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Abstract 

Background: At present, immune checkpoint inhibitors, such as pembrolizumab, are widely used in the therapy 
of advanced non‑resectable melanoma, as they induce more durable responses than other available treatments. 
However, the overall response rate does not exceed 50% and, considering the high costs and low life expectancy of 
nonresponding patients, there is a need to select potential responders before therapy. Our aim was to develop a new 
personalization algorithm which could be beneficial in the clinical setting for predicting time to disease progression 
under pembrolizumab treatment.

Methods: We developed a simple mathematical model for the interactions of an advanced melanoma tumor with 
both the immune system and the immunotherapy drug, pembrolizumab. We implemented the model in an algo‑
rithm which, in conjunction with clinical pretreatment data, enables prediction of the personal patient response to 
the drug. To develop the algorithm, we retrospectively collected clinical data of 54 patients with advanced melanoma, 
who had been treated by pembrolizumab, and correlated personal pretreatment measurements to the mathematical 
model parameters. Using the algorithm together with the longitudinal tumor burden of each patient, we identified 
the personal mathematical models, and simulated them to predict the patient’s time to progression. We validated the 
prediction capacity of the algorithm by the Leave‑One‑Out cross‑validation methodology.

Results: Among the analyzed clinical parameters, the baseline tumor load, the Breslow tumor thickness, and the 
status of nodular melanoma were significantly correlated with the activation rate of CD8+ T cells and the net tumor 
growth rate. Using the measurements of these correlates to personalize the mathematical model, we predicted the 
time to progression of individual patients (Cohen’s κ = 0.489). Comparison of the predicted and the clinical time to 
progression in patients progressing during the follow‑up period showed moderate accuracy  (R2 = 0.505).

Conclusions: Our results show for the first time that a relatively simple mathematical mechanistic model, imple‑
mented in a personalization algorithm, can be personalized by clinical data, evaluated before immunotherapy onset. 
The algorithm, currently yielding moderately accurate predictions of individual patients’ response to pembrolizumab, 
can be improved by training on a larger number of patients. Algorithm validation by an independent clinical dataset 
will enable its use as a tool for treatment personalization.
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Background
Advanced melanoma is the most deadly skin cancer, with 
a total of 91,279 new cases, and 9320 deaths, expected in 
2018 in the United States alone [1]. While early-detected 
melanoma is mostly curable [2, 3], advanced meta-
static melanoma is life-risking. Over the past 10  years, 
increased biological understanding and access to innova-
tive therapeutic modalities have transformed advanced 
melanoma into a new oncological model for treating 
solid cancers [4]. In particular, immune checkpoint 
blockers (ICB) have shown a major success in the treat-
ment of advanced melanoma [5, 6]. The monoclonal anti-
body ipilimumab, blocking the cytotoxic T-lymphocyte 
antigen 4 (CTLA-4), was the first checkpoint blocker 
approved for the treatment of advanced melanoma, since 
it shows an objective response rate of 6–11% [7, 8]. The 
approval was then followed by the one of pembrolizumab 
and nivolumab—two monoclonal antibody drugs which 
block the programmed cell death 1 (PD-1) receptor, and 
show response rates of 30–40% [9, 10]. More recently, a 
highly toxic combination of ipilimumab and nivolumab 
was also approved for the treatment of advanced mela-
noma, with a resulting response rate of about 60% [11, 
12]. But in spite of the relatively high response rate of 
this treatment combination, PD-1 monotherapy, such 
as the one with pembrolizumab, still remains a pivotal 
treatment for patients with advanced melanoma, due to 
its relatively low toxicity and acceptable response rate. 
Moreover, results of the phase Ib KEYNOTE-001 trial 
show that a high proportion of patients with metastatic 
melanoma, who had achieved complete response on 
pembrolizumab, maintained their complete response for 
prolonged durations after treatment discontinuation [13]. 
As ICBs become widely available, the ability to forecast 
duration of individual response can be critical. How to 
predict the patient’s response, and adjust treatment plans 
accordingly, is a big challenge in the current immuno-
therapy practice [14].

Response rates would be improved and many treat-
ment complications would be prevented if one could 
identify good responders already before therapy. Indeed, 
several biomarkers for response to pembrolizumab have 
been analyzed and the expression of programmed death-
ligand 1 (PD-L1) on tumor and immune cells emerged as 
an acceptable response predictor [15]. Yet, the significant 
fraction of PD-L1-negative patients who benefit from 
pembrolizumab suggests that PD-L1 cannot serve as a 
reliable response biomarker, on its own [16]. In another 
endeavor, response scales were developed, based on sev-
eral clinical factors, including localization of metastases, 
various blood measures, age, and gender. These scoring 
systems enable to stratify the patient cohort according to 
the overall response rate and the probability to survive a 

year from treatment initiation [17, 18]. In other studies, 
certain immune signatures on the tumor tissue [19, 20], 
and blood [21] were associated with response, as well. 
However, the utility of these methodologies has yet to be 
validated [21].

Acknowledging the urgent need of reliable response 
predictors, mathematical modelers have joined the 
efforts to develop tools for predicting personal response 
to immunotherapy [22]. For example, Kogan et  al. [23] 
proposed a general algorithm for personalizing prostate 
cancer immunotherapy during the treatment for predict-
ing future response. To this end the authors constructed 
personalized mathematical models and validated their 
prediction accuracy retrospectively, by accruing data 
from a clinical trial of prostate cancer vaccine. This was 
done using a new methodology of iterative real-time 
in-treatment evaluation of patient-specific parameters. 
Another algorithm for predicting response to cancer 
therapy is put forward in Elishmereni et al. [24], attack-
ing hormonal treatment of patients with prostate cancer. 
Here too, the authors developed personalized mathemat-
ical models, describing the dynamic pattern of Prostate 
Specific Antigen. By inputting the personal clinical PSA 
levels during the first months of treatment, the authors 
created personal models, and predicted correctly the 
time to biochemical failure under androgen deprivation 
therapy in 19 out of 21 (90%) patients with hormone-sen-
sitive prostate cancer.

In the above described algorithms, prediction is made 
possible only by inputting personal clinical measure-
ments collected during the first months of therapy. While 
this approach may still be of significant benefit in the 
design of clinical trials or in the clinics [25, 26], most 
physicians would prefer to forecast the patient’s response 
to the drug before treatment onset.

This is the primary goal set in the present work: to 
develop an algorithm which could be of benefit in the 
current clinical practice. This will be achieved, first and 
foremost, by predicting the patient response to therapy 
before its administration, and secondly, by inputting data 
that are routinely collected in the clinics, e.g., describing 
disease progression by the sum of diameters (SOD), as 
prescribed by the Response Evaluation Criteria In Solid 
Tumors 1.1 (RECIST 1.1). Most importantly, our goal is 
to generate instructive output information for the physi-
cian’s decision-making process, e.g., aligning the predic-
tion of disease progression with its effective confirmation 
by computed tomography (CT) or magnetic resonance 
imaging (MRI).

In the core of our computational algorithm lies a math-
ematical mechanistic model for the interactive dynamics 
of the disease, the cellular immune arm and the drug. By 
inputting clinical and molecular measurements of the 
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patient’s parameters before treatment, the algorithm ena-
bles to personalize the model and simulate it to predict 
the time to disease progression (TTP) of the individual 
patient under pembrolizumab. Such predictions are 
expected to assist the treating oncologists in planning the 
therapy program of the patient.

Methods
In this section we describe the mathematical mechanis-
tic model we have developed, the model personalization 
method, the clinical data used for model calibration, and 
their application for the development of the personaliza-
tion algorithm.

Mathematical mechanistic model
The mechanistic model we have developed is deliber-
ately simple (skeletal), taking into account only the main 
interactions between the melanoma tumor, the cellular 
immune system, and the immunotherapeutic drug, pem-
brolizumab (Fig.  1). Model simplification, incorporating 
only the bare bones of the system, enables to more easily 
isolate the effect of each chosen variable and to achieve 
our stated goal, while retaining the fidelity of description.

The model equations for the dynamics of APCs ( Apc ), T 
lymphocytes ( Til ) and cancer cells ( Mel ) are given below 

here, while the definitions and estimated values of the 
model parameters are summarized in Table 1:

 
Numerical analyses and simulations were performed 

using the ode15s Runge–Kutta ODE solver of Matlab 
R2016a (The Mathsworks, UK). From the initial time of 
the simulation (t = 0) to the time of treatment initiation 
(t = t1), the model in Tsur et al. [39] was simulated, and 
from  t1 until the end of the simulation period, the model 
in Eq. (1) was simulated. The effect of pembrolizumab on 
the immune system and tumor was implemented here by 
the parameters apem and bpem.

Patients
The study population included 54 patients with advanced 
melanoma, who were treated in the past or still receive 

(1a)
dApc

dt
= αim ·

Mel

Mel + b
− µAPC · Apc,

(1b)
dTil

dt
= apem · αeff · Apc − bpem · µeff · Til ,

(1c)
dMel

dt
= γmel ·Mel − υmel ·

Til ·Mel

Mel + g
.

Fig. 1 A schematic representation of the model for the main interactions between the melanoma cancer, the cellular immune system, and the 
immune checkpoint blocker pembrolizumab. The model is based on the following assumptions: tumor cells stimulate antigen‑presenting cells, 
APCs, depending on the tumor immunogenicity; functional APCs activate effector CD8+ T cells, which may eliminate tumor cells; tumor infiltrating 
lymphocytes, TILs, become exhausted, independently of the tumor cells elimination; tumor growth is determined by its net growth rate and by 
the rate of its destruction by Effector TILs; immunotherapy extends the activation of effector TILs, and reduces their exhaustion. Annotated ellipses 
represent the dynamic variables of the model, while arrows represent the interaction between them (see legends in the box)
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pembrolizumab as a single-agent between 09/01/2013 
and 03/03/2017, at Hadassah Medical Center (HMC; 33 
patients), and the University Medical Center Mannheim 
(UMM, 21 patients). Recruitment to the retrospective 
clinical trial was subjected to compliance, with the inclu-
sion/exclusion criteria as listed hereafter. Thirty-five of 
the patients in our dataset did not have a documented 
progression during their follow-up period and were, 
therefore, censored, as will be described below.

Inclusion criteria

 1. Gender: female, male.
 2. Age: 18 years and older at the start of treatment.
 3. Histologically confirmed unresectable Stage III or 

Stage IV melanoma, as per AJCC staging system.
 4. Prior radiotherapy or other oncological treatments 

must have been completed at least 2 weeks prior to 
drug administration.

 5. Measurable disease by CT, or Positron Emission 
Tomography CT (PET-CT), or MRI, per Response 
Evaluation Criteria In Solid Tumors (RECIST 1.1) 
[40].

 6. Patient has at least one quantitative measurement 
of at least one target lesion (primary tumor or 
metastasis) before treatment.

 7. Patient has at least one quantitative measurement 
of at least one target lesion (primary tumor or 
metastasis) during or after the treatment.

 8. Patient has at least one recorded visit to the treat-
ing oncologist before treatment.

 9. Patient has at least one recorded visit to the treat-
ing oncologist during or after the treatment.

 10. Treatment as per Standard of care for melanoma.

Exclusion criteria

1. History of another malignancy within the previous 
2  years, except for adequately treated Stage I or II 
cancer currently in complete remission, or any other 
cancer that has been in complete remission for at 
least 2 years.

2. Ocular melanoma.

The data collected from the medical records of the 
patients included demographics, information about the 
diagnosis and primary tumor, staging, applied oncologi-
cal treatments, detailed information about administra-
tion of pembrolizumab (specific protocols), imaging 
data and blood measures, including relative lymphocyte 
counts. Baseline information and follow-up duration of 
the patients are summarized in Table 2.

Imaging data
Baseline and follow-up CT and MRI scans were retro-
spectively reviewed by radiologists at HMC and UMM. 
The time interval between consecutive scans was around 
3  months. In each scan the maximal and perpendicular 
diameters of each morphologic detectable lesion in the 
x–y plane were evaluated, using the GE Centricity PACS 
software of GE Healthcare at HMC, and a dedicated post 
processing software (Syngo.Via, Siemens Healthineers, 
Erlangen, Germany) at UMM. We documented the organ 
each lesion was found in, and noted new lesions appear-
ing in follow-up scans.

Response evaluation
Response evaluation and identification of target lesions 
was made based on the RECIST 1.1 guidelines. A target 
lesion is defined by its size, having a minimum diameter 

Table 1 Model parameters

Model 
parameter

Definition Estimated value Units Source

αim Activation rate of APCs 1.161 × 103 to 2.986 × 103 Cells/day [27, 28]

b Number of tumor cells, required for reaching half of the maximal APC activa‑
tion rate

3.704 × 104 to 1.476 × 105 Cells [27–29]

µAPC Death rate of APCs 0.2310 Day−1 [30, 31]

apem Maximum effect of pembrolizumab on activation of CD8+ T cells 1× 10 to 1× 10
4 – Model simulations

αeff Activation rate of naïve antigen‑specific CD8+ T cells 0.8318 Day−1 [32]

bpem Maximum effect of pembrolizumab on the exhaustion rate of CD8+ T cells 0.9 – Model simulations

µeff Death rate of Effector CD8+ T cells 0.1777 Day−1 [33]

γmel Net growth rate of tumor cells 0.003269 to 0.08664 Day−1 [34]

υmel Innate death rate of tumor cells by effector CD8+ T cells 0.1245 Day−1 [35–37]

g Number of tumor cells, at which the elimination rate reaches half of its maxi‑
mal value

2.019 × 107 to 1 × 108 Cells [36, 38]
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of 10  mm for a non-nodal lesion, or a minimum diam-
eter of 15  mm in case of a lymph node. In accordance 
with RECIST 1.1, we selected up to two target lesions per 
organ and a maximum of five in total. We summed up the 
target lesions diameters to obtain the SOD at each tumor 
size assessment for every patient. At each time of clini-
cal tumor size evaluation we assigned to the patient one 
of the RECIST 1.1-defined response types, as specified in 
[40].

Development of the personalization algorithm
Selection of the personal model parameters
In order to personalize our mathematical model we 
first selected the model parameters which are expected 
to significantly affect the response and to vary among 
patients. We chose to personalize, that is, to adjust the 
values within a certain range, the following two param-
eters: (i) effect of pembrolizumab on the activation 
of CD8+ T cells ( apem ), (ii) tumor growth rate ( γmel ). 
The choice to personalize these two parameters was 
based on our theoretical analysis of the mathematical 
model described in Eq. (1), showing that changes in the 
maximum effect of pembrolizumab on the activation of 
CD8+ T cells, apem , affect the balance between tumor 
growth rate and the efficacy of the immune system. We 
inferred that this parameter varies among patients. Fur-
thermore, stability analysis of the mathematical model 
shows that in an untreated host, the net growth rate of 
tumor cells, γmel , is the parameter having the largest 
effect on the tumor dynamics [39]. For this reason, we 

consider this parameter as an individual parameter as 
well.

For personalizing the mathematical model, we set the 
range of apem values to allow different tumor dynamics, 
as a result of the therapy. Moreover, we estimated the 
range of γmel from the doubling time ( �t ) of human mel-
anoma metastases: γmel =

ln(2)
�t  , which was estimated by 

Carlson [34] and Joseph et al. [41], as described in detail 
in Table 1. In order to improve parameter identifiability, 
we dichotomized γmel to be equal to either the minimum 
or the median of its range. The ranges of the personali-
zation parameters are summarized in Table  3. For the 
first iteration of the fitting algorithm we chose the initial 
guess of each personalization parameter as the median of 
its range. As mentioned above, all other parameters were 
fixed to their values reported in Table 1.

Creating the personal models
To fit the model to data from the training set, we mini-
mized the sum of squared errors of the observed and 
simulated tumor size, using ‘fmincon’ function in Matlab. 
The goodness of fit was determined by calculating the 
coefficient of determination, R-squared, for the fitted ver-
sus clinically measured tumor sizes of all the patients in 
the dataset. Subsequently, we determined the functions 
that enable personalization of the mathematical model, 
by considering several clinically measured factors, whose 
values were available for the majority of the patients in 
this study, in at least one time point before treatment 
onset, or at least in one time point at an early stage of the 
treatment (Table 4). Some of these factors, including lac-
tate dehydrogenase (LDH) levels, relative counts of blood 
lymphocytes (LY%), and baseline SOD, are known to be 
associated with the response to pembrolizumab [17, 42]. 
The relationships between the other clinical variables 
considered for the personalization functions, and out-
come under pembrolizumab, were examined by correla-
tion analysis. We used four standard statistical methods 
to analyze the relationships between personal clinical 
data and model parameters: Pearson coefficient, receiver 
operating characteristic (ROC) analysis, confusion table 
and Cohen’s kappa (κ). The obtained relationships were 

Table 2 Characteristics of the patient cohort, and baseline 
information

Age mean (range), years 68.5 (32.5–91.5)

Gender

 Male n (%) 39 (72%)

 Female n (%) 15 (28%)

Primary nodular melanoma

 Yes n (%) 11 (20%)

 No n (%) 41 (76%)

 Undetermined n (%) 2 (4%)

Breslow thickness mean (range), mm 4.11 (0.37–28)

BRAF V600 status

 Wild type n (%) 33 (61%)

 Mutant n (%) 13 (24%)

 Undetermined n (%) 8 (15%)

Previous ipilimumab n (%) 22 (41%)

Previous nivolumab n (%) 0 (0%)

Baseline tumor size before pembrolizumab mean 
(range), mm

79 (5–247)

Follow‑up period median (range), months 9 (2–35)

Table 3 Ranges of  the  personalization parameters 
for identifying the patient-specific model parameters

Model 
parameter

Definition Personalization 
parameter 
range

Units

apem Maximum effect of pembroli‑
zumab on activation of CD8+ 
T cells

10 to 104 –

γmel Tumor growth rate 3.269× 10
−3 or 

5× 10
−3

Day−1
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the basis for the formulation of the personalization 
functions.

To overcome variations in the clinical and molecular 
values that are due to differences in the measurement and 
calibration techniques, used in each medical center, we 
normalized each measured value ( X ), relative to its given 
range, between Xmin and Xmax , as specified for each of 
the two subsets. The normalized covariate value ( X̂ ) is

From the individual model fits we obtained the per-
sonal model parameters for all patients in the training set. 
From the clinical record files of each patient we retrieved 
the relevant clinical measurements for all patients at 
baseline, and around the time of the first follow-up imag-
ing assessment. For estimation of apem from the clinical/
molecular measurements we used the k-Nearest Neigh-
bors (k-NN) algorithm. The number of nearest neighbors, 
k, was taken to be the integer part of the square root of 
the total number of patients (N = 54), i.e., k = 7. In case 
of missing data of a clinical/molecular measurements we 
replaced the missing value by the average value for this 
clinical factor, obtained from the data of the rest of the 
patients. Missing values of binary clinical/molecular fac-
tors were set to 0. We validated the resulting personali-
zation functions by the Leave-One-Out cross validation 
(LOO CV) method. In order to evaluate the personal 
γmel values from the clinical measurements, we trained 
a classification tree, using the LOO CV, as above. After 
predicting the parameter values of each patient we simu-
lated the personalized models (using the ode15s solver of 
Matlab), derived the simulated tumor size at the days of 
the imaging assessments, and evaluated TTP based on 
RECIST 1.1 [40].

(2)X̂ =
X − Xmin

Xmax − Xmin
.

Analysis of the TTP results
To evaluate the quality of TTP prediction, we compared 
the predicted versus the clinically observed TTP in 
three time intervals, including 0–90 days, 90–150 days 
and 150–365 days, from pembrolizumab initiation. We 
also took into account the number of patients for whom 
no disease progression was indicated during their 
follow-up period. As was mentioned above, from the 
practical point of view, the resolution of TTP predic-
tions should be as coarse as the planned CT/MRI scan-
ning schedule.

We categorized our predictions according to these 
time intervals, and generated a confusion table. To cal-
culate the corresponding value of the Cohen’s kappa 
(κ), we applied the multidimensional formula of War-
rens [43], who defines the proportion p1 of patients, 
whose simulated time interval of the TTP ( ts ) matched 
the reference one ( tr ). The proportion p1 is the ratio 
between the number of these patients, denoted 
NTTP(ts = tr) , and the total number of patients in the 
cohort ( N = 54):

The proportion of patients in each time interval is 
denoted p2 . It is calculated from the number of simu-
lated, and observed disease progression incidences 
in each time interval, denoted NTTP(ts) , and NTTP(tr) , 
respectively:

The multidimensional Cohen’s kappa ( κ ) is

The data in the confusion table can be categorized 
into six different outcomes, as follows:

1. Progressive disease was clinically evidenced by imag-
ing assessments, as well as predicted by the algo-
rithm, at the same time interval ( tr = ts).

2. The algorithm’s simulated TTP was predicted to pre-
cede the observed TTP ( ts < tr).

3. The algorithm’s simulated TTP was predicted to 
occur later than the observed TTP ( ts > tr).

4. Progressive disease was not clinically observed, but 
was predicted by the algorithm ( tr = 4; ts = 1, 2, 3).

5. Progressive disease was clinically observed, but was 
not predicted by the algorithm ( tr = 1, 2, 3; ts = 4).

(3)p1 ≡

4
∑

r,s=1

NTTP(tr = ts)

N
.

(4)p2 ≡

4
∑

ts ,tr=1

NTTP(ts)

N
·
NTTP(tr)

N
.

(5)κ =
p1 − p2

1− p2
.

Table 4 Availability of  measurements in  the  recruited 
patient dataset

Measurements of parameters that are potential covariates for determination of 
the personal models (Y/N refers to a test outcome)
a Sum of diameters of measurable lesions at the baseline, as defined by RECIST 
1.1 [40]

Potential covariate Availability (number 
of patients, out of 54)

Age 54

Breslow thickness 43

LDH 51

LY% 53

SOD at the  baselinea 54

Cutaneous malignant melanoma (Y/N) 52

Nodular melanoma (Y/N) 52

BRAF V600 mutation (Y/N) 46
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6. Progressive disease was neither observed nor pre-
dicted by the algorithm, during the follow-up period 
( tr = ts = 4).

Results
This section is divided into two parts. The first part 
describes the personalization algorithm and its develop-
ment, while the second part shows the predictions of the 
personal TTP of the patients, obtained by using the per-
sonalization algorithm.

The personalization algorithm
First, we outline the personalization algorithm we have 
developed for predicting response to pembrolizumab in a 
patient with advanced melanoma:

1. Input personal baseline data.

a. Tumor burden from imaging scans.
b. Primary tumor information.

2. Construct a personalized model by inputting the per-
sonal clinical data in the algorithm’s personalization 
functions and calculating the values of the personal 
parameters.

3. Input the calculated personal parameters in the per-
sonal model.

4. Simulate the personal model and extract the pre-
dicted tumor size, periodically, at predetermined 
time intervals, for example, every 3 months.

5. Determine disease state for each predicted tumor 
size, in conjunction with previously predicted tumor 
sizes and RECIST 1.1 criteria.

6. Determine the personal timing of progressive disease 
and the personal TTP.

Algorithm development: retrieving personal model 
parameters and evaluating TTP in the training set
The development of the above algorithm is described 
hereafter.

In the first stage of algorithm development we veri-
fied that the clinical information we have is sufficient 
for the training of the algorithm. We found that all four 
response categories of RECIST 1.1 are represented in the 
collected clinical information of our patient cohort, dur-
ing the follow-up period: (i) full response of the target 
lesions (e.g., Fig.  2a); (ii) shrinkage of the target lesions 
by more than 30% from baseline size (e.g., Fig.  2b); (iii) 
progression of the target lesions, indicated by an increase 
of ≥ 20% relative to the nadir (e.g., Fig.  2c); (iv) stabil-
ity in the size of the target lesions, not meeting the 

aforementioned conditions of shrinkage or progression 
(e.g., Fig. 2d). This information ensures that the training 
of the algorithm will be comprehensive. In the next stage 
we employed the longitudinal tumor size evaluations for 
retrieving the personal model parameters. This was done 
by fitting the model to the SOD time series, calculated 
from the clinical data (Fig. 2).

In order to estimate the goodness of the fit of the mod-
els, we compared between the clinically observed and the 
fitted tumor sizes of all the patients in the cohort (Fig. 3). 
Comparison of the absolute and  log-scaled sizes yielded 
 R2 = 0.94, and  R2 = 0.96, respectively.

We then compared the TTP derived from the fitting 
results to the clinically observed TTP, by counting the 
number of disease progression events in each one of four 
categories of time intervals, as described in  the “Meth-
ods” section, and summarized in Table 5.

From the histogram of the fitted apem values, we learned 
that the distribution of this parameter in the patient pop-
ulation is approximately log-normal (Fig. 4). This implies 
that lower values are more frequently encountered than 
large ones. Thus, in order to reduce the bias in the pre-
diction of this parameter, we applied a logarithmic trans-
formation to the values of apem.

Predictions of the personal models
As summarized in Tables 6, 7, we found that the value of 
apem is most correlative with the baseline SOD (Table 6), 
and the value of γmel is most correlative with Breslow 
thickness and the status of nodular melanoma (Table 7). 

We calculated the  R2 value of the parameter values 
derived by the k-NN algorithm versus the fitted ones, 
in order to estimate the goodness of fit. The value of 
 R2 = 0.47 obtained for the baseline SOD, refers to results 
of LOO CV. The plot of the fitted ln

(

apem
)

 value for each 
patient, versus the k-NN algorithm-derived value is 
shown in Fig. 5.

Using all the clinical factors listed in Table  4 to train 
and optimize a classification tree, and validating the clas-
sification by LOO CV, we found that the tree which most 
correctly classified the values of γmel was obtained from 
the data of Breslow thickness and status of nodular mela-
noma. The comparison between the classified and fitted 
values of γmel , with the use of these two covariates, are 
summarized Table 8.

Based on the above results we constructed the person-
alization functions, estimating the values of apem and γmel 
of each patient in the validation set, from the baseline 
SOD for apem , and Breslow tumor thickness, and status of 
nodular melanoma for γmel (Tables 6, 7). We completed 
the personalization algorithm by implementing in it the 
personalization functions.
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Prediction of the TTP using the personalization algorithm
We compared the predictions obtained by the person-
alization algorithm with the clinically measured tumor 
sizes in all patients. We evaluated the goodness of fit of 
the algorithm-predicted and clinically-measured tumor 
size, as shown in Fig. 6.

From the predicted tumor size dynamics, we also 
predicted the TTP, and compared it to the value esti-
mated according to the clinically assessed progression. 
Results are shown in  Table  9. The evaluation of the 
Cohen’s kappa, κ = 0.489, suggests a moderate agree-
ment between the prediction and clinical data.

For the patients who had progressive disease accord-
ing to our personalization algorithm, we compared the 
predicted TTP to the clinically observed one (Fig. 7). The 
results show moderate agreement of the predictions with 
the clinical observations  (R2 = 0.505).

Discussion
Treatment with ICB has proven successful, as it produces 
a significant clinical benefit in a subset of patients. How-
ever, identification of the potentially responsive patients 
before treatment initiation still remains a challenge, and 
the availability of personal response predictors has been 

pointed out as an unmet clinical need [44–47]. Here we 
showed that the personalization algorithm we developed 
can serve as a virtual response predictor in the clinic, 
along with clinical information about baseline tumor size, 
Breslow thickness, and the status of nodular melanoma. 
Taking into account the low life expectancy of untreated 
patients with advanced melanoma, and the involved side 
effects and high immunotherapy costs [48], the ability to 
pre-select patients for these treatments can significantly 
improve the quality of life of the patients.

The personalization algorithm we developed enables 
predictions of the time to progression, as defined by 
RECIST 1.1. Nowadays, the first response assessment 
in the clinic takes place at around 3  months into the 
treatment. As many patients progress within these first 
3  months [49–51], the algorithm predicting the TTP 
before treatment can save several months of administra-
tion of an incompatible and expensive drug. For patients 
who benefit from the treatment, the algorithm provides 
information on the duration of the response.

Prediction of the type and duration of response is a 
unique addition of this study to the knowledge gained 
from previously developed biomarkers for ICB. Several 
markers in the tumor microenvironment and peripheral 
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Fig. 2 Representative fitting results of patients, whose target lesions completely shrunk under treatment with pembrolizumab (a), shrunk by more 
than 30% from baseline size (b), increased by over 20%, relative to the nadir measurement (c), was stabilized, as determined when the conditions 
for disease progression, partial response, and complete response were not met (d). The ranges of the personalization parameters used for the 
simulation are specified in Table 3. SOD sum of diameters
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blood are associated with response to ICB in patients 
with malignant melanoma [52]. However, there is no way 
to quantify the relationships between the biomarker lev-
els and the expected response, as yet. For example, eleva-
tion of the baseline LDH level is associated with shorter 
overall survival (OS) of patients with malignant mela-
noma under anti-PD-1 treatments [53]. However, the 
survival time of individual patients cannot be predicted 
by this marker. In our study, clinical disease progression 

was observed in all patients who had an elevated LDH 
level before treatment onset and more than 10% increase 
of the LDH level on the first CT scan (11 out of 29, 38%). 
In contrast, disease progression occurred in only 4 out of 
18 patients who initially had elevated LDH levels, but less 
than 10% LDH change from baseline on the first CT scan. 
Therefore, the change from baseline of LDH levels can 
serve to predict disease progression within the first year 
of ICB initiation, but for many patients, the prediction 
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Fig. 3 Fitting results of the model‑simulated tumor size in the patients’ cohort (N = 54), with the clinically observed tumor sizes. a Each point 
shows the fitted versus the clinically measured sum of diameters (SOD) of a patient, at the time an imaging assessment took place in the clinic. 
The observed SOD on the reference line equals to the fitted values. The personalization parameter ranges used for the simulation are specified in 
Table 3, and the values of the other model parameters are summarized in Table 1. Numerical analyses and simulations were performed using the 
ode15s Runge–Kutta ODE solver of Matlab R2016a (The Mathsworks, UK). From the initial time of the simulation (t = 0) to the time of treatment 
initiation (t = t1), the model in Tsur et al. [39], was simulated, and from  t1 until the end of the simulation period, the model in Eq. (1) was simulated. 
The effect of pembrolizumab on the immune system and tumor was implemented here by the parameters apem and bpem . b Fitted versus observed 
SOD on a log scale. Values of 0 were excluded from the dataset for calculation of R‑squared

Table 5 Model-simulated versus clinically- measured TTP

The simulated TTP (Simul.) was obtained by fitting the simulations of the mathematical model in Eq. (1) to the clinical results (Clinic.). The cells in the table include the 
number of cases and the percentage of the total number of patients in the cohort, (in brackets; N = 54), which satisfy one of the six possible outcomes described in 
the “Methods” section. The italicized numbers represent the number of cases, for which the algorithm correctly predicted whether progression will occur, and correctly 
predicted the time interval during which progression would occur; Cohen’s κ = 0.773

Simul. TTP Clinic. TTP

0–90 days 90–150 days 150–365 days No progressive 
disease 
during follow-up

0–90 days 8 (14.8%) 0 (0%) 2 (3.7%) 0 (0%)

90–150 days 0 (0%) 3 (5.6%) 0 (0%) 0 (0%)

150–365 days 0 (0%) 0 (0%) 2 (3.7%) 0 (0%)

No progressive disease during 
follow‑up

2 (3.7%) 1 (1.85%) 1 (1.85%) 35 (64.8%)
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does not considerably precede the detection of progres-
sion by imaging scans. Another study reports that an 
increase in tumor burden of less than 20% from baseline, 

during 3  months into treatment with pembrolizumab, 
is associated with longer OS of patients with advanced 
melanoma [54]. However, we note the difficulty in using 
early increase in tumor load as a response predictor, as 
this increase can be detected only a while after the ini-
tiation of  treatment, when patients may have already 
experienced disease progression. The ability to predict 
ICB treatment outcomes before treatment, by use of our 
suggested personalization algorithm, can be a significant 
contribution to the currently available methodologies for 
response evaluation.

Our results show that the Breslow thickness, the base-
line tumor burden, and the status of nodular melanoma 
can serve as markers for TTP prediction under pem-
brolizumab, when integrated and processed by our per-
sonalization algorithm. We found that different values of 

Fig. 4 Histogram of apem values, obtained from fitting of the mathematical model to the clinically observed tumor size. The initial range of apem for 
the fit is defined in Table 3. a Absolute values of apem . b Transformed values of ln

(

apem
)

Table 6 Pearson correlations between the values of model 
parameter ln

(

apem
)

 and the clinical personal measures

Among the tested clinical measures, the baseline sum of diameters (SOD) was 
found to be most significantly correlated with ln

(

apem
)

 (in italics)

Potential clinical covariate Pearson 
correlation 
coefficient

Significance (p-value)

Age 0.051 0.77

Breslow thickness − 0.089 0.53

LDH − 0.573 9.2 × 10−6

LY% 0.370 0.01

SOD at the baseline − 0.703 3.5 × 10−9

Table 7 (a) Correlations between γmel and clinical measures, with multiple potential values. (b) Correlations between γmel 
and binary covariates

The maximal AUC and Cohen’s kappa (κ) values, obtained from ROC analysis (in italics) were obtained for Breslow thickness (see “Methods”)

(a) γmel and clinical measures (b) γmel and binary covariates

Biomarker ROC AUC Maximal Cohen’s kappa (κ) Biomarker Cohen’s 
kappa 
(κ)

Age 0.56 0.219 Malignant melanoma status 0.185

Breslow thickness 0.63 0.304 Nodular melanoma status 0.258

LDH 0.52 0.128 BRAF V600 status 0.124

LY% 0.52 0.156

SOD at the baseline 0.61 0.251
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Breslow thickness and status of nodular melanoma are 
associated with different rates of tumor growth. Breslow 
thickness has been known as a prognostic biomarker for 
melanoma [55, 56], and here we show that it has a predic-
tive power. Using the baseline tumor burden as a poten-
tial biomarker is supported by Joseph et  al. [57], who 
analyzed the relationships between baseline tumor bur-
den and overall survival of 583 patients with advanced 
melanoma under pembrolizumab. In addition, the 
peripheral blood from patients with advanced melanoma 
has been analyzed, showing that response to pembroli-
zumab is associated with the ratio between the baseline 
tumor burden and the reinvigoration of effector CD8+ T 
cells [42].

Using a small patient cohort (54 patients) for its train-
ing, our personalization algorithm yields moderately 
accurate predictions. We believe that by increasing 
the size of the training set we will significantly improve 
the performance of the regression and classification 
we employed for identification of the individual model 
parameters. Yet, considering the limited clinical informa-
tion and the simple mathematical model implemented at 
the core of the algorithm, the results are encouraging.

One of the major problems in medical biomathemat-
ics is its failure to propose algorithms that can be of 
aid in the medical practice. Specifically, the two signifi-
cant hurdles to mathematical models of cancer growth 
becoming clinically useful, are that in most of the mod-
els the required input information cannot be extracted 
in a straightforward manner from data that are routinely 
collected in the clinics, and that in most cases, the out-
put information is not instructive for the physician’s 
decision-making process. Wishing to overcome these 
shortcomings, we developed our algorithm and tested 
it using data that are routinely collected in the clinics, 
namely, the sum of diameters (SOD) or sum of the long-
est diameters (SLD), as prescribed by the RECIST 1.1. In 
our case, we could increase the physical and mechanistic 
realism of the description of tumor growth by asking the 
radiologists to measure, with little additional effort, more 
informative tumor size parameters than SOD. But the 
current standards in the field involve longitudinal meas-
urement of SOD, and as our goal commands, we wish 
to adjust our tools to the reality in the field, rather than 
developing an idealized solution.

By the same token, our discretization policy, inevita-
bly, entails loss of information. Treating oncologists do 
not evaluate the patient’s disease progression status con-
tinuously, but rather, every 2–4 months, using the costly 
imaging technology (CT/MRI). As stated above, our 
goal was to generate clinically relevant output. For that 
it would be sufficient to align the prediction of disease 
progression with the time of its effective substantiation 
by imaging. For this reason, the resolution of TTP pre-
dictions is as coarse as the planned CT/MRI scanning 
schedule. Still, it would be of a significant help to the doc-
tor to know whether the patient is expected to progress 
early, or will have moderately long TTP, or a very long 
TTP, as evaluated by RECIST1.1. The discrete categories 
of TTP used in this study roughly correspond to these 
possibilities of response duration.

As one can note, most of the recruited patients are 
non-progressing (censored). Our approach is to use their 
longitudinal lesion sizes for model training and valida-
tion, so that they have the same weight as the progressing 
patients in the major part of the work. We then sorted 
the censored patients as a separate category, checking 
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Fig. 5 Patient‑specific values of ln
(

apem
)

 , as obtained from fitting 
the mathematical model to the data of each patient in the training 
set, versus the estimated values of ln

(

apem
)

 by a Leave‑One‑Out 
cross‑validation (COO CV) of the k‑NN algorithm. Each point 
represents the parameter values of one patient and the reference 
line satisfies equality between the fitted and regression‑derived 
parameter values (see “Methods” section)

Table 8 Confusion table for the classification of the model 
parameter, γmel

The parameter γmel can take on two numerical values, namely 0.005 day−1 (value 
1), or 0.003269 day−1 (value 2). Presented in the table are the number of cases 
in which value 1 of γmel was fitted, and identified as value 1 by the classification 
algorithm (true positive; upper-left cell), or value 2 (false negative; lower left 
cell), and the number of cases in which value 2 of γmel was fitted, as well as 
classified as value 2 (true negative; right lower cell), or misclassified as value 1 
(false positive; right upper cell). The calculated Cohen’s kappa, κ , suggests a fair 
agreement of predictions to fitting results

κ = 0.222 Fitted value of γmel

Value 1 Value 2

Classification‑derived value of γmel

 Value 1 19 13

 Value 2 8 14
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whether the model had not falsely predicted progression 
for them during the follow-up period. The alternative way 
for taking account of censored patients is to construct the 
survival curves, e.g., by the Kaplan–Meier method, and 
to use log-rank tests or Cox regression for analysis. The 
latter methodology would be more suitable if we wished 
to compare two different populations, and to compare 
between individuals over the whole patient group.

Model simplicity is a prerequisite for generating a ben-
eficial algorithm, since it requires to evaluate only a small 
number of personal parameters. A more complex model 
would entail the evaluation of a relatively large number of 

clinical measurements in the patients for determining the 
personal models. It should be borne in mind, also,  that 
our evaluation of disease progression was not required to 
be more sensitive than that of RECIST 1.1, which takes 
into account only significant changes in tumor load. Our 
simple model is well suited for the estimation of similarly 
rough changes in disease progression.

One of the limitations of the personalization algorithm 
developed here is that it uses the RECIST 1.1 criteria, 
which include the appearance of new lesions. This option 
was not evaluated in our algorithm and we determined 
disease progression only by the change in size of the 
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Fig. 6 Comparison between the sum of diameters (SOD), derived by the personalization algorithm, and the value measured from imaging 
assessments, at each clinically measured time point, for all patients, presented on a normal scale (a), and on a log scale (b). The reference line marks 
equality between the fitted and predicted SOD values. Values of 0 were excluded from the dataset for calculation of R‑squared

Table 9 Personal predictions of TTP

Comparison between the TTP derived from model predictions (pred.) of the personalization algorithm, and the clinically measured (clinic.) TTP. Each cell includes the 
number of cases and percentage from the total number of patients in the cohort (in brackets; N = 54), which satisfy one of the six possible outcomes (see “Methods”). 
The italicized numbers represent the number of cases for which the algorithm correctly predicted whether disease progression will occur, and correctly predicted 
the time interval in which it occured. Note that our algorithm predicted no progression during the 1-year follow-up period for 30 out of the 35 patients who had not 
shown clinical progression during that period (bottom right cell).  Cohen’s κ = 0.489

Pred. TTP Clinic. TTP

0–90 days 90–150 days 150–365 days No progressive 
disease 
during follow-up

0–90 days 6 (11.1%) 0 (0%) 2 (3.7%) 2 (3.7%)

90–150 days 0 (0%) 2 (3.7%) 0 (0%) 3 (5.6%)

150–365 days 0 (0%) 0 (0%) 1 (1.8%) 0 (0%)

No progressive disease during 
follow‑up

4 (7.4%) 2 (3.7%) 2 (3.7%) 30 (55.6%)
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target lesions between following imaging scans. Inspect-
ing the clinical patient data, we noted that in about 50% 
of those in whom new lesions were detected, treatment 
by pembrolizumab was continued after detection, prac-
tically implying that often clinicians do not consider the 
new lesion criterion as progressive disease. This finding 
is in line with the recent understanding that formation of 
new lesions under immunotherapy does not necessarily 
indicate actual progressive disease [58, 59]. Indeed, in the 
recently developed immune-related RECIST (irRECIST) 
criteria, pertinent to immunotherapy, appearance of new 
lesions is not a criterion for progressive disease [54]. The 
indicated response is then “unconfirmed progressive dis-
ease”, and validation is required in another imaging scan, 
at least 4 weeks later. Adaptation of our algorithm to the 
irRECIST criteria will be made upon clinical validation of 
these criteria as part of the clinical follow-up routine.

Future recommendations for improving the predictive 
power of our personalization algorithm include training 
by a larger dataset, as well as validation of the algorithm 
by clinical data from an independent dataset. Following 
improvements in the prediction accuracy, our algorithm 
can be used as a tool in selecting personal treatment. In 
addition, our innovative methodology can be adapted to 
other available immunotherapies, including anti-CTLA-4, 
anti-PD-1 combination, or other immunotherapies when 
becoming clinically available. Taken together, this study 
demonstrates that using computational algorithms for 
predicting the response to immunotherapy in patients 
with metastatic melanoma is feasible in the clinical realm.

Conclusions
Our results suggest that personalization of a mathemati-
cal mechanistic model by various clinical and molecular 
pretreatment measurements, can serve for predicting 
TTP in the clinical setting. Using the developed algo-
rithm to predict the TTP before immunotherapy appli-
cation can guide the physician decision-making, save 
several months of administration of an incompatible 
drug, and significantly improve the quality of life of the 
patients. Following validation by a new dataset of pem-
brolizumab-treated patients with advanced melanoma, 
our algorithm will serve as a tool in the decision-making 
process of treating physicians. In the future, our algo-
rithm can be adapted to other available therapies, by 
adjustment of the mathematical mechanistic model, 
using pertinent clinical data.

Abbreviations
ICB: immune checkpoint blockers; CTLA‑4: cytotoxic T‑lymphocyte anti‑
gen 4; CT: computed tomography; PD‑1: programmed cell death 1; PD‑L1: 
programmed death‑ligand 1; ADT: androgen deprivation therapy; TTP: time to 
disease progression; APCs: antigen‑presenting cells; TILs: effector CD8+ tumor 
infiltrating lymphocytes; HMC: Hadassah Medical Center; UMM: University 
Medical Center Mannheim; PET‑CT: Positron Emission Tomography CT; MRI: 
magnetic resonance imaging; RECIST 1.1: Response Evaluation Criteria In Solid 
Tumors; SOD: sum of diameters; LDH: lactate dehydrogenase; LY%: relative 
counts of blood lymphocytes; ROC: receiver operating characteristic; k‑NN: 
K‑Nearest Neighbors; LOO CV: Leave‑One‑Out cross validation; OS: overall 
survival; irRECIST: immune‑related RECIST.

Acknowledgements
We thank Marina Kleiman (Optimata Ltd.) for participating in the clinical trial 
design and execution; Christoffer Gebhardt, and Mirko Gries (UMM) for sharing 
clinical knowledge; Christoffer Gebhardt, Mirko Gries, Beate Eisenecker, Chris‑
tianne Schmidt, Carmen Weiler, and Yvonne Nowak (UMM), Tamar Hamburger 
and Hani Steinberg (HMC) for assisting in data collection.

Authors’ contributions
NT developed the mathematical model described in this study, collected the 
clinical data at UMM and HMC, analyzed the data, developed the algorithm, 
and was a major contributor in the writing of the manuscript. ZA supervised 
the project, planned the algorithm, participated in its development, and wrote 
the paper. YK participated in supervising the project, planning and developing 
the algorithm, and revised the paper. EAK performed the tumor size assess‑
ments from imaging scans of the patients at HMC. DV and NV performed the 
tumor size assessments from imaging scans of the patients at UMM. JU, and 
ML assisted to receive permission to access to the patient data at UMM, and 
HMC, respectively. In addition, both of them provided general support during 
the clinical data collection, and contributed their clinical knowledge to the 
data analysis. All authors read and approved the final manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020 
research and innovation program under the Marie Skłodowska‑Curie Grant 
Agreement No. 642295 (MEL‑PLEX).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Ethics approval and consent to participate
The data collection in this study was retrospective. It was approved and 
registered as a retrospective clinical trial (ClinicalTrials gov identifier: 
NCT02581228), according to the requirements of the Helsinki Committee at 

50 100 150 200 250 300 350

Observed TTP [days]

50

100

150

200

250

300

350

P
re

di
ct

ed
 T

T
P

 [d
ay

s]

R-squared = 0.505

Fig. 7 Comparison between the predicted time to progression (TTP) 
and the measured clinical TTP, including only the cases in which 
disease progression was determined clinically, as well as by the 
personalization algorithm. Points on the reference line satisfy equality 
between the observed and computationally derived TTP



Page 14 of 15Tsur et al. J Transl Med          (2019) 17:338 

HMC (0403‑15‑HMO), and upon signing a secrecy declaration prior to data 
retrieval at UMM.

Consent for publication
Not applicable.

Competing interests
ZA holds 15% shares in Optimata. Other authors declare that they have no 
competing interests.

Author details
1 Optimata Ltd., Hate’ena St. 10, POB 282, 6099100 Bene‑Ataroth, 
Israel. 2 Institute for Medical BioMathematichs (IMBM), Hate’ena St. 10, 
6099100 Bene‑Ataroth, Israel. 3 Hadassah Hebrew University Medical Center, 
Kiryat Hadassah, PO Box 12000, 91120 Jerusalem, Israel. 4 Institute of Clini‑
cal Radiology and Nuclear Medicine, University Medical Center Mannheim, 
Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. 
5 Medical Faculty Mannheim of Heidelberg University, Theodor‑Kutzer‑Ufer 
1‑3, 68167 Mannheim, Germany. 6 German Cancer Research Center (DKFZ), 
Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. 7 Present Address: 
Radiology Department, Maccabi Healthcare Services, Yigal Alon Street 96, Tel 
Aviv, Israel. 8 Present Address: Netzwerk Radiologie, Kantonsspital St. Gallen, 
Rorschacher Strasse 95, 9007 St. Gallen, Switzerland. 

Received: 6 March 2019   Accepted: 23 September 2019

References
 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 

2018;68:7–30.
 2. Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: 

the role of physician examination and self‑examination of the skin. CA 
Cancer J Clin. 1985;35:130–51.

 3. Terushkin V, Halpern AC. Melanoma early detection. Hematol/Oncol Clin. 
2009;23:481–500.

 4. Schadendorf D, van Akkooi AC, Berking C, Griewank KG, Gutzmer R, Haus‑
child A, Stang A, Roesch A, Ugurel S. Melanoma. Lancet. 2018;392:971–84.

 5. Ott PA, Hodi FS, Robert C. CTLA‑4 and PD‑1/PD‑L1 blockade: new immu‑
notherapeutic modalities with durable clinical benefit in melanoma 
patients. Clin Cancer Res. 2013;19:5300–9.

 6. Pardoll DM. The blockade of immune checkpoints in cancer immuno‑
therapy. Nat Rev Cancer. 2012;12:252–64.

 7. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, 
Gonzalez R, Robert C, Schadendorf D, Hassel JC. Improved survival 
with ipilimumab in patients with metastatic melanoma. N Engl J Med. 
2010;363:711–23.

 8. Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, Water‑
field W, Schadendorf D, Smylie M, Guthrie T. Ipilimumab monotherapy 
in patients with pretreated advanced melanoma: a randomised, 
double‑blind, multicentre, phase 2, dose‑ranging study. Lancet Oncol. 
2010;11:155–64.

 9. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, 
Carlino MS, McNeil C, Lotem M. Pembrolizumab versus ipilimumab in 
advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

 10. Schachter J, Ribas A, Long GV, Arance A, Grob J‑J, Mortier L, Daud A, 
Carlino MS, McNeil C, Lotem M. Pembrolizumab versus ipilimumab 
for advanced melanoma: final overall survival results of a multicen‑
tre, randomised, open‑label phase 3 study (KEYNOTE‑006). Lancet. 
2017;390:1853–62.

 11. Larkin J, Chiarion‑Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, 
Schadendorf D, Dummer R, Smylie M, Rutkowski P. Combined nivolumab 
and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 
2015;373:23–34.

 12. Wolchok JD, Chiarion‑Sileni V, Gonzalez R, Rutkowski P, Grob J‑J, Cowey 
CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF. Overall survival with 
combined nivolumab and ipilimumab in advanced melanoma. N Engl J 
Med. 2017;377:1345–56.

 13. Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, Hwu W‑J, 
Weber JS, Gangadhar TC, Joseph RW. Durable complete response after 

discontinuation of pembrolizumab in patients with metastatic mela‑
noma. J Clin Oncol. 2017;36(17):1668–74.

 14. Wang Q, Gao J, Wu X. Pseudoprogression and hyperprogression after 
checkpoint blockade. Int Immunopharmacol. 2018;58:125–35.

 15. Fusi A, Festino L, Botti G, Masucci G, Melero I, Lorigan P, Ascierto PA. 
PD‑L1 expression as a potential predictive biomarker. Lancet Oncol. 
2015;16:1285–7.

 16. Sunshine J, Taube JM. PD‑1/PD‑L1 inhibitors. Curr Opin Pharmacol. 
2015;23:32–8.

 17. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, 
Simeone E, Mangana J, Schilling B, Di Giacomo A‑M. Baseline biomarkers 
for outcome of melanoma patients treated with pembrolizumab. Clin 
Cancer Res. 2016;22(22):5487–96.

 18. Nosrati A, Tsai KK, Goldinger SM, Tumeh P, Grimes B, Loo K, Algazi AP, 
Nguyen‑Kim TDL, Levesque M, Dummer R. Evaluation of clinicopathologi‑
cal factors in PD‑1 response: derivation and validation of a prediction 
scale for response to PD‑1 monotherapy. Br J Cancer. 2017;116:1141.

 19. Dronca RS, Liu X, Harrington SM, Chen L, Cao S, Kottschade LA, McWil‑
liams RR, Block MS, Nevala WK, Thompson MA. T cell Bim levels reflect 
responses to anti‑PD‑1 cancer therapy. JCI Insight. 2016;1:e86014.

 20. Chen P‑L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, 
Bassett RL, Gopalakrishnan V, Wani K. Analysis of immune signatures in 
longitudinal tumor samples yields insight into biomarkers of response 
and mechanisms of resistance to immune checkpoint blockade. Cancer 
Discov. 2016;6:827–37.

 21. Jacquelot N, Roberti M, Enot D, Rusakiewicz S, Ternès N, Jegou S, Woods 
D, Sodré A, Hansen M, Meirow Y. Predictors of responses to immune 
checkpoint blockade in advanced melanoma. Nat Commun. 2017;8:592.

 22. Agur Z, Halevi‑Tobias K, Kogan Y, Shlagman O. Employing dynamical 
computational models for personalizing cancer immunotherapy. Expert 
Opin Biol Ther. 2016;16:1373–85.

 23. Kogan Y, Halevi‑Tobias K, Elishmereni M, Vuk‑Pavlović S, Agur Z. Reconsid‑
ering the paradigm of cancer immunotherapy by computationally aided 
real‑time personalization. Cancer Res. 2012;72:2218–27.

 24. Elishmereni M, Kheifetz Y, Shukrun I, Bevan GH, Nandy D, McKenzie KM, 
Kohli M, Agur Z. Predicting time to castration resistance in hormone 
sensitive prostate cancer by a personalization algorithm based on a 
mechanistic model integrating patient data. Prostate. 2016;76:48–57.

 25. Agur Z, Vuk‑Pavlovic S. Mathematical modeling in immunotherapy of 
cancer: personalizing clinical trials. Mol Ther. 2012;20:1–2.

 26. Agur Z, Vuk‑Pavlovic S. Personalizing immunotherapy: balancing predict‑
ability and precision. Oncoimmunology. 2012;1:1169–71.

 27. Barrio MM, Abes R, Colombo M, Pizzurro G, Boix C, Roberti MP, Gelize 
E, Rodriguez‑Zubieta M, Mordoh J, Teillaud J‑L. Human macrophages 
and dendritic cells can equally present MART‑1 antigen to CD8+ T cells 
after phagocytosis of gamma‑irradiated melanoma cells. PLoS ONE. 
2012;7:e40311.

 28. Von Euw EM, Barrio MM, Furman D, Bianchini M, Levy EM, Yee C, Li Y, 
Wainstok R, Mordoh J. Monocyte‑derived dendritic cells loaded with a 
mixture of apoptotic/necrotic melanoma cells efficiently cross‑present 
gp100 and MART‑1 antigens to specific CD8+ T lymphocytes. J Transl 
Med. 2007;5:19.

 29. Lee T‑H, Cho Y‑H, Lee M‑G. Larger numbers of immature dendritic cells 
augment an anti‑tumor effect against established murine melanoma 
cells. Biotechnol Lett. 2007;29:351–7.

 30. de Pillis L, Gallegos A, Radunskaya A. A model of dendritic cell therapy for 
melanoma. Front Oncol. 2013;3:56.

 31. Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM, Bocharov G. 
Determining control parameters for dendritic cell‑cytotoxic T lymphocyte 
interaction. Eur J Immunol. 2004;34:2407–18.

 32. Bossi G, Gerry AB, Paston SJ, Sutton DH, Hassan NJ, Jakobsen BK. Examin‑
ing the presentation of tumor‑associated antigens on peptide‑pulsed T2 
cells. Oncoimmunology. 2013;2:e26840.

 33. Taylor GP, Hall SE, Navarrete S, Michie CA, Davis R, Witkover AD, Rossor 
M, Nowak MA, Rudge P, Matutes E, et al. Effect of lamivudine on human 
T‑cell leukemia virus type 1 (HTLV‑1) DNA copy number, T‑cell phenotype, 
and anti‑tax cytotoxic T‑cell frequency in patients with HTLV‑1‑associated 
myelopathy. J Virol. 1999;73:10289–95.

 34. Carlson JA. Tumor doubling time of cutaneous melanoma and its metas‑
tasis. Am J Dermatopathol. 2003;25:291–9.



Page 15 of 15Tsur et al. J Transl Med          (2019) 17:338 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 35. Kuznetsov VA. A mathematical model for the interaction between cyto‑
toxic T lymphocytes and tumour cells. Analysis of the growth, stabiliza‑
tion, and regression of a B‑cell lymphoma in mice chimeric with respect 
to the major histocompatibility complex. Biomed Sci. 1991;2:465–76.

 36. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics 
of immunogenic tumors: parameter estimation and global bifurcation 
analysis. Bull Math Biol. 1994;56:295–321.

 37. Kuznetsov VA, Zhivoglyadov VP, Stepanova LA. Kinetic approach and esti‑
mation of the parameters of cellular interaction between the immunity 
system and a tumor. Arch Immunol Ther Exp (Warsz). 1993;41:21–31.

 38. Kronik N, Kogan Y, Elishmereni M, Halevi‑Tobias K, Vuk‑Pavlovic S, Agur Z. 
Predicting outcomes of prostate cancer immunotherapy by personalized 
mathematical models. PLoS ONE. 2010;5:e15482.

 39. Tsur N, Kogan Y, Rehm M, Agur Z. Response of patients with melanoma 
to immune checkpoint blockade – insights gleaned from analysis of a 
new mathematical mechanistic model. J Theor Biol. 2019. https ://doi.
org/10.1016/j.jtbi.2019.11003 3.

 40. Eisenhauer E, Therasse P, Bogaerts J, Schwartz L, Sargent D, Ford R, 
Dancey J, Arbuck S, Gwyther S, Mooney M. New response evaluation cri‑
teria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 
2009;45:228–47.

 41. Joseph WL, Morton DL, Adkins PC. Variation in tumor doubling time in 
patients with pulmonary metastatic disease. J Surg Oncol. 1971;3:143–9.

 42. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, 
Harmon S, Giles JR, Wenz B. T‑cell invigoration to tumour burden ratio 
associated with anti‑PD‑1 response. Nature. 2017;545(7652):60.

 43. Warrens MJ. A comparison of Cohen’s kappa and agreement coefficients 
by Corrado Gini. Int J. 2013;16:7.

 44. Fujii T, Naing A, Rolfo C, Hajjar J. Biomarkers of response to immune 
checkpoint blockade in cancer treatment. Crit Rev Oncol/Hematol. 
2018;130:108–20.

 45. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 
2015;348:56–61.

 46. Garrido MJ, Berraondo P, Trocóniz IF. Commentary on pharmacometrics 
for immunotherapy. CPT: Pharmacomet Syst Pharmacol; 2016.

 47. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune‑check‑
point blockade: response evaluation and biomarker development. Nat 
Rev Clin Oncol. 2017;14:655.

 48. Kohn CG, Zeichner SB, Chen Q, Montero AJ, Goldstein DA, Flowers CR. 
Cost‑effectiveness of immune checkpoint inhibition in BRAF wild‑type 
advanced melanoma. J Clin Oncol. 2017;35:1194.

 49. Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, 
Patnaik A, Hwu W‑J, Weber JS. Association of pembrolizumab with tumor 
response and survival among patients with advanced melanoma. JAMA. 
2016;315:1600–9.

 50. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, 
Joshua AM, Hwu W‑J, Gangadhar TC. Anti‑programmed‑death‑receptor‑1 
treatment with pembrolizumab in ipilimumab‑refractory advanced mela‑
noma: a randomised dose‑comparison cohort of a phase 1 trial. Lancet. 
2014;384:1109–17.

 51. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi 
FS, Schachter J, Pavlick AC, Lewis KD. Pembrolizumab versus investigator‑
choice chemotherapy for ipilimumab‑refractory melanoma (KEYNOTE‑002): 
a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.

 52. Kitano S, Nakayama T, Yamashita M. Biomarkers for immune checkpoint 
inhibitors in malignant melanoma. Front Oncol. 2018;8:270.

 53. Diem S, Kasenda B, Spain L, Martin‑Liberal J, Marconcini R, Gore M, 
Larkin J. Serum lactate dehydrogenase as an early marker for outcome 
in patients treated with anti‑PD‑1 therapy in metastatic melanoma. Br J 
Cancer. 2016;114:256.

 54. Nishino M, Giobbie‑Hurder A, Manos MP, Bailey N, Buchbinder EI, Ott 
PA, Ramaiya NH, Hodi FS. Immune‑related tumor response dynam‑
ics in melanoma patients treated with pembrolizumab: identifying 
markers for clinical outcome and treatment decisions. Clin Cancer Res. 
2017;23(16):4671–9.

 55. Breslow A. Thickness, cross‑sectional areas and depth of invasion in the 
prognosis of cutaneous melanoma. Ann Surg. 1970;172:902.

 56. Morton DL, Davtyan DG, Wanek LA, Foshag LJ, Cochran AJ. Multivari‑
ate analysis of the relationship between survival and the microstage 
of primary melanoma by Clark level and Breslow thickness. Cancer. 
1993;71:3737–43.

 57. Joseph RW, Elassaiss‑Schaap J, Kefford R, Hwu WJ, Wolchok JD, Joshua 
AM, Ribas A, Hodi FS, Hamid O, Robert C, Daud A, Dronca R, Hersey P, 
Weber JS, Patnaik A, de Alwis DP, Perrone A, Zhang J, Kang SP, Ebbinghaus 
S, Anderson KM, Gangadhar TC. Baseline tumor size is an independent 
prognostic factor for overall survival in patients with melanoma treated 
with pembrolizumab. Clin Cancer Res. 2018;24(20):4960–7.

 58. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, Maio M, 
Binder M, Bohnsack O, Nichol G. Guidelines for the evaluation of immune 
therapy activity in solid tumors: immune‑related response criteria. Clin 
Cancer Res. 2009;15:7412–20.

 59. Hodi FS, Hwu W‑J, Kefford R, Weber JS, Daud A, Hamid O, Patnaik A, Ribas 
A, Robert C, Gangadhar TC. Evaluation of immune‑related response cri‑
teria and RECIST v1. 1 in patients with advanced melanoma treated with 
pembrolizumab. J Clin Oncol. 2016;34:1510–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jtbi.2019.110033
https://doi.org/10.1016/j.jtbi.2019.110033

	Predicting response to pembrolizumab in metastatic melanoma by a new personalization algorithm
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Mathematical mechanistic model
	Patients
	Inclusion criteria
	Exclusion criteria
	Imaging data
	Response evaluation

	Development of the personalization algorithm
	Selection of the personal model parameters
	Creating the personal models
	Analysis of the TTP results

	Results
	The personalization algorithm
	Algorithm development: retrieving personal model parameters and evaluating TTP in the training set
	Predictions of the personal models
	Prediction of the TTP using the personalization algorithm

	Discussion
	Conclusions
	Acknowledgements
	References




