, and (3) detection technologies for comprehensive metabolomic analyses.

Numerous extraction protocols for metabolomics analysis [160,161] are available,
and optimizing the metabolomic protocol is an essential step in metabolomics [159]. For
example, targeted metabolomics can be optimized to increase the signal-to-noise (s/n)
ratio of the desired metabolite or decrease the time and cost of experimentation [155]. The
untargeted approach, on the other hand, must be optimized for reproducibility of the
protocol to detect the ratio of the actual variation in a biological sample to the variation
due to experimental errors. Several approaches, such as fractional factorial analysis or
D-Optimal design to experimental design, can optimize metabolomic protocols [155].

5.2. Analytical and Data Processing Techniques in Crop Metabolomics

Several techniques, such as gas chromatography mass-spectrometry (GC–MS) [162],
liquid chromatography-mass spectrometry (LC–MS) [163], capillary electrophoresis mass
spectrometry (CE–MS) [164], nuclear magnetic resonance (NMR) [165], and vibrational
spectroscopy (VS) [155], have been applied in crop metabolomic studies. With recent
advancements in technology, other methods, such as gas chromatography time-of-flight
mass spectrometry (GC–TOF–MS) [166], ultra-performance liquid chromatography-mass
spectrometry (UPLC–MS) [167], capillary electrophoresis time-of-flight mass spectrometry
(CE–TOF–MS) [168], high-performance liquid chromatography (HPLC) [169], and liquid
chromatography high-resolution mass spectrometry (LC–HRMS) [170], have been utilized
in crop metabolomic studies. Table 7 provides an overview of commonly used analytical
techniques in crop metabolomics.

After analytical analyses with one or more of the techniques mentioned above, the
data then undergoes a series of pre-processing steps, including cleaning, noise reduction,
baseline correction, alignment, peak deconvolution, normalization, and scaling. Numerous
online platforms have been developed to help metabolomics, data mining, data assessment,
data processing, and data interpretation. Statistical analyses, e.g., principal component anal-
ysis (PCA), multivariate curve resolution (MCR), hierarchical cluster analysis (HCA), par-
tial least squares discriminant analysis (PLS-DA), and batch-learning self-organizing map
(BL-SOM), are commonly used to make meaningful inferences from large metabolomics
datasets [156,171,172]. After profiling metabolites in a particular plant species, metabolic
pathways can be reconstructed from a list of functionally annotated genes available from
the databases, such as KEGG pathway or KNApSAcK [173,174].

Table 7. Description of commonly used analytical techniques in metabolomics studies.

Technique Description Advantages

LC–MS

Allows profiling of secondary metabolites, such as
alkaloids, flavonoids, and phenylpropanoids, based
on their different partitioning coefficients between
the mobile phase (solvent) and stationary phase
(column)

• Enables detection of metabolites without prior
derivatization
• Useful for both reactive and thermally stable metabolites
• High sensitivity to ionized metabolites
• High mass accuracy allows the identification of
unknown compounds
• A larger sample, such as 1–50 mL, can be used
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Table 7. Cont.

Technique Description Advantages

CE–MS

Detect and separate polar or charged metabolites,
such as inorganic ions, organic acids, amino acids,
vitamins, nucleotides and nucleosides, thiols,
carbohydrates, and peptides, based on their charge
and size

• Allow rapid analyses with higher resolution than in LC
• Allow separation of polar or charged metabolites, which
are incompatible with LC and GC
• Can use heterogeneous samples
• Easy sample preparation than in GC and LC
• Low reagent use and low cost
• Less quantity of sample, up to 1 uL can be used

GC–MS

Allow the simultaneous separation and detection of
many volatile, thermally stable compounds and
primary metabolites, such as sugars, amino acids,
organic acids, and polyamines in complex mixtures

• High resolution
• High sensitivity to non-polar and volatile metabolites
• Lower cost than LC–MS

NMR
Record the absorption and re-emission energy of
atom nuclei due to differences in an external
magnetic field

• Allow detection of unknown metabolites
• Less biased and lower experimental error than in
MS-based methods
• Easy sample preparation than in MS methods
• Excellent compound coverage
• Less destructive sampling
• Highly utilized in untargeted metabolomics profiling

VS
Measures slight differences in vibrational behavior
of organic functional groups and chemical bonding
under electromagnetic (EM) radiation

• Non-destructive method
•Minimal to no sample preparation
• Excellent compound coverage
• Untargeted metabolomic profiling with high accuracy
• High reproducibility

5.3. Applications of Metabolomics for Crop Improvement

Metabolomics has widely been used to investigate the plant’s adaptive responses
against stresses. It plays an essential role in investigating the synthesis of specific metabo-
lites under various stresses to understand how plants adapt to unfavorable surroundings.
Metabolomic studies uncover new compounds and novel metabolic pathways that accu-
mulate under different stress conditions [158]. Besides, metabolomics studies also help
in improving the understanding of previously recognized metabolic pathways. Over the
last decade, several metabolome studies have been conducted to investigate the metabo-
lite concentration changes under various biotic and abiotic stress factors, as described in
Table 8.

The drought-stress response has also been studied by metabolomic approaches in
rice [162], wheat [167], maize [166], and sorghum [175]. Variations in phytohormones and
other metabolites in the roots of barley plants under salinity stress were reported [145]. In
rice, profiles of flavone-glycosides, which are major secondary metabolites, were evaluated
against abiotic stress and herbivores [176]. Researchers have reported natural metabolic
variations in rice [177]. Moreover, identifying the metabolites encoding for specific loci can
potentially be utilized as biomarkers in association studies [158]. Metabolome Quantitative
Trait Loci (mQTLs) analysis investigates metabolite concentrations in plant tissues (m-trait)
and can, therefore, provide a comprehensive understanding of their genetic background.
Furthermore, mQTL can discover novel relationships between metabolomic pathways,
structural genes, and agronomically important traits; hence, it can assist in crop breeding;
An example being a comparative mQTL mapping between rice and maize [160].
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Table 8. Examples of studies investigating the crop response to biotic and abiotic stresses using
metabolomics techniques.

Crop Stress Techniques References

Abiotic stresses

Rice Flooding GC–MS, NMR [178]
Rice Drought GC–MS [162]
Rice Low temperature LC–MS/MS [179]

Wheat Drought UPLC–MS [167]
Wheat Low nitrogen UPLC–QTOF–MS [180]

Maize Salinity NMR [181]
Maize Drought GC–TOF–MS [166]
Maize Low nitrogen GC–MS [182]

Barley Salinity LC–MS [163]
Barley Drought GC–MS [183]

Sorghum Drought GC–MS [175]
Sorghum Low nitrogen GC–MS/LC–MS [184]

Biotic stresses

Rice Magnoporthe grisea NMR,
GC/LC–MS/MS [165]

Rice Rhizoctonia solani GC–MS [168]

Wheat Stagonospora nodorum GC–MS [185]

Maize Fusarium verticillioides LC–HRM [186]

Barley Fusarium graminearum HPLC, LC–HRMS [169]
Barley Fusarium graminearum LC–MS [173]

Sorghum Burkholderia andropogonis LC–MS [174]

5.4. Challenges and Prospects in Crop Metabolomics

Integrating metabolomics with the genetic approaches can facilitate studying the
genetic regulation of plants in relation to metabolomics. Furthermore, utilizing high-
throughput genome sequencing, reverse genetics with metabolomics tools can decrease the
time, such as in metabolomics-assisted breeding. These novel plant-breeding approaches
can thus help crop improvement programs produce high-yielding crops, stress-tolerant
germplasm, and climate-adapted crop varieties.

Prospects of metabolomics include screening the metabolic markers to understand
plant metabolism. Emerging technologies, such as single-cell metabolomics with
metabolome-scale labeling, will improve metabolite interpretation, metabolic pathway
elucidation, and metabolite quantification at the single-cell level [187]. Recent technological
advancements, such as the single-probe MS technique, have the potential for near in situ
targeted metabolomic analyses with minimum cell manipulation at the cellular level [188].
Future challenges of metabolomics would be to better utilize the available information from
metabolomics and interpret the metabolite information correctly for possible applications.

6. Cereal Phenomics

During the last two decades, genomics has revolutionized plant breeding mainly due
to a reduction in genotyping costs, which results in the adoption of new technologies, such
as linkage mapping, genome-wide association studies, genome-wide selection, and rapid
generation advance [189]. Accurate genetic mapping and genome-wide selection require
precise phenotyping of the plants. However, plant phenomics, i.e., applying tools and
methodologies to study plant growth, development, performance, and composition, is a
field that is still in its infancy and, therefore, has lagged in comparison to genomics [190].
Since the conventional field phenotyping employed by most plant breeders is labor in-
tensive, costly, and subjective [191], plant phenomics is a rapidly expanding domain that
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ranges from high-throughput field phenotyping to cellular-level imaging. Nevertheless,
during the last decade, more focus was given to field-based high-throughput phenotyping
(HTP), primarily to predict agronomic and physiological traits [192]. In this regard, HTP
has demonstrated its potential for non-destructive phenotyping of the various agronomic,
physiological, as well as biotic and abiotic stress-related traits [193] via (1) utilizing high-
throughput tools and platforms, (2) image processing and implementing algorithms for
the extraction of raw data, and (3) linking to the processed data to the target traits [194].

Various aerial or ground-based HTP platforms have been developed for measuring
different plant traits at different growth stages with more precision, throughput, and
accuracy [195]. Table 9 provides various phenotyping platforms and their use in rice,
wheat, maize, barley, and sorghum. The development of novel imaging sensors for non-
invasively phenotyping a wide range of organs, tissues, and physiological processes has
provided a substantial impetus to the HTP [196]. This section of the review concentrates
on (1) various phenotyping platforms that are currently being used to accelerate genetic
gains in key cereals, (2) advancements in imaging sensors and subsequent analyses, and (3)
application of machine and deep-learning methods for solving the “big data” problems in
phenomics.

Table 9. List of phenotyping platforms and their utilization.

Phenotyping Platform/
Techniques Utilization References

BreedVision Tractor-pulled multisensory phenotyping platform with RGB,
multispectral, and time-of-flight sensors [197]

GROWSCREEN fluoro Work under controlled conditions for quantification of fluorescence
pigments [198]

Light curtain analysis Utilized for leaf area and plant height estimation [199]
LEAF-E Estimates the total leaf growth and rate of development [193]

Phenocart A movable platform in the field used for high-throughput phenotyping [192]
Phenopsis Used to study drought tolerance abilities under control conditions [200]

Phenoplant Used to obtain chlorophyll fluorescence parameters under controlled
conditions [201]

Phenovator Used for phenotyping a large number of samples under controlled
conditions by providing fluorescence, multispectral, and RGB images [202]

Pushcarts Carts with different sensors used to study plant response to drought,
heat, and other stresses; operated by one person [190]

Terrestrial laser scanning Used for measuring plant height and architecture under field conditions [203]

TRiP Used to study circadian changes in plants with a series of images and
TrRiP algorithm [204]

Unmanned aerial platforms Multiple sensors can be employed for measuring various traits
throughout the field [205]

6.1. Plant Phenotyping Platforms

HTP depends on the imaging sensor used. Advanced phenotyping platforms have
improved the data-capture capabilities by including mobility, throughput, and inbuilt
data storage at a relatively low cost. Unmanned aerial vehicles (UAVs) have maximum
adoption due to their reliability, cost, and technical requirements; however, some countries
are still not adopting it due to regulations controlling their flights. Several carts and tractor-
mounted tools have similarly been adopted for various crops, although their utilization is
also stage dependent [190]. Moreover, several handheld cheap platforms provide spectral
and time-series information. However, these handheld devices face standardization and
low-throughput issues; because they are usually mounted over poles, they result in less
canopy coverage [197]. Table 9 provides detailed information about various platforms
utilized during the last decade.
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6.2. Imaging Sensors and Analysis

Imaging sensors have enabled the collection of high-resolution and multidimensional
data from plants to quantify plant growth, yield, stress, and physiological process under
both control and field conditions. The recent development of sensor technology measur-
ing reflection from gamma rays to radio waves regions of the electromagnetic spectrum
has provided a plethora of information to plant scientists. These imaging sensors vary
from spectroscopy, sound navigation ranging (SONAR), light detection and ranging (LI-
DAR), X-ray computed tomography (CT), thermal, visible to near-infrared, multispectral,
hyperspectral, fluorescence, time of flight (ToF), positron-emission tomography, and stereo-
vision [202,204]. The utilization of these imaging sensors with autonomous platforms has
opened up the doors of HTP. Tables 10 and 11 provide detailed information about different
imaging sensors utilized for studying agronomic traits and biotic and abiotic stresses in the
five most important crops grown in the world: rice, wheat, maize, barley, and sorghum.

6.2.1. RGB/Visible Imaging

RGB cameras or regular cameras or digital cameras capture the true color images in
the electromagnetic spectrum’s visible region. This is the cheapest and most often used
sensor for plant phenotyping studies. These sensors reflect the red, green, and blue regions
of the visible spectrum. It has been used to estimate plant biomass, different pigments, tiller
count, yield traits, flowering time, biotic stresses, plant height, germination, and emergence
rates [206,207].

6.2.2. Multispectral Imaging

Multispectral cameras provide information about specific wavelength bands from the
spectrum’s visible and infrared regions. These reflection bands are used to extract differ-
ent vegetation bands, which give information about photosynthetic efficiency, pigments,
nutrient status, water status, and plant senescence [208]. The essential indices utilized
include normalized differentiation vegetation index (NDVI), water index (WI), anthocyanin
reflection index (ARI), and simple ratio (SR) [209].

6.2.3. Hyperspectral Imaging

These imaging sensors cover whole visible and infrared regions with a high spatial
resolution by covering reflection from the entire areas due to the sensor’s small bandwidth.
These sensors have the best spatial and spectral resolution, resulting in more useful in-
formation. This imaging platform has been used for studying plant health status, leaf
growth, predicting grain yield, biotic stresses, water status, plant height, and chlorophyll
content [209,210].

6.2.4. Thermal Imaging

These sensors provide information about plant water status by measuring reflection
from the infrared region for estimating canopy temperature and transpiration rate. Thermal
imaging has been used for detecting plant water status, disease-infected plants, and the
maturity of the kernels [211,212].

6.2.5. Fluorescence Imaging

Fluorescence sensors provide information about photochemistry changes by capturing
photosystem II’s fluorescence emissions. Plants absorb a specific portion of the electromag-
netic spectrum and thus have a characteristic emission spectrum. Fluorescence sensors
provide information about the photosynthesis rate, chlorophyll content, and various physi-
ological processes in plants [213].

6.2.6. X-ray Computed Tomography

These imaging sensors aid in generating 3D tomographic images of the objects using an
extensive series of 2D radiographic images taken with computer-processed X-rays. Images
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provide root architectures by separating objects depending on the different densities. X-ray
CT has been utilized for studying root traits, tillers morphology, and grain quality [194,214].

In addition to all these imaging sensors, there are several others: positron-emission
tomography, magnetic resonance imaging, SONAR, laser scanning, LIDAR, and flight time. For
details of sensor readings, the readers are referred to other publications [143,194,209,215,216].

Table 10. Application of high-throughput phenotyping platforms and imaging sensors for improving abiotic stresses and
agronomic traits in field crops during the last decade.

Crop

Phenotyping
Platform
Sensor or

Techniques

Field/
Lab

Abiotic Stresses/
Agronomic Traits

Imaging
Sensor Description Reference

Rice Ground-based
platforms Lab Salinity Thermal imaging

Plant growth and transpiration rate
was used to predict the salinity

responses of plants
[214]

Rice Ground-based
platforms Field Nitrogen content Hyperspectral

imaging

Reflectance information and
cumulative temperature data were

used in the partial least square method
for predicting nitrogen status

[210]

Rice Ground-based
platforms Field Drought stress RGB imaging

Stay green-related feature were
extracted for assessing

drought-tolerance ability
[196]

Wheat Ground-based
platforms Field Drought

Passive and active
hyperspectral

reflectance sensors

Performances of different sensors were
evaluated for predicting drought

tolerance abilities of genotypes with
water stress indices

[208]

Wheat Manned
helicopter Field Water and heat

stress Thermal imaging

Canopy temperature was measured in
high-throughput way for avoiding the
plot-to-plot variation with handheld

infrared thermometers

[212]

Wheat Ground-based
platforms Field Nitrogen content Hyperspectral

imaging

Leaf nitrogen status was measured
from spectral information with a

calibrated model
[217]

Maize Organ/tissue
phenotyping Lab Drought stress Hyperspectral

imaging

Support vector machine classification
method separated the water-stressed
genotypes from healthy plants with
information from vegetation indices

[218]

Maize Unmanned
aerial vehicle Field Water status in

plants
Multispectral and
thermal imaging

Crop water stress index was predicted
from the multispectral images to
decipher the plant water status

[219]

Maize Unmanned
aerial vehicle Field Weeds RGB imaging

Loss of greenness from maize was
used for separating weeds from the

plants
[220]

Barley Ground-based
platforms Field Drought Hyperspectral

imaging

Linear ordinal support vector machine
model was used to predict the drought

responses in the plants
[209]

Barley Organ/tissue
phenotyping Lab Salinity Thermal imaging

Infrared imaging was used to
differentiate salt concentration among

the genotypes
[191]

Barley Unmanned
aerial vehicle Field Nitrogen use

efficiency

RGB, multispectral,
and thermal

imaging

UAV’s having RGB, multispectral, and
thermal imaging was utilized for

nitrogen use efficiency
[221]

Sorghum Ground-based
platforms Field Plant height RGB, ultrasonic,

and LIDAR sensor

A comparison was performed for
predicting sorghum height, with the

LIDAR sensor performing best
[222]

Sorghum Unmanned
aerial vehicle Field Drought stress RGB imaging

Plant height, biomass, and leaf area
were measured for assessing the

drought-tolerant abilities of genotypes
[223]
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Table 11. Application of high-throughput phenotyping platforms and imaging sensors for improving biotic stresses in field
crops during the last decade.

Crop Phenotyping Plat-
form/Sensor/Techniques Field/Lab Disease/Pest/

Virus Imaging Sensor Description References

Rice Ground and aerial
platforms

Field/
Lab Rice blast Multispectral

imaging

Reflectance values were
correlated with the disease

severity
[224]

Rice Organ/tissue
phenotyping Lab Alfatoxin Near-infrared

spectroscopy

Partial least regression utilized
reflectance information for

separating infected and healthy
seeds

[225]

Rice Unmanned aerial
vehicle Field Rice sheath blight

RGB and
multispectral

imaging

Percentage of infected leaves
from RGB images and

vegetation indices from
multispectral imaging aid in the

detection of rice sheath blight

[226]

Wheat Ground-based
platforms Field Septoria tritici

blotch
Hyperspectral

imaging

Spectral reflectance indices
derived from hyperspectral

imaging aids in detecting the
presence and severity of

Septoria tritici blotch

[189]

Wheat Organ/tissue
phenotyping Lab Fusarium head

blight
Hyperspectral

imaging

Fusarium head blight was
detected using visible-NIR

imaging of wheat grain, and
grains were separated using

linear discrimination and
principal component analysis

[227]

Wheat Unmanned aerial
vehicle Field Yellow rust Hyperspectral

imaging

Deep convolutional neural
network utilizing both spectral
and spatial resolution provided

the best performance for
predicting yellow rust

[228]

Maize Ground and aerial
platforms Field Northern leaf

blight RGB imaging
A convolutional neural network

was used for classifying the
infected leaves

[229]

Maize Organ/tissue
phenotyping Lab Alfatoxin

infection
Fluorescence

imaging

Discriminant analysis from the
imaging data aids in the

separation of healthy and
affected kernels

[213]

Maize Unmanned aerial
vehicle Lab Tar spot Multispectral and

thermal imaging

Disease-progression curve was
analyzed using vegetation

indices derived from the images
[230]

Barley Ground-based
platforms Field Powdery mildew Hyperspectral

imaging

Support vector machine was
used for early detection of

disease symptoms by measuring
reflection bands

[231]

Barley Ground-based
platforms Field Blast Hyperspectral

imaging

Spectral angle mapping and
spectral unmixing analysis was

used to locate the
pathogen lesions

[232]

Barley Organ/tissue
phenotyping Lab Rust and

powdery mildew
Hyperspectral

imaging

A simple volume maximization
algorithm was developed for

differentiating different
infected leaves

[233]

6.3. Challenges and Prospects in Crop Phenomics

The continuous use of aerial and ground-based HTP platforms with different imaging
sensors at multiple points during different growth stages of the plants has resulted in big
data, storage issues, and the extraction of valuable information. This issue is resolved
by adopting machine and deep-learning tools for data analysis to extract legitimate con-
clusions from the big data sets [194,234]. Machine learning (ML) is an interdisciplinary
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approach for data analysis using probability, statistics, classification, regression, decision
theory, data visualization, and neural networks to relate information extracted with the
phenotype obtained. ML provides a significant advantage to the plant breeders, patholo-
gists, and agronomists to extract many parameters for analyzing each trait together, despite
traditional methods in which we used to look at a single feature at a time [235]. The other
great breakthrough with ML is directly linking the variables extracted from the HTP data
to the plant stresses, biomass accumulation, grain yield, and soil characteristics [223,236].
ML’s most significant success involves inferring trends from the data and generalizing the
results by training the model. There have been various ML models being applied for HTP,
namely support vector machine [220], discriminant analysis [227], k means clustering [209],
neural network [211], clustering [209], and dimensional reduction [194]. All these models
help identify, classify, quantify, and predict different phenotyping components in plants.

However, the recent transformation by deep learning (DL) in other fields, such as
traffic signaling, health care, voice and image recognition, consumer analytics, and medical
diagnostics, has provided a new tool to plant scientists for image analysis in HTP [236].
DL models involve automatically learning the pattern from the extensive data set using
non-linear activation functions for making conclusions, such as classification or predictions.
The important DL models used for phenomics include but are not limited to a multilayer
perceptron, generative adversarial networks, convolutional neural network, and recurrent
neural network [229]. These potential data analysis tools aid in broadening the prospectus
of HTP in plant breeding.

7. Conclusions

Combining the omics technologies, such as genomics, transcriptomics, proteomics,
metabolomics, and phenomics, can help investigate the genetic and molecular determinants
and complex pathways in cereal crops. Protein and metabolic profiling coupled with
genome-wide scans can be utilized to efficiently select desirable agronomic traits, thus
opening new opportunities to enhance crop yields and resistances. Furthermore, high-
throughput, phenomics-enabled genome-wide mapping combined with metabolic and
gene-expression studies can help explore the environmental effects of crops’ phenotypic
plasticity under various biotic and abiotic conditions.
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