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Abstract: An unexpected trinuclear Cu(II)–thiazolidine complex has been synthesized by mixing
CuCl2·2H2O with the Schiff base ligand, 1-(((4,5-dihydrothiazol-2-yl)ethylidene)hydrazono)methyl)
phenol L, in ethanol. Unexpectedly, the reaction proceeded via the hydrolysis of the Schiff base
L, followed by cyclization to afford 3-methyl-5,6-dihydrothiazolo[3,2-c][1,2,3]triazole (La), then
complexation with the Cu(II) salt, forming the trinuclear [Cu3(La)4(Cl)6] complex. The complex
was characterized by means of FTIR spectra, elemental analysis, and X-ray crystallography. In
the trinuclear [Cu3(La)4(Cl)6] complex, there are two crystallographically independent hexa- and
penta-coordinated Cu(II) sites, where the thiazolidine ligand La units act as a monodentate ligand
and a linker between the Cu(II) centers. The crystal packing of the [Cu3(La)4(Cl)6] complex is
primarily affected by the weak non-covalent C-H···Cl interactions. In accordance with Hirshfeld
surface analysis, the Cl···H, H···H, S···H, and N···H percentages are 31.9%, 27.2%, 13.5%, and 9.9%,
respectively. X-ray photoelectron spectroscopy confirmed the oxidation state of copper as Cu(II),
as well as the presence of two different coordination environments around copper centers. The
complex showed interesting antibacterial activity against the Gram-positive bacteria S. subtilis, with
MIC = 9.7 µg/mL compared to MIC = 4.8 µg/mL for the control, gentamycin. Moreover, the Cu(II)
complex showed an equal MIC (312.5 µg/mL) against C. albicans compared to ketoconazole. It also
exhibits a very promising inhibitory activity against colon carcinoma (IC50 = 3.75 ± 0.43 µg/mL).

Keywords: Cu(II)–thiazolidine; hydrazone; XPS; Hirshfeld; antibacterial; colon carcinoma

1. Introduction

Copper is one of the most widely used metals [1,2], with a very low toxic limit [3,4]. It
acts as a vital micronutrient and plays various functions in biological systems. Recently,
copper compounds have been recommended as therapeutic agents against cancer [5], mi-
crobial diseases [6–9], chronic lung inflammation [10], influenza A [11], neurodegenerative
diseases such as Alzheimer’s, Parkinson’s and prion diseases, in addition to disorders
related to copper homeostasis, such as Wilson’s and Menkes disorders [12–15]. Moreover,
the copper coordination complexes were considered as promising multi-functional mate-
rials due to their success in photophysical and photoelectrochemical applications. These
complexes were considered as better alternatives to other transition metal complexes (Pt(II),
Ir(III) and Ru(II)) which are expensive, toxic, and of low abundance [16,17]. In contrast, the
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copper coordination complexes are characterized by their ease of preparation, and they also
exhibit low toxicity. Moreover, coordination complexes of copper have been extensively
studied and implemented as photosensitizers, triplet emitters, and catalysts in a variety of
photochemical applications [18].

Schiff bases have become an encouraging choice as functional ligands in coordination
chemistry because of their synthetic flexibility, structural diversity, varied denticity [19],
sensitivity, and selectivity towards metal ions. Predominantly, the hydrazone-containing
azomethine group (-C=N-N=C-) has been considered as powerful ligands due to their
ability to stabilize various metal ions, with different oxidation states producing a variety of
molecular designs and geometries [20–28]. In addition, the aryl hydrazone metal complexes
were found to have interesting electrical and magnetic properties, and were utilized as
novel heterogeneous catalysts in redox, chemical, and photochemical reactions in several
industrial applications [29–31].

On the other hand, the thiazolidine nucleus is well-known in the field of pharmaceuti-
cal chemistry. This group of compounds has played a crucial role in organic, bio-organic,
and medicinal chemistry [32]. This is because most of the antimicrobial substances, such
as penicillin, cephalosporin, narcodicins, and thienamycins, were synthesized from thia-
zolidines [33,34]. Various pharmacological activities, including antiproliferative, hepato-
protective, antidiabetic, antihypertensive, platelet activating factor antagonist, calcium
antagonist, anti-inflammatory, antipyretic, analgesic, anthelmintic, antitubular, antiviral,
anticancer, mucolytic, and anti-HIV activities, are associated with compounds containing
a thiazolidine nucleus [32]. In this work, the reaction of CuCl2·2H2O with the hydrazone
type ligand, 1-(((4,5-dihydrothiazol-2-yl)ethylidene)hydrazone)methyl)phenol (L; Figure 1)
in ethanol is presented. The structure of the resulting Cu(II)–thiazolidine complex as an
unexpected product was investigated using different spectroscopic techniques and sin-
gle crystal X-ray analysis. Its antimicrobial, antioxidant, and anticancer activities were
also investigated.
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2. Results and Discussion 
2.1. Chemistry and Characterizations 

The designed ligand L was synthesized according to the method depicted in Scheme 
1. The acetyl derivative reacted with hydrazine, followed by reaction with salicylaldehyde 
to give the corresponding Schiff base L. The reaction of CuCl2·2H2O with 2-(1-(4,5-dihy-
drothiazol-2-yl)ethylidene)hydrazone)methyl)phenol L did not proceed to the formation 
of the corresponding Cu(II)–hydrazone complex. Unexpectedly, the hydrazone ligand un-
derwent oxidative hydrolysis, followed by cyclization, affording the corresponding thia-
zolidine La, which proceeded to complexation with the Cu(II) ion, affording the trinuclear 
[Cu3(La)4(Cl)6] complex (Scheme 1). Spectral characterizations of the synthesized com-
pounds are presented in Figures S1–S6 (Supplementary Materials). The structure of the 
novel Cu(II) complex was confirmed using elemental analysis, different spectroscopic 
measurements, and X-ray crystallography. The antimicrobial, anticancer, and antioxidant 
activities of the [Cu3(La)4(Cl)6] complex were also presented. 

Figure 1. Structure of the presented ligands 1-(((4,5-dihydrothiazol-2-yl)ethylidene) hydrazone)
methyl)phenol, L, and 3-methyl-5,6-dihydrothiazolo[3,2-c][1,2,3]triazole, La.

2. Results and Discussion
2.1. Chemistry and Characterizations

The designed ligand L was synthesized according to the method depicted in Scheme 1.
The acetyl derivative reacted with hydrazine, followed by reaction with salicylaldehyde to
give the corresponding Schiff base L. The reaction of CuCl2·2H2O with 2-(1-(4,5-
dihydrothiazol-2-yl)ethylidene)hydrazone)methyl)phenol L did not proceed to the for-
mation of the corresponding Cu(II)–hydrazone complex. Unexpectedly, the hydrazone
ligand underwent oxidative hydrolysis, followed by cyclization, affording the correspond-
ing thiazolidine La, which proceeded to complexation with the Cu(II) ion, affording the
trinuclear [Cu3(La)4(Cl)6] complex (Scheme 1). Spectral characterizations of the synthe-
sized compounds are presented in Figures S1–S6 (Supplementary Materials). The structure
of the novel Cu(II) complex was confirmed using elemental analysis, different spectroscopic
measurements, and X-ray crystallography. The antimicrobial, anticancer, and antioxidant
activities of the [Cu3(La)4(Cl)6] complex were also presented.
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Scheme 1. Synthesis of the unexpected [Cu3(La)4(Cl)6] complex.

2.2. X-ray Structure Description of [Cu3(La)4(Cl)6] Complex

The X-ray crystallographic measurements confirmed the structure of the trinuclear
[Cu3(La)4(Cl)6] complex, which is formed via Cu(II)-mediated hydrolysis and cycliza-
tion of the hydrazone ligand L to the corresponding thiazolidine La, followed by com-
plexation with the cupric ion. Table 1 lists the crystallographic data of the trinuclear
[Cu3(La)4(Cl)6] complex.

The X-ray structure of the trinuclear Cu(II) complex [Cu3(La)4(Cl)6] is shown in
Figure 2. The results leave no doubt about the oxidative hydrolysis of the Schiff base
hydrazone ligand (L). The [Cu3(La)4(Cl)6] complex crystallized in the triclinic crystal sys-
tem and P-1 space group. The unit cell parameters are a = 8.1686(3) Å, b = 9.4973(4) Å,
c = 12.7501(5) Å, and α = 81.796(2), β = 75.291(2)◦, γ = 65.096(2). The asymmetric unit
comprised half of the trinuclear [Cu3(La)4(Cl)6] formula, as the complex comprised a center
of symmetry located at the Cu(1) site. Hence, there are two different Cu(II) sites in this
complex: the central Cu(1), which is hexa-coordinated with four chloride ions, and two
nitrogen atoms from two La units. Due to symmetry considerations, all the trans bonds
have an equal length. Hence, there are only three different interactions between the Cu(II)
and donor atoms, which are the Cu1-Cl1 (2.2633(10) Å), Cu1-Cl2 (2.8810(11) Å), and Cu1-
N2 (2.041(2) Å) bonds, while the other three bonds are symmetry-related and have the
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same distances, respectively (Table 2). Of course, the bond angles of all the trans bonds
are 180◦, while the angles between the cis bonds are in the range of 85.63(3) to 97.12(4)
for Cl1-Cu1-Cl2 and Cl1-Cu2-Cl3, respectively. Hence, the structure of the coordination
environment could be described as an elongated octahedron, where the two Cl(1) and the
two N(2) atoms represent the base, and the two Cl(2) are located as apical. The coordination
sphere of the Cu(2) is completely different. The Cu(2) is penta-coordinated, with five
coordination interactions. There is one interaction with the terminal Cl(3) atom, in addition
to two interactions with the bridged Cl(1) and Cl(2) atoms, which are already coordinated
to the Cu(1). The corresponding Cu-Cl distances are 2.2720(12), 2.6178(11), and 2.3140(13) Å,
respectively. The coordination environment of the Cu(2) is completed by two interactions
with the N(1) and N(4) atoms from two trans La ligand units. The corresponding Cu-N dis-
tances are 2.024(3) and 1.987(3) Å, respectively. The distortion in the CuCl3N2 coordination
sphere of Cu(1) was described based on the criterion of Addison [35]. The largest angles are
Cl2-Cu2-Cl3 (β = 171.35◦) and N1-Cu2-N4 (α = 166.56◦), giving a τ = {(β − α)/60} value of
only 0.08. Hence, the coordination geometry is more like to be a distorted square pyramid,
where the Cl(1) donor would be regarded as apical. It is worth noting that the structure of
this complex comprised two crystallographically independent La ligand units, with one of
them acting as a terminal ligand, coordinating only the Cu(2) metal site via the significantly
short Cu2-N4 bond, and the other La unit acting as a connector between the two Cu sites.
Hence, this ligand unit and the two Cl1 and Cl2 ions act as a bridging ligand, connecting
the Cu(II)-sites leading to the formation of the trinuclear [Cu3(La)4(Cl)6] complex.

Table 1. Refinement details of the trinuclear [Cu3(La)4(Cl)6] complex.

CCDC 2179746

Empirical formula C20H28Cl6Cu3N12S4
Formula weight 968.10 g/mol
Temperature/K 296(2) K

Wavelength 1.54178 Å
Crystal system Triclinic

Space group P-1
a/Å 8.1686(3)
b/Å 9.4973(4)
c/Å 12.7501(5)
α/◦ 81.796(2)
β/◦ 75.291(2)
γ/◦ 65.096(2)

Volume 867.05(6) Å3

Z 1
Density (calculated) 1.854 g/cm3

Absorption coefficient 8.952 mm−1

F(000) 485
Crystal size 0.07 × 0.11 × 0.17 mm3

Theta range for data collection 3.59 to 66.53◦

Index ranges −9 ≤ h ≤ 9, −11 ≤ k ≤ 11, −15 ≤ l ≤ 15
Reflections collected 17364

Independent reflections 3055 [R(int) = 0.0539]
Completeness to theta = 66.67◦ 99.70%

Absorption correction Multiscan
Max. and min. transmission 0.5730 and 0.3110

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 3055/0/213
Goodness-of-fit on F2 1.067

Final R indices [I > 2sigma(I)] R1 = 0.0412, wR2 = 0.1123
R indices (all data) R1 = 0.0442, wR2 = 0.1164

Largest diff. peak and hole 1.030 and −0.556
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Figure 2. The structure of the trinuclear [Cu3(La)4(Cl)6] complex.

Table 2. The important geometric parameters in the [Cu3(La)4(Cl)6] complex.

Bond Distance Bond Distance

Cu1-Cl1 2.2633(10) Cu2-Cl2 2.3140(13)
Cu1-Cl2 2.8810(11) Cu2-Cl3 2.2720(12)
Cu1-N2 2.041(2) Cu2-N1 2.024(3)
Cu2-Cl1 2.6178(11) Cu2-N4 1.987(3)
Bonds Angle Bonds Angle

Cl1-Cu1-Cl2 85.63(3) Cl1-Cu2-Cl2 91.05(4)
Cl1-Cu1-Cl2 # 94.37(3) Cl1-Cu2-N4 105.55(9)
N2 -Cu1-Cl1 # 91.33(9) Cl2-Cu2-N4 89.72(10)

Cl1-Cu1-N2 88.67(9) N1 -Cu2-N4 166.56(13)
N2 -Cu1-Cl2 # 96.87(9) Cl2-Cu2-Cl3 171.35(5)
Cl1-Cu2-Cl3 97.12(4) Cl3-Cu2-N1 90.63(9)

Cl2-Cu1-Cl2 # 180 Cl1-Cu2-N1 87.53(9)
Cl1-Cu1-Cl1 # 180 Cl2-Cu2-N1 86.88(9)
Cl2-Cu1-N2 83.13(9) Cl3-Cu2-N4 90.82(9)

N2 -Cu1-N2 # 180

Symm. Code: #-x,1-y,1-z.

The structure of [Cu3(La)4(Cl)6] is stabilized by an intramolecular C1-H1A···Cl1 in-
teraction, with hydrogen–acceptor and donor–acceptor distances of 2.72 and 3.427(5) Å,
respectively. Its packing is dominated by the weak non-covalent C-H···Cl interactions
depicted in Table 3 and shown as a red dotted line in the upper part of Figure 3. A
view of the packing through the bc plane, showing the complex units connected by the
Cl-H···O interactions, is presented in the lower part of the same illustration. The donor–
acceptor interaction distances range from 3.609(5) Å (C6-H6A···Cl1) to 3.692(5) Å for
C7-H7B···Cl1, respectively.

Table 3. Hydrogen bond parameters (Å, ◦) in the [Cu3(La)4(Cl)6] complex.

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) Symm. Code

C1-H1A...Cl1 0.97 2.72 3.427(5) 130
C6-H6A...Cl1 0.97 2.74 3.609(5) 150 −x,−y,1 − z
C7-H7B...Cl1 0.97 2.81 3.692(5) 150 1 + x, −1 + y, z
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2.3. Hirshfeld Analysis

Hirshfeld surface analysis is a powerful tool for visualizing interactions in molecular
crystals. Crystal Explorer 17 is used to create the Hirshfeld analysis, analyze the crystal
structure of the synthesized complex, and represent intermolecular interactions on that
surface [36]. The dnorm surfaces are mapped in the range of −0.05 to 0.80 Å, while the
shape index, curvedness, and fragment patch are mapped over the ranges −1.0 to 1.0 Å,
−4.0 to 0.4 Å, and 0 to 15 Å, respectively Figure 4. The dnorm surface detected the very
close intermolecular interactions presented as red spots, indicating short H···H, N···H,
S···H, and Cl···H interactions. The shape index shows the shape of the surface (concave
(−1.0) to convex (+1.0)), while curvedness clarifies the flatness of surface indicated as flat
(−4.0) to singular (+0.4). A fragment patch is often used to divide the surfaces into patches,
suggesting interactions between neighboring molecules. This mapping color patch allows
the identification of the closest neighbor coordination environment of a molecule.

The fingerprint plots are demonstrated in Figure 5. The complementary regions in
these plots are visualized, where one molecule behaves as a donor (de > di), while the other
acts as an acceptor (de < di). The fingerprint plots highlight the close contacts of specific
atom pairs. Thus, selected contributions can account for the stability of the complex crystal
structure. The Cl···H contacts have the largest contribution in the molecular packing and
also have short Cl···H distances of 3.49, 3.39, 3.036, 2.87, and 2.81 Å, corresponding to
Cl2···H1B, Cl1···H6B, Cl3···H7B, Cl2···H6B, and Cl1···H7B, respectively. The S···H con-
tacts have a relatively strong contribution to the stability of the crystal structure, within
the range of 3.22 to 3.43 Å. The proportion of Cl···H, H···H, S···H, and N···H interac-
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tions comprises 31.9%, 27.2%, 13.5%, and 9.9% of the total Hirshfeld surface, respectively
(Figure 6). These are the important interactions which stabilize the crystal structure of the
[Cu3(La)4(Cl)6] complex.
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2.4. XPS Studies

X-ray photoelectron spectroscopy is a quantitative measurement for the elemental
composition of the material surface, as well as its valence state. Based on single-crystal
X-ray structure, the investigated trinuclear copper(II) complex has two distinct coordination
environments around copper(II) centers, with coordination numbers 5 and 6. Figure 7
shows the XPS diagram for the [Cu3(La)4(Cl)6] complex. The appearance of peaks with
binding energies (B.E.) of 932.36 and 934.62 eV corresponding to Cu2p3/2 and 951.95, and
954.41 eV corresponding to Cu2p1/2, with ∆B.E. of 19.59 and 19.79 eV, respectively, and
the three satellites at 941.84, 944.36, and 962.65 eV, confirmed both the oxidation state
of copper ions as Cu(II) and the existence of two different environments around copper
centers [37,38].
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Figure 7. XPS diagram showing binding energy peaks for: (A) copper(II) ion in the complex as:
Cu2p1/2 A, Cu2p3/2 A (magenta color), Cu2p1/2, Cu2p3/2 (green color), and Cu2p satellites (cyan
color), (B) N1s (cyan color), N1sA (dark cyan color), (C) Cl2p3/2 (magenta color), Cl2p1/2 (blue color),
and (D) S2p1/2 (magenta color), and S2p3/2 (cyan color).

Additionally, the XPS showed two peaks assigned to N1sA and N1s, with B.E. of
401.42 and 400.33 eV, respectively, indicating the existence of two binding types for ni-
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trogen atoms, which are the sp3 and sp2 (Figure 7B). In addition, the presence of a dou-
blet peak at 197.89 and 199.47 eV, corresponding to Cl2p1/2 and Cl2p3/2, respectively
(∆B.E. = 1.58 eV), indicated its coordinating behavior (Figure 7C) [39,40]. The detailed XPS
spectrum showed the two sulfur peaks S2p3/2 and S2p1/2 [41] at 163.86 and 164.99 eV, cor-
responding to S2p3/2 and S2p1/2, respectively. The small value of ∆B.E. (1.13 eV) indicates
a non-coordinating S-atom.

2.5. Biological Studies
2.5.1. Antimicrobial Activity

The bio-activities of the [Cu3(La)4(Cl)6] complex as an antimicrobial agent against
Gram-positive bacteria (S. aureus and B. subtilis), Gram-negative bacteria (E. coli and
P. vulgaris), and the injurious fungi (A. fumigatus and C. Albicans) were examined and
compared with the antibacterial and antifungal control, gentamycin and ketoconazole, re-
spectively. Table 4 summarizes the zone of inhibitions for the complex. The inhibition zone
diameters range from 15–20 mm and 13–30 mm against fungi and bacteria, respectively.
Generally, the [Cu3(La)4(Cl)6] complex has higher activity against Gram-positive bacteria
than Gram-negative bacteria. The complex has higher activity against the Gram-positive
bacteria B. subtilis (30 mm) than S. aureus (14 mm). Interestingly, the Cu(II) complex also
has a higher activity against B. subtilis than the antibacterial control, gentamycin, and equal
activity against C. albicans when compared with the control compound, ketoconazole. In
addition, the antibacterial activity of the Cu(II) complex against Gram-negative bacteria
(E. coli and P. vulgaris) is relatively lower than for the control, gentamycin.

Table 4. Zone of inhibition (in mm) for the [Cu3(La)4(Cl)6] complex.

Microbe [Cu3(La)4(Cl)6] Control

A. fungimatus 15 17 a

C. albicans 20 20 a

S. aureus 14 24 b

B. subtilis 30 26 b

E. coli 18 30 b

P. vulgaris 13 25 b

a ketoconazole; b gentamycin.

Moreover, the minimum inhibitory concentrations (MIC) in micrograms/mL were
determined and depicted in Table 5. The Cu(II) complex showed equal MIC values against
C. albicans compared to ketoconazole. For the antibacterial activity, the best MIC value for
the complex is found against B. subtilis (9.7 µg/mL).

Table 5. MIC values (µg/mL) for the [Cu3(La)4(Cl)6] complex.

Microbe [Cu3(La)4(Cl)6] Control

A. fumigatus 1250 125.25 a

C. albicans 312.5 312.5 a

S. aureus 625 9.7 b

B. subtilis 9.7 4.8 b

E. coli 312.5 4.8 b

P. vulgaris 1250 4.8 b

a ketoconazole; b gentamycin.

2.5.2. Antioxidant Activity

The antioxidant activity of the [Cu3(La)4(Cl)6] complex was determined using the
DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) method (Figure 8). The percentage of
DPPH was determined to be 95.84 at 1280 (µg/mL). Additionally, the IC50 value of the
[Cu3(La)4(Cl)6] complex was determined to be 32.95 ± 1.43 (µg/mL). Under the same
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experimental circumstance, the reference ascorbic acid has IC50 of 10.62 ± 0.84 µg/mL.
Thus, the Cu(II) complex showed a relatively reasonable antioxidant activity compared to
the reference compound.
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2.5.3. Cytotoxic Activity against Colon Carcinoma (HCT-116 Cell)

The [Cu3(La)4(Cl)6] complex was tested for its in vitro cytotoxicity against colon carci-
noma (HCT-116 cell line). The results of the cytotoxicity experiments are presented graphi-
cally in Figure 9. These results showed an extraordinary cytotoxicity against the examined
cell line (HCT-116). The percentage of the cell viability is only 0.93 µg/mL at 500 µg/mL,
while the IC50 value is 3.75 ± 0.43 µg/mL. For doxorubicin as a positive control and under
the same experimental conditions, the IC50 value is 0.49 ± 0.07 µg/mL. Consequently, this
Cu(II) complex has a very promising inhibitory activity against colon carcinoma.
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Figure 9. Cytotoxic activity of the [Cu3(La)4(Cl)6] complex versus colon carcinoma (HCT-116
cell line).

3. Experimental
3.1. Materials

All chemicals were purchased from Aldrich chemical company and were used without
further purifications.

3.2. Instrumentations

Details of the instrumentations are described in the Supplementary Material.
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3.3. Synthesis of 2-(((1-(4,5-Dihydrothiazol-2-yl)ethylidene)hydrazono)methyl)phenol; L

To a solution of 1-(4,5-dihydrothiazol-2-yl)ethan-1-one (20 mmol, 2.58 g) in 50 mL
ethanol, 1.5 mL of hydrazine hydrate (40 mmol, 50–60%) was added dropwisely, and then
the reaction mixture was sonicated for 60 min at 60 ◦C. The solvent was removed under
vacuum, and excess ether was added to afford 2-(1-hydrazanoethyl)dihydrothiazole as a
white solid product in higher yield (>90%). The spectral data are in good agreement with
the reported data [42–44].

Then, 2-(1-hydrazonoethyl)dihydrothiazole (1.143 g, 8 mmol) and salicylaldehyde
(0.976 g, 7 mmol) were mixed in 50.0 mL ethanol and 2 drops of AcOH. The reaction
mixture was further sonicated for 60 min at 60 ◦C. Then, the solution was cooled to room
temperature, and light-yellow block shaped crystals were formed by slow evaporation
of the solution in air after a few days. The yield of the isolated yellow solid was 0.62 g.
(90%) [45–47].

Anal. Calc. for C12H13N3OS: C, 58.28; H, 5.30; N, 16.99 %. Found: C, 58.09; H, 5.24;
N, 16.83 %. 1H NMR (400 MHz, DMSO-d6) δ 8.77 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.41
(t, J = 7.0, 6.5 Hz, 1H), 6.99–6.96 (two overlay peaks, 2H), 4.43 (t, J = 8.3 Hz, 2H), 3.30 (t,
J = 8.2 Hz, 2H), 2.33 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 169.55 (C=N), 162.81(C=N),
161.85 (C=C-OH), 159.45 (C=N), 132.27(C-Ph), 121.02(C-Ph), 119.01(C-Ph), 117.94(C-Ph),
116.35 (C-Ph), 65.78 (CH2N-thiazole ring), 32.17 (CH2S), 14.43 (CH3).

3.4. Synthesis of [Cu3(La)4(Cl)6] Complex

A 10 mL ethanolic solution of 2-(1-(4,5-dihydrothiazol-2-yl)ethylidene)hydrazone)
methyl)phenol L (0.099 g, 4 mmol) was added to 10 mL ethanolic of CuCl2.2H2O (0.0511 g,
3 mmol) at room temperature. The resulting green solution was filtered out and kept,
without disturbing, to evaporate slowly at room temperature. After one week, dark green
crystals of the complex [Cu3(La)4(Cl)6] were obtained and found appropriate for single
crystal structure measurement. Anal. Calc. for C20H28Cl6Cu3N12S4 (80% yield): C, 24.81;
H, 2.92; Cu, 19.69; N, 17.36; S, 13.25%. Found: C, 24.59; H, 2.81; Cu, 19.46; N, 17.20; S,
13.09%. IR (KBr, cm−1): 1614, 1558, 1427, 1222.

3.5. X-ray Structure Determination

Details of the single crystal structure determination are are described in the
Supplementary Material [48–50].

3.6. Biolological Studies

The biological antimicrobial, anticancer and antioxidant activities of the Cu(II)
complex were studied. Details of the biological analysis are described in the
Supplementary Materials [51–53].

4. Conclusions

A novel [Cu3(La)4(Cl)6] complex was synthesized by the reaction of 2-((E)-(((E)-1-(4,5-
dihydrothiazol-2-yl)ethylidene)hydrazone)methyl)phenol L with CuCl2.2H2O in Ethanol.
This reaction occurs through a Cu(II) mediated hydrolysis of L, followed by cyclization
to afford the 3-methyl-5,6-dihydrothiazolo[3,2-c][1–3]triazole La, which undergoes com-
plexation with Cu(II). The structural aspects of the trinuclear [Cu3(La)4(Cl)6] complex were
determined using single crystal X-ray diffraction, Hirshfeld surface analysis, and XPS. The
complex consists of two crystallographically independent La ligand units, with one of them
acting as a terminal monodentate ligand coordinating only the Cu(2) metal sites, and the
other La unit acting as a connector between the two Cu(1) and Cu(2) sites. Using Hirshfeld
analysis, the Cl···H and H···H intermolecular contacts are the most prevailing interactions.
XPS analysis confirmed the divalent oxidation state of the copper ion. The [Cu3(La)4(Cl)6]
complex has higher activity against Gram-positive bacteria than Gram-negative bacteria,
especially against B. subtilis. Additionally, it showed promising antifungal activity against
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C. albicans. Interestingly, the [Cu3(La)4(Cl)6] complex has an unexpected cytotoxic activity
against the HCT-116 cell line (IC50 =3.75 ± 0.43 µg/mL).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27144583/s1, Instrumentations; Biological activity meth-
ods; Table S1: Evaluation of Antioxidant Activity using DPPH scavenging assay for [Cu3(La)4(Cl)6];
Table S2: Evaluation of cytotoxicity against HCT-116 cell line for [Cu3(La)4(Cl)6] and Doxorubicin;
Figure S1: FTIR spectra of the ligand L; Figure S2: FTIR spectra of the trinuclear [Cu3(La)4(Cl)6]
complex; Figure S3: 1H NMR Spectra of 2-(1-hydrazonoethyl)dihydrothiazole; Figure S4: 13C NMR
of 2-(1-hydrazonoethyl)dihydrothiazole; Figure S5: 1H NMR Spectra of L; Figure S6: 13C NMR of L.
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