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Abstract
Background: To compare the adhesion properties and biofilm- forming capabilities of 
27 Candida isolates obtained from catheter- related candidemia patients and to evalu-
ate the inhibitory effects of antifungal agents on different Candida species.
Material and Methods: Seven C. albicans, six C. parapsilosis, five C. guilliermondii, five 
C. tropicalis, and four C. glabrata clinical isolates were investigated. We quantified the 
adherence of these Candida species by flow cytometric method and evaluated the 
formation	of	biofilms	by	XTT	 reduction	and	crystal	 violet	methods.	Actions	of	mi-
cafungin	(MF),	fluconazole	(FZ),	and	N-	acetylcysteine	(NAC)	on	the	adhesion	and	bio-
film formation of different Candida species were determined.
Results: Non- albicans Candida species were demonstrated to have stronger adhe-
sion abilities compared with C. albicans. The biofilm- forming capabilities of different 
Candida species were varied considerably, and the degree of biofilm formation might 
be affected by different assay approaches. Interestingly, C. parapsilosis displayed the 
highest biofilm formation abilities, while C. glabrata exhibited the lowest total bio-
mass	and	metabolic	activity.	Furthermore,	the	inhibitory	activities	of	MF,	FZ,	and	NAC	
on fungal adhesion and biofilm formation were evaluated, and the results indicated 
that	MF	could	reduce	the	adhesion	ability	and	biofilm	metabolism	more	significantly	
(p < 0.05), and its antifungal activity was elevated in a dose- dependent manner.
Conclusion: Non- albicans Candida species, especially C. guilliermondii, C. tropicalis, and 
C. parapsilosis, exhibited higher adhesion ability in catheter- related candidemia pa-
tients. However, these Candida	 species	had	varied	biofilm-	forming	capabilities.	MF	
tended to have stronger inhibitory effects against both adhesion and biofilm forma-
tion of different Candida species.
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1  |  INTRODUC TION

Candida species are presently ranked as a top cause of bloodstream 
infections (BSIs) with high mortality and morbidity.1- 6 Candidemia is 
highly associated with the formation of biofilms on central venous 
catheters (CVCs), which can provide adhesion surfaces for Candida 
species	to	colonize	and	form	biofilms,	thus	contributing	to	BSIs.4,7- 9

An	epidemiological	shift	has	been	reported	in	the	past	decades.	
Although	Candida albicans (C. albicans) remains dominant in blood-
stream, non- albicans Candida species (e.g., C. parapsilosis, C. tropi-
cals, and C. glabrata)	have	been	gradually	recognized.10- 13	As	one	of	
the major non- albicans Candida species, C. parapsilosis was found in 
patients with central line- associated candidemia, and CVC- related 
candidemia was more likely to be biofilm positive.14- 17

Biofilm- forming Candida species are more resistant to antimicrobial 
agents 18- 22, hence, the development of Candida biofilms on medical 
implant	devices	can	trigger	an	 intractable	clinical	problem.	Although	
most studies have focused on the biofilms formed by C. albicans,18,23- 25 
there is little information available on non- albicans Candida biofilms. 
Recently, Pannanusorn et al 26 found that biofilms, as a major virulence 
determinant, could be more beneficial for non- albicans Candida species 
rather than C. albicans. Given that non- albicans Candida are resistant to 
fluconazole,	 the	antifungal	activity	of	other	antifungal	agents	during	
biofilm growth remains largely unknown.

This research aimed to compare the adhesion properties, biofilm 
formation, and sensitivities of 27 clinical Candida isolates toward 
antifungal agents and to evaluate the adhesion abilities and biofilm- 
forming capabilities of different Candida species.

2  |  MATERIAL S AND METHODS

2.1  |  Definitions and microbiologic methods

Patients with catheter- related bloodstream infections (CRBSIs) were 
defined based on the current recommendations.27- 31 (i) Blood cultures 
from two body sites were positive for Candida species, along with 
clinical manifestations of yeast infection. (ii) Blood cultures and the 
catheter tip culture should be performed simultaneously, and both sites 
should	be	colonized	with	the	same	Candida species or the quantitative 
blood	culture	of	 the	CVC	 tip	 sample	 showed	a	≥5-	fold	greater	CFU	
counts	 than	 the	 concurrent	 peripheral	 vein	 culture.	 All	 clinical	
isolates were cultured in accordance with the standard microbiologic 
method.	Approval	for	the	protocol	was	obtained	from	the	local	Ethics	
Committee at Renmin Hospital of Wuhan University (RHWU).

2.2  |  Strains

Twenty- seven Candida isolates, including seven C. albicans, 
six C. parapsilosis, five C. guilliermondii, five C. tropicalis, and 
four C. glabrata, causing CRBSIs were evaluated for their 
adhesion properties, biofilm- forming capabilities, and antifungal 

susceptibilities.	All	Candida isolates were obtained from ICU patients 
in Renmin Hospital of Wuhan University (Table S1). C. parapsilosis 
ATCC	 22019	 and	 C. albicans	 ATCC	 90028	 were	 used	 as	 control	
strains.

All	 CRBSI	 samples	 were	 assessed	 using	 IVD	MALDI	 Biotyper	
mass spectrometry (Bruker, Germany). Considering the purity 
and viability of the microorganisms, all Candida isolates were sub- 
cultured twice on Sabouraud Dextrose Broth (SDB; Hope Bio- 
technology, Qingdao) at 37℃ for 24 h under 190 g rotation prior to 
each experiment.

2.3  |  Antifungal susceptibility

Based on the identification results, antifungal susceptibility 
experiment was initiated using a commercial broth microdilution 
method (Sensititre YeastOne plate of Trek Diagnostic system, Thermo 
Fisher,	CN15009).	The	minimal	 inhibitory	concentrations	 (MICs)	of	
all	 isolates	 were	 evaluated	 against	 fluconazole	 (FZ),	 amphotericin	
B	 (AMB),	caspofungin	 (CAS),	micafungin	 (MF),	voriconazole	 (VOR),	
and	posaconazole	(PZ).	Based	on	the	recommendations	of	antifungal	
susceptibility testing documents M27 and M60 from Clinical and 
Laboratory Standards Institute (CLSI; M60, 1st edition),32 the results 
were classified as susceptible, intermediate, susceptible- dose- 
dependent, and resistant.

2.4  |  Adhesion method

Different Candida strains were prepared in SDB overnight at 37℃ 
and 180 rpm. The concentration of the suspension was standard-
ized	to	2	MCF	(≈4	×	106	cfu/ml);	DensiCHEK™	PLUS,	Thermo	Fisher).	
After	centrifuging	at	3,164	g for 3 min and washing twice with phos-
phate buffer saline (PBS), the yeast cells were harvested and their 
adhesion	ability	was	evaluated	using	flow	cytometry	(FACSVerseTM,	
BD Biosciences, US) method.33 Briefly, yeast cell suspensions were 
mixed with green fluorescent polystyrene microspheres (1.0 μm; 
yellow-	green	 505/515,	 F8823,	 Molecular	 Probes,	 Thermo	 Fisher)	
at	a	final	concentration	of	2	×	108 microspheres/ml. Subsequently, 
the mixture was incubated at ambient temperature with agitation 
for 30 min. Single yeast cell and microspheres were set as controls. 
The suspensions were vortexed after incubation, and the flow cy-
tometric	 results	with	50,000	events	were	 collected	 and	analyzed.	
The following two parameters were selected to clarify the results: 
P1 and P2 stand for the percentages of yeast cells unattached and 
attached	with	microspheres,	 respectively.	All	 results	were	derived	
from at least three independent experiments.

2.5  |  Biofilm formation assay

Candida strains were recovered at 37℃ for 1 h, then vortex for 
5–	10	s.	All	samples	were	grown	in	SDB	at	37℃, 180 rpm for 24 h. 
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Cells were harvested followed by centrifugation (3,000 rpm, 3 min) 
and washed with PBS, and the turbidity of each suspension was 
adjusted	 to	 the	 equivalent	 of	 1	MCF	 (≈2	×	106 cfu/ml) with SDB. 
Following,	 100	μL aliquots of yeast cells suspensions were placed 
into the wells of a 96- well polystyrene microplates and incubated for 
24 h at 37℃ for biofilm formation.34- 36

To qualify the biofilms in each well, two distinct methods were 
used to evaluate biofilm formation in terms of both quantitative es-
timation and metabolic activity.34	 For	XTT	 assay,	 after	 incubation	
for	24	h,	0.5	mg/mL	of	XTT	(CAS	number:	111072-	31-	2,	Sigma)	and	
1	mmol/L	of	methylnaphthalene	(CAS	number:	58-	27-	5,	Sigma)	were	
prepared	and	mixed.	Approximately	100	μL of the mixture was added 
into the 96- well plate and incubated for 2 h at 37℃. The absorbance 
values were read on a Microplate Photometer (Thermo Scientific™ 
Multiskan™	FC)	at	OD	450	nm.	For	CV	assay,	after	incubation,	100	μL 
of formaldehyde solution (10%) was added to fix the cell suspensions 
for 2 min at room temperature. Then, 100 μL of 20 mg/ml CV solu-
tion	 (CAS	number:	548-	62-	9,	Sigma)	was	added	and	 incubated	 for	
30	min.	Decolorization	was	performed	by	using	100	μl of 95% etha-
nol. The absorbance values were read on the Microplate Photometer 
at OD 630 nm. Two standard strains (C. parapsilosis	ATCC	22019	and	
C. albicans	ATCC	90028)	were	employed	as	controls.	All	results	were	
derived from at least three independent experiments.

2.6  |  Antifungal activity assay

To demonstrate whether antifungal agents can exhibit inhibitory 
effects	 on	 adhesion	 and	 biofilm	 formation,	 MF,	 FZ,	 and	 NAC	
were added to the yeast suspensions at different concentrations, 
separately (Table 1). The lowest concentration was determined 
according to the antifungal susceptibility testing results (Table S2). 
The	highest	concentration	of	MF	was	determined	as	5.0	μg/ml and 
FZ	 as	 256	μg/ml ~512 μg/ml according to previous literature.37- 39 
NAC	was	prepared	at	the	concentrations	of	10	mg/ml	and	50	mg/
ml.40,41 Untreated fungal suspensions and medium alone were set 
as positive and negative controls, respectively. Non- adhered cells 
were discarded after incubation for 24 h at 37°C, and the production 
of	 biofilms	 in	 presence	 of	 MF,	 FZ,	 and	 NAC	 was	 measured	 by	
XTT and CV methods as described previously. The formula 
CFU	=	R1	×	P2	×	5000	was	used	to	evaluate	the	inhibitory	effects	of	
these antifungal agents on fungal adhesion.

2.7  |  Statistical analysis

Statistical tests were performed using GraphPad Prism ver. 6.0 for 
Windows.	For	the	comparison	of	C. glabrata adhesion and biofilm meas-
ures at 24 h in the presence or absence of antifungal agents, Kruskal- 
Wallis test was used since its distribution pattern was not asymmetric. 
Meanwhile, for the comparison of other Candida species, ordinary one- 
way	ANOVA	test	was	used.	In	addition,	multiple	comparison	tests	were	
carried out by Holm- Sidak method. Difference between two species 
was deemed significant if the p- value was 0.05 or lower.

3  |  RESULTS

3.1  |  Microbiological susceptibilities of different 
Candida species

The antifungal susceptibilities of 27 clinical isolates recovered from 
CRBSIs, including seven C. albicans, six C. parapsilosis, five C. tropicalis, 
five C. guilliermondii, and four C. glabrata, were examined (Table S2). 
According	to	the	established	MIC	breakpoints,	all	tested	C. albicans 
isolates	were	 sensitive	 to	 antifungal	 agents.	 For	C. glabrata, three 
isolates	were	resistant,	and	one	was	intermediate	to	FZ;	two	isolates	
were resistant, and one was intermediate to VOR; two isolates were 
resistant	to	PZ;	and	none	was	resistant	to	AMB,	CAS,	and	MF.	With	
regard to C. parapsilosis,	except	that	one	isolate	was	resistant	to	FZ,	
others	were	susceptible	to	antifungal	agents.	All	C. tropicalis isolates 
were	susceptible	to	AMB,	CAS,	MF,	and	PZ,	while	four	were	resistant	
to	VOR	and	the	remaining	one	was	resistant	to	FZ.	All	C. guillermondii 
isolates	were	resistant	to	both	FZ	and	VOR,	whereas	no	resistance	
was	observed	for	AMB,	CAS,	MF,	and	PZ.

3.2  |  Adhesion profiles of different Candida species

The adhesion abilities of Candida species were evaluated by flow cy-
tometry	assay,	as	shown	in	Figure	1A	and	Table	2,	and	we	observed	
an obvious difference among the adhesion percentages of differ-
ent Candida species. Notably, C. guilliermondii (0.6540 ± 0.05154), 
C. parapsilosis (0.5919 ± 0.1749), and C. tropicalis (0.5636 ± 0.07692) 
exhibited much stronger adhesion abilities compared to C. albicans 
(0.4484 ± 0.07700) and C. glabrata (0.2023 ± 0.01284). To reduce 

Species
MF- mic 
(μg/ml)

MF- h 
(μg/ml)

FZ- mic 
(μg/ml)

FZ- h 
(μg/ml)

NAC- mic 
(mg/ml)

NAC- h 
(mg/ml)

C. albicans 0.03 5.0 2.0 256 10 50

C. glabrata 0.008 5.0 128 512 10 50

C. parapsilosis 0.5 5.0 2.0 256 10 50

C. tropicalis 0.03 5.0 256 512 10 50

C. guilliermondii 0.25 5.0 256 512 10 50

Abbreviations:	H,	high	concentration;	MIC,	minimal	inhibitory	concentration.

TA B L E  1 Concentrations	of	
micafungin	(MF),	fluconazole	(FZ),	and	N-	
acetylcysteine	(NAC)	to	different	Candida 
species
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the variability of adherent with microspheres (P2) between dis-
tinct Candida isolates and better evaluate the adhesion strength of 
each isolate, four adhesion profiles were established (Table S3 and 
Figure	1B).	Weak	adhesion	isolates	showed	adhesion	percentage	(P2)	
ranging from 1% to 20%, and the strains with this adhesion pattern 
exhibited a homogeneous profile, implying that a single yeast cell is 
bound to each microsphere. Moderate adhesion isolates had adhe-
sion percentage ranging between 21% and 30%, and the strains in 
this profile also demonstrated a homogeneous profile. Strongly ad-
hering isolates had adhesion percentage between 31% and 50%, and 
the strains with this pattern exhibited a heterogeneous adhesion 
pattern, indicating that a single yeast cell is bound to more than one 
microspheres. Very strongly adhering isolates had adhesion percent-
age more than 50%, and the strains with this pattern also exhibited a 
heterogeneous adhesion pattern. Based on these adhesion patterns, 
we	classified	all	the	clinical	isolates,	and	the	results	are	summarized	
in	Table	2.	Among	the	 tested	C. albicans strains, 71.4% displayed a 
strong adhesion profile, while the remaining 28.6% exhibited a very 
strong profile. The majority of C. glabrata strains demonstrated a 
weak adhesion profile, except for Cgl	1.	Almost	all	C. parapsilosis iso-
lates displayed a very strong profile, and only one strain (Cpa 5) with 
strong adhesion. The most heterogeneous species were C. guillier-
mondii and C. tropicalis, all of which displayed a very strong adhesion 
profile.

Based	on	 the	 adhesion	 results	 shown	 in	Figure	1	 and	Table	2,	
we found that the non- albicans species, such as C. guilliermondii, 

F I G U R E  1 (A)	Adhesion	of	different	Candida species were 
measured by flow cytometric assay. Data are represented by 
the mean values of three independent experiments. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001, versus controls. (B) 
Representation of Candida adhesion profiles. The isolates were 
characterized	by	weak,	moderate,	strong,	and	very	strong	
adhesion patterns. Homogeneous distribution pattern means 
that yeast cells are attached to an equal amount of microspheres, 
while heterogeneous distribution pattern indicates that multiple 
microspheres are bound to a single yeast cell

F I G U R E  1 (Continued)
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C. parapsilosis, and C. tropicalis, had very strong adhesion pattern, 
and there were no significant differences among them. C. albicans 
showed moderate adhesion ability, which was lower than C. guillier-
mondii (p < 0.05) and higher than C. glabrata (p < 0.01). Besides, 
C. glabrata exhibited the lowest adhesion ability and was signifi-
cantly different compared to C. guilliermondii (p < 0.0001), C. para-
psilosis (p < 0.0001), C. tropicalis (p < 0.001), and C. albicans (p < 0.01).

3.3  |  Biofilm formation of different Candida species

The biofilms of different Candida species formed on polysty-
rene well plates were measured by both XTT and CV methods. 

XTT assay was conducted to examine the metabolic activity of 
the	 biofilms	 at	 24	 h,	 and	 the	 results	 (Figure	 2A)	 indicated	 that	
C. guilliermondii and C. parapsilosis had the highest metabolic ac-
tivities. Specifically, C. guilliermondii showed higher XTT reduc-
tion values than C. albicans (p < 0.0001), C. glabrata (p < 0.0001), 
and C. tropicalis (p < 0.001). Similarly, C. parapsilosis also exhibited 
higher XTT reduction values compared to C. albicans (p < 0.001), 
C. glabrata (p < 0.0001), and C. tropicalis (p < 0.01). However, 
there was no remarkable difference in XTT reduction values be-
tween C. guilliermondii and C. parapsilosis. In addition, CV assay 
was performed to measure the total biomass of the biofilms at 
24	h,	and	the	results	(Figure	2B)	demonstrated	that	C. parapsilosis 
produced a higher volume of biofilms compared to C. glabrata and 

TA B L E  2 Characterization	of	adhesion	profile	and	biofilm	formation	of	different	Candida species

Species Strain

Adhesion Biofilm

% of cells with adherent 
microspheres (p2)

Distribution 
pattern Adhesion profile XTT (24H) CV (24H)

C. albicans Standard 37.7 Heterogenic Strong 1.102 0.626

C. albicans 1 44.5 Heterogenic Strong 1.025 0.378

C. albicans 3 44.5 Heterogenic Strong 1.041 0.292

C. albicans 5 44.4 Heterogenic Strong 1.062 0.363

C. albicans 6 55.9 Heterogenic Very strong 1.089 0.441

C. albicans 11 38.1 Heterogenic Strong 0.928 0.256

C. albicans 14 56.5 Heterogenic Very strong 1.050 0.382

C. albicans 15 37.1 Heterogenic Strong 1.054 0.536

C. glabrata 1 21.2 Homogenic Moderate 0.942 0.271

C. glabrata 2 20.3 Homogenic Weak 0.869 0.271

C. glabrata 3 20.9 Homogenic Weak 0.708 0.333

C. glabrata 4 18.4 Homogenic Weak 1.092 0.276

C. parapsilosis Standard 48.3 Heterogenic Strong 1.368 0.355

C. parapsilosis 5 40.6 Heterogenic Strong 1.353 0.233

C. parapsilosis 6 77.6 Heterogenic Very strong 1.412 0.280

C. parapsilosis 7 89.1 Heterogenic Very strong 1.029 0.944

C. parapsilosis 8 51.8 Heterogenic Very strong 1.181 0.200

C. parapsilosis 9 50.5 Heterogenic Very strong 1.251 0.228

C. parapsilosis 10 56.4 Heterogenic Very strong 1.031 0.936

C. tropicalis 3 52.4 Heterogenic Very strong 1.063 0.255

C. tropicalis 4 60.6 Heterogenic Very strong 1.133 0.289

C. tropicalis 5 50.4 Heterogenic Very strong 1.132 0.303

C. tropicalis 6 50.5 Homogenic Very strong 1.022 0.295

C. tropicalis 7 67.9 Heterogenic Very strong 1.000 0.304

C. guilliermondii 1 71.9 Heterogenic Very strong 1.151 0.405

C. guilliermondii 2 68.8 Heterogenic Very strong 1.224 0.363

C. guilliermondii 3 64.3 Heterogenic Very strong 1.109 0.389

C. guilliermondii 4 63.5 Heterogenic Very strong 1.113 0.343

C. guilliermondii 6 58.5 Heterogenic Very strong 1.135 0.375

Note: The adhesion pattern and adhesion profile was established. Biofilm formation at 24 h was evaluated by XTT and CV methods. Results were 
performed at least 3 independent experiments. P2: the percentage of yeast cells attached with adherent microspheres. Homogenic: a single 
microsphere was attached to each yeast cell. Heterogenic: more than a single microsphere was attached to each yeast cell.
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F I G U R E  2 Biofilms	formed	by	different	Candida species at 24 h. The formation of biofilms was assessed by different colorimetric 
methods.	(A)	XTT	assay,	for	measuring	the	metabolic	activity	of	biofilms.	(B)	Crystal	violet	assay,	for	measuring	the	total	biomass	of	biofilms.	
Each isolate was assessed for its biofilm- forming capability at least three times. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, versus 
controls

F I G U R E  3 (A–	E)	XTT	results	of	different	Candida	species	against	micafungin,	fluconazole,	and	N-	acetylcysteine	at	both	low	and	high	
concentrations. The effects of the three antifungal agents on XRR reduction values were evaluated. Each strain was tested three times 
independently. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, versus controls
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C. tropicalis (p < 0.01), while there were no obvious differences in 
CV staining values among C. albicans, C. glabrata, C. tropicalis, and 
C. guilliermondii.

3.4  |  XTT results of different Candida species 
against different antifungal agents

The	 inhibitory	 activities	 of	MF,	 FZ,	 and	NAC	 on	 the	 biofilm	 for-
mation of different Candida species were determined by XTT 
assay	(Figure	3A–	E).	For	C. albicans,	as	shown	in	Figure	3A,	when	
MF,	FZ,	and	NAC	were	administrated	at	MIC	concentrations,	 the	
metabolic activities of the biofilms (p < 0.0001, p < 0.001, and 
p < 0.0001, respectively) were noticeably decreased. Interestingly, 
at higher concentrations, the inhibitory effects of the three an-
tifungal agents were much stronger (p < 0.0001, p < 0.001, and 
p < 0.0001, respectively). Similar trends could be observed for the 
Candida species of C. parapsilosis, C. tropicalis, and C. guilliermondii, 
as	shown	in	Figure	3B,D,E,	respectively.	These	results	indicate	the	
metabolic responses of Candida species to antifungal agents are 
concentration-	dependent,	especially	for	MF	and	NAC.	Specifically,	
when	the	concentrations	of	MF	and	NAC	were	increased	to	5	μg/
ml and 50 mg/ml, respectively, the biofilms were disrupted nearly 
4 ~ 5 folds compared to those at the lower concentrations (p < 0.01 

and p	<	0.0001,	respectively).	For	the	metabolic	activity	results	of	
C. glabrata,	as	presented	in	Figure	3C,	only	higher	concentrations	
of	MF	exhibited	significant	inhibitory	effects	compared	to	control	
group (p < 0.05).

3.5  |  CV results of different Candida species 
against different antifungal agents

Correspondingly, the inhibitory effects of the three antifun-
gal agents on biofilm biomass were also assessed by CV assay 
(Figure	4A-	E).	For	C. albicans and C. guilliermondii, the total biomass 
was markedly reduced by the three antifungal agents (p < 0.0001). 
Similar	 to	 the	 XTT	 results,	 higher	 concentrations	 of	MF	 induced	
much stronger inhibitory effects on both Candida species (both 
p	<	0.0001),	while	higher	concentrations	of	NAC	only	led	to	an	obvi-
ous reduction in C. guilliermondii (p	<	0.0001).	For	C. parapsilosis, all 
antifungal agents showed significant inhibitory effects, except for 
NAC	at	lower	concentrations	(p < 0.01, p < 0.001, p < 0.05, p < 0.01 
and p < 0.001, respectively). However, there were no apparent 
differences	 among	 the	 tested	 concentrations.	 For	C. glabrata and 
C. tropicalis, the marked differences were only noted after treat-
ment	with	higher	concentrations	of	MF	and	NAC	(p < 0.01, p < 0.05 
and p < 0.001, respectively).

F I G U R E  4 (A–	E)	CV	results	of	different	Candida	species	against	micafungin,	fluconazole,	and	N-	acetylcysteine	at	both	low	and	high	
concentrations. The effects of the three antifungal agents on CV values were evaluated. Each strain was tested three times independently. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, versus controls
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3.6  |  CFU results of different Candida species 
against different antifungal agents

To determine the inhibitory abilities of the three antifungal agents on 
fungal	adhesion,	we	calculated	the	CFUs	of	yeast	cells	that	being	at-
tached to the microspheres for 24 h. The obtained value could serve 
as a reference standard for evaluating adhesion ability. The results 
indicated	that	the	highest	concentration	of	MF	exhibited	the	strong-
est	 inhibitory	 intensity.	As	shown	in	Figure	5A–	C,E	5	μg/ml	of	MF	
caused	remarkable	decreases	in	the	CFUs	of	C. albicans, C. glabrata, 
C. parapsilosis, and C. tropicalis (p < 0.01, p < 0.01, p < 0.001, and 
p	<	0.01,	respectively).	As	for	C. guilliermondii	(Figure	5D),	the	high	
concentrations	of	MF	and	NAC	led	to	a	marked	reduction	in	CFUs	
(both p < 0.0001).

4  |  DISCUSSION

Candida species account for the top five most common pathogens of 
BSIs in ICUs worldwide.42	Although	C. albicans is the most prominent 
fungal pathogen that causes candidemia in ICU patients, recent epi-
demiological findings have shown an increasing incidence of candi-
demia associated with non- albicans species. C. parapsilosis is ranked 
as the second relevant non- albicans Candida species in some areas.43 
The reason for this distribution shift has not yet been completely 

understood. Based on the publicly available information, the initial 
adhesion	is	considered	to	be	a	key	virulence	factor	for	the	coloniza-
tion and biofilm formation of C. albicans. Studies about the adhesive 
abilities of C. parapsilosis have also been explored, which claimed a 
high intraspecies variation among clinical isolates.35 In this study, we 
assessed the adhesion properties, biofilm formation, and susceptibili-
ties to antifungal agents of 27 Candida species isolated from patients 
with CRBSIs. It was found that non- albicans species (e.g., C. guilli-
ermondii, C. parapsilosis, and C. tropicalis) exhibited higher adhesion 
ability compared with C. albicans.	Almost	all	C. parapsilosis isolates 
displayed a very strong profile, except for one strain (Cpa 5) with a 
strong	adhesion	profile	 (Table	2	and	Figure	1).	These	 results	were	
in accordance with other studies 44,45 that classified non- albicans 
Candida as higher adhesion species, and C. parapsilosis exhibited the 
highest	adhesion	and	colonization	ability	to	biomaterials.

Another	factor	related	to	the	virulence	of	Candida species is bio-
film	 formation.	We	 consistently	 characterized	 the	 attributes	 of	 all	
Candida isolates by both XTT and CV methods. XTT results indicated 
that C. guilliermondii and C. parapsilosis had higher metabolic activity 
compared to C. albicans	(Figure	2A).	CV	results	showed	that	C. para-
psilosis generated higher amount of biomass than C. glabrata and 
C. tropicalis	at	24	h	(Figure	2B).	The	total	biomass	ranking	of	different	
Candida species in this study was consistent with that reported by 
previous studies, in which non- albicans Candida species were nomi-
nated as higher biomass biofilm- makers.46 It is more important that 

F I G U R E  5 (A–	E)	CFU	results	of	different	Candida	species	against	micafungin,	fluconazole,	and	N-	acetylcysteine	at	both	low	and	high	
concentrations.	The	effects	of	the	three	antifungal	agents	on	CFU	values	were	evaluated.	Each	strain	was	tested	three	times	independently.	
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, versus controls
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the results obtained from the two methods were in good agreement, 
except for C. tropicals, which had slightly different values.

After	measuring	the	characteristics	of	adhesion	and	biofilm	for-
mation,	we	 further	explored	 the	antifungal	effects	of	MF,	FZ,	and	
NAC.	Our	 findings	 demonstrated	 that	 the	 three	 antifungal	 agents	
caused remarkable decreases in adhesion abilities and biofilm- 
forming	capabilities	(Figures	3-	5),	especially	MF	and	NAC	at	higher	
concentrations. Notably, a drastic reduction could be observed 
during the formation of biofilms, as revealed by both metabolic ac-
tivity and total biomass.

MF,	as	the	member	of	the	echinocandins,	is	involved	in	the	mech-
anism underlying the inhibition of 1,3- β- D- glucan synthase. Previous 
research has suggested that β- 1, 3 glucanase may be an important 
anti- biofilm candidate with a certain effect on the biofilm formation 
process of non- albicans Candida species.47 Cateau et al38 demon-
strated	 that	MF	 (5	 mg/L)	 had	 the	 ability	 to	 inhibit	 the	 metabolic	
activity of C. albicans during biofilm growth. Moreover, some stud-
ies	 also	 found	 that	MF	exhibited	 inhibitory	activity	on	 the	biofilm	
formation of C. parapsilosis.48	In	our	study,	MF	also	played	essential	
roles in the adhesion and biofilm formation of non- albicans Candida 
species. Nevertheless, the mechanism of action is still unclear, which 
requires further investigation.

Although	NAC	is	commonly	known	as	a	non-	antibiotic	drug,	its	
antibacterial properties have also been reported.49- 51 Interestingly, 
many	studies	shown	that	NAC	was	able	to	suppress	both	adherence	
and mature biofilms formed by C. albicans,	which	makes	NAC	an	in-
teresting candidate for inhibiting biofilm formation.40,41,52 However, 
the	effect	of	NAC	on	non-	albicans Candida species is still relatively 
unknown.	In	this	study,	the	inhibitory	effects	of	NAC	on	clinical	non-	
albicans Candida isolates were investigated, and the results showed 
that	NAC	could	reduce	both	adhesion	and	biofilm	formation.	More	
specifically, its anti- biofilm activity seems to be concentration- 
dependent. Besides, a previous report 53	indicated	that	NAC	acted	
synergistically with other antimicrobial agents such as tigecycline. 
Consistently,	 our	 findings	 also	 showed	 that	 NAC	 had	 antifungal	
properties. Regarding the mode of action, some authors proposed 
that	the	reduction	of	adhesion	by	NAC	was	chemical	as	well	as	bio-
logical,52	while	others	postulated	that	NAC	could	inhibit	the	biofilm	
growth and affect the texture of biofilms formed by C. albicans.41,51 
These encouraging findings still need to be verified on non- albicans 
Candida species through both in vitro and clinical studies in the near 
future.

Several	limitations	are	existed	in	our	study.	First,	due	to	the	low	
incidence	of	CRBSIs,	the	sample	size	of	clinical	isolates	in	this	study	
was	relatively	small.	For	more	convincing	results,	we	intended	to	ex-
pand the study by collecting more clinical isolates and examining the 
correlation between adhesion abilities and biofilm- forming capabil-
ities. Second, there was a lack of morphological data in the present 
experiment.	Fluorescence	inverted	microscope	or	laser	confocal	mi-
croscope can be used to detect the morphological changes in biofilm 
formation with or without antifungal treatment. Third, our study 
only proved the inhibitory effect of a single antifungal agent, with-
out the combination of other antifungal agent. Interestingly, some 

of	our	unpublished	data	showed	that	the	combination	of	NAC	and	
MF	 exhibited	 stronger	 inhibitory	 effects	 on	 the	 biofilm	 formation	
of Candida	 species.	Finally,	 the	molecular	and	genetic	mechanisms	
need	to	be	elucidated	 in	 the	future	studies.	For	example,	a	phylo-
genetic tree analysis can be performed on these Candida species in 
order to find some clues by linking the distance of these organisms 
with the results of biofilm formation.

5  |  CONCLUSION

In this study, we observed that non- albicans Candida species (e.g., 
C. guilliermondii, C. tropicalis, and C. parapsilosis) demonstrated 
higher adhesion abilities, while their biofilm- forming capabilities 
varied	across	species.	For	antifungal	therapy,	MF	was	shown	to	have	
stronger inhibitory effects on the adhesion and biofilm formation of 
different Candida species in a dose- dependent fashion. Our study 
also	verified	that	NAC	had	antifungal	potency	for	reducing	both	ad-
hesion and biofilm formation. These findings can help clinicians bet-
ter understand the pathogenesis of catheter- related candidemia and 
treat such type of infections.
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