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Abstract
Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important
risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD
after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the
involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has
also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this
review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic
polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-
based therapy for preventing AKI-to-CKD transition is also discussed.
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Introduction

Increasing evidence shows that acute kidney injury (AKI)
is a major cause of chronic kidney disease (CKD) and the
reoccurrence of AKI in CKD patients may also accelerate
CKD progression to end-stage renal disease.[1] Based on
the findings of previous studies, the pooled adjusted
hazard ratio of AKI-to-CKD is 4.3 compared with CKD
without a history of AKI.[2] The development of AKI-to-
CKD is heterogeneous as this transition occurs in different
patients and can be caused by multiple conditions, such as
nephrotoxin, sepsis, ischemia-reperfusion, surgical opera-
tion, and cardiovascular diseases.[3]

Currently, the mechanism of this multifactorial process
remains unclear. However, such information is crucial for
developing treatment strategies to prevent the harmful
progression of kidney injury. Multiple cells, including
immune cells, tubular epithelial cells (TECs), myofibro-
blasts, and fibrocytes, are proven to participate in the
development of CKD and contribute to progressive
fibrosis in the kidney.[4] Of note, immune cells, especially
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macrophages, are known to play a vital role in the AKI-to-
CKD transition. Multiple renal resident mononuclear
phagocytic cells and infiltrating immune cells can influence
the fate of the injured kidney.[5] Furthermore, distinct
macrophage subtypes are involved in the different stages
of AKI.[6] Macrophages can evolve into various pheno-
types to play multiple roles in causing AKI or promoting
kidney repair or fibrosis. There are twomajor macrophage
phenotypes including M1 (classically activated) and M2
(alternatively activated). The activation and transforma-
tion of macrophage phenotypes is primarily dependent on
the surrounding environment.[7] Macrophages with
different phenotypes play diverse roles in mediating renal
injury, inflammation, repair, and fibrosis. Of note, several
recent studies revealed that macrophages could directly
trans-differentiate into myofibroblasts via macrophage-
myofibroblast transition (MMT), thereby contributing to
renal fibrosis.[8,9] In this review, we highlighted the current
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advances in cell biology and the impact of different
macrophage subtypes on the process of AKI-to-CKD
transition. In addition, we also discuss the potential of
macrophage-targeted therapy in the prevention of AKI-to-
CKD transition.
Macrophages in the Kidney

Origin of macrophages in the kidney

According to recent findings, local macrophages derived
from the embryo are proliferating while macrophages
derived from bone marrow are recruited into the damaged
site during the process of renal inflammation.[10] The
characteristics of macrophages are regulated by multiple
factors, including external and internal signals, especially
cytokines and transcription factors, which determine the
tissue specificity.[10] It is important to distinguish macro-
phages derived from the two different sources as this affects
the phenotype and function of macrophages. Based on the
transcriptional analysis, residentmacrophages have specific
functions and characteristics as they possess transcriptional
programs specific to tissues.[11] Resident macrophages play
anti-inflammatory roles in kidney repair after injury, while
circulating macrophages play pro-inflammatory roles after
they migrate into tissues in response to injury.[12] Resident
embryo-derived macrophages are also gradually replaced
by bone marrow-derived macrophages with age during
normal postnatal development and dynamic changes in
surfacemarker expression under inflammatory or challeng-
ing conditions.[13]
Phenotype and polarization of macrophages in the kidney

Macrophages, the major immune population in normal
kidney, are regarded as key sentinels that play a vital role in
the establishment and pathogenesis of AKI.[14] Due to
different polarization states, macrophages infiltrating the
kidney exert a profound impact on renal injury, repair, and
fibrosis.[15] Macrophages can change their phenotype in
response to their surrounding microenvironment.[16] Gen-
erally,macrophagesare categorizedasM1andM2.TheM1
phenotype is characterizedbyCD38,CD80, induciblenitric
oxide synthase, G-protein-coupled receptor 18, and formyl
peptide receptor 2, while the M2 phenotype generally
expressesCD163,CD206, early growth response protein2,
c-Myc, arginase, and RELMa.[17,18] Macrophages com-
monly accumulate in the kidney after injury and undergo a
transition from a pro-inflammatory M1 phenotype to an
alternatively activated M2 phenotype.

The M1 macrophages participate in the early stage of AKI
models, such as contrast-induced and sepsis-induced
nephropathy.[19,20] For example, the numbers of neutro-
phils and M1 macrophages increase in contrast-induced
AKI and sepsis-induced AKI in response to heparinbinding
protein.[21,22] The activation of the tumor necrosis factor-
alpha (TNF-a)/high mobility group box 1 signaling
pathway in the M1 macrophage plays an important role
in pyroptosis during AKI.[23] Accordingly, interleukin
(IL)-1 receptor-associated kinase-M (IRAK-M) induction
during the recovery phase of AKI contributes to the
resolution of M1 macrophage- and TNF-a-dependent
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renal inflammation, allowing the repairing and functional
recovery of the injured kidney.[24]

M2 macrophages are critical for the inhibition of
inflammation, remodeling, and recovery from AKI.[25]

Of note, M2 macrophages can initiate pro-inflammatory
responses by secreting chemokines that drive the rapid
influx of neutrophils and inflammatory leukocytes during
tissue injury or infection.[26] In addition, the M2
macrophage phenotype also contributes to long-term
AKI outcomes, such as kidney recovery from injury or
atrophy and fibrosis.[24] Thus, macrophage phenotype
determines the fate of AKI.
Macrophages in Renal Inflammation

AKI may progress to long-term renal damage and cause
renal fibrosis and chronic inflammation,[27,28] resulting in
CKD.[29] Macrophages are a key inflammatory cell in
kidneyswith AKI. By using differentmacrophage depletion
and transfer techniques, the pathogenic roles of these pro-
inflammatory macrophages in kidney injury and progres-
sive CKD have been revealed. Liposomal clodronate-
mediated macrophage depletion in the early stage of
ischemia-reperfusion injury and rhabdomyolysis-induced
AKI has been found to significantly reduce renal injury and
long-term renal fibrosis, indicating the pathogenic role of
pro-inflammatory macrophages in the initiation of kidney
injury.[30,31] Pro-inflammatorymacrophages enhance renal
injury possibly by accelerating renal inflammation via the
release of several pro-inflammatory cytokines and chemo-
kines or expression of receptors to trigger abnormal wound
healing process, eventually leading to renal fibrosis.

During AKI, locally-produced cytokines and chemokines
can recruit a cascade of inflammatory effector cells into the
injured kidney tissue. For example, monocyte chemo-
attractant protein-1 (MCP-1) (encoded by the Ccl2 gene)
functions as an inflammatory cytokine that recruits
monocytes to the injured sites and contributes to the
AKI.[32] High levels of MCP-1 are commonly observed
after renal injury and elevated levels are found in the urine
and kidney.[33,34] Granulocyte-macrophage colony-stim-
ulating factor (GM-CSF) promotes macrophage differen-
tiation.[35] According to recent findings, GM-CSF-induced
MCP-1/C-C chemokine receptor type 2 (CCR2) signaling
plays an important role in the crosstalk between injured
tubular cells and immune cells such as infiltrating
macrophages, dendritic cells, and T cells to promote
renal injury and progressive interstitial fibrosis, resulting
in AKI-to-CKD transition.[36]

Macrophage migration inhibitory factor (MIF) is a pro-
inflammatory cytokine expressed in multiple cell types,
including macrophages. Macrophages secrete MIF in
response to a range of stimuli, including lipopolysaccha-
ride (LPS), TNF, and interferon-g (IFN-g).[37] MIF has
also been shown to regulate the production and secretion
of pro-inflammatory cytokines, including TNF, IFN-g, IL-
1b, and IL-6.[38] A recent study revealed that MIF
functions as a regulator of the nucleotide-binding
oligomerization domain-like receptor protein 3 (NLRP3)
inflammasome complex in macrophages. Inhibition of
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MIF in macrophages suppresses NLRP3-dependent secre-
tion of IL-1b and IL-18 in vitro and in vivo.[39]

Macrophages highly express pathogen recognition recep-
tors, such as toll-like receptors (TLRs), which are sensors
of pathogen-associated molecules that trigger inflamma-
tory signaling in macrophages.[40] In vitro, activation of
macrophages is magnified in the presence of TLR4 ligands,
such as LPS.[41] Chemokine receptors, such as CCR2 and
CX3CR1, and their cognate ligands, MCP-1 and
fractalkine (CX3CL1) can recruit bone marrow-derived
monocytes to infiltrate the injured kidney and differentiate
into pro-inflammatory macrophages in response to injury
signals in several renal injury diseases.[42,43] During the
transition from pro-inflammatory to profibrotic macro-
phages, the predominant role of CCR2 is to induce cell
homing/persistence; however, CCR2 is not directly
involved in profibrotic macrophage polarization.[36]

Macrophage-inducible C-type lectin (Mincle) is a pattern
recognition receptor.[44] Mincle is predominantly
expressed and persists in macrophages, which exhibit
mixed phenotypes with high expression of pro-inflamma-
tory and anti-inflammatory markers in the late phase of
AKI.[44] Mincle also contributes to tubular cell death and
subsequent renal atrophy in the late phase after AKI.
Collectively, the above findings suggest that Mincle is
involved in the AKI-to-CKD transition.
Macrophages in Kidney Repair

The anti-inflammatory and reparative roles of macrophages
have been well studied.[15] The pro-inflammatory macro-
phages are a predominant feature of the early injury phase,
whereas reparative macrophages are exhibiting properties
ensuing epithelial repair and renal function recovery
phase.[45] Polarizedmacrophagepopulations canorchestrate
renal repair during CKD. Ly6Cintermediate macrophages may
contribute to renal repair by exerting anti-inflammatory and
wound healing functions.[31] Depletion of macrophages in
the late stage of the IRImodel reduces TECproliferation and
delays renal repair; however, the transferal of IL-4-polarized
M2 macrophages induces the repair process.[46] IL-4/IL-13-
polarized M2a macrophages are essential for the recovery
from ischemic AKI.[47] M2 macrophages exhibit an anti-
inflammatory effect mainly by inducing anti-inflammatory
factors and high endocytic capacities. M2 macrophages can
produce anti-inflammatory cytokines and trophic factors,
such as IL-10, transforming growth factor (TGF)-b, insulin-
like growth factor, and hepatocyte growth factor. M2
macrophages can also deactivate T cells andmacrophages to
alleviate renal inflammation.[31]
Macrophages in Renal Fibrosis

Fibrosis is a well-established hallmark of CKD and
macrophage infiltration is a common feature of active
fibrotic lesions.[48] Infiltrating macrophages from blood
monocytes/macrophages and renal resident macrophages
proliferations accumulate in the damaged kidney and
promote the progression of kidney fibrosis.[49] Generally,
macrophage accumulation is significantly linked with the
degree of glomerulosclerosis and the extent of interstitial
fibrosis and tubular atrophy.[50]
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Based on accumulating evidence, the M2 macrophage
phenotype is present during kidney fibrosis, although M1
macrophages remain a feature of chronic inflammation.
Multiple studies indicate that the accumulation of M2
macrophages expressing CD206 and/or CD163 correlates
with renal fibrosis in both human and animal models of
kidney disease. The number of glomerular CD163 +
macrophages localized in areas of active fibrosis has been
confirmed to be associatedwith glomerulosclerosis, tubular
atrophy, interstitialfibrosis, anddegree ofmesangialmatrix
expansion.[51] These macrophages are frequently present
in areas of interstitialfibrosis, characterized by the deposition
of type I collagen and accumulation of myofibroblasts that
express smooth muscle a-actin (a-SMA).[52] CD206+ M2
macrophages are indicated to be highly correlated with
subclinical inflammation, tubular injury, and the progression
of fibrosis.[53]

Depletion of the M2 macrophages is proven to protect
against progressive interstitial collagen deposition. For
example, the adoptive transfer of M2 macrophages, but
not M1 macrophages, reversed the beneficial effects of
macrophage depletion on renal fibrosis.[54] Similarly,
macrophage depletion from day 4 in a model of unilateral
ureteral obstruction (UUO) significantly reduced renal
fibrosis, whereas the adoptive transfer of M2 macro-
phages promoted the accumulation of a-SMA+ cells.[55]

These findings suggest a profibrotic role of M2 macro-
phages and their subsets in renal fibrosis.

Several transcription factors are involved in mediating the
functions of macrophages in kidney fibrosis. KLF4 (a zinc-
finger transcription factor), an anti-inflammatory signal, is
an essential regulator of macrophage polarization. Dele-
tion of KLF4 in macrophages stimulates their production
of TNF-a, with consequent TEC necroptosis and
exaggerated renal interstitial fibrosis.[56]

Several receptors expressed by macrophages have been
shown to play an important role in profibrotic responses
after AKI. The small secreted protein, breast regression
protein-39 (BRP-39 or Chi3l1), and its receptor,
PTGDR2, are highly expressed by macrophages during
the early stages of kidney repair and promote tubular cell
survival via IL-13 receptor a2-mediated signaling. In
addition, BRP-39 can promote macrophage profibrotic
response and interstitial fibrosis in the IRI model.[57]
Macrophages in AKI-to-CKD Transition

Infiltrating macrophages and other immune cells, dam-
aged TECs, disruption of the renal vascular system,
activation of interstitial fibroblasts, hypoxia, inflamma-
tory response, and oxidative stress are involved in AKI-to-
CKD transition.[58,59] Among them, macrophages play an
important role in AKI-to-CKD through interacting with
multiple factors [Figure 1].
Phenotype of macrophages in AKI-to-CKD transition

Macrophages can change their phenotypes from M1 and
M2 in response to kidney injury. Both M1 and M2
macrophages may coexist in AKI and CKD. Thus, it is
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Figure 1: Macrophages in AKI-to-CKD progression. Macrophages derived from bone marrow are recruited into the injured kidney and promote AKI-to-CKD by directly and indirectly
Interacting with intrinsic kidney cells and via the process of MMT. AKI: Acute kidney injury; BRP: Breast regression protein; CKD: Chronic kidney disease; DAMPs: Damage-associated
molecular patterns; MMT: Macrophage-myofibroblast transition; ECM: Extracellular matrix; MMP: Matrix metalloproteinase; M1: Macrophage 1 phenotype; M2: Macrophage 2 phenotype;
Mø: Resident macrophage; TGF-b: Transforming growth factor-b.
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important to understand the roles of macrophages in AKI-
to-CKD transition.[60] For example, bone marrow-derived
Ly6C� macrophages can induce AKI and subsequently
mediate CKD.[61] Ly6Chigh macrophages are essential for
renal damage, which is accelerated by the production of
pro-inflammatory factors, such as TNF-a and interleu-
kins.[31] IRAK-M is a macrophage-specific inhibitor of
TLR and IL-1 receptor signaling that prevents polariza-
tion toward a pro-inflammatory phenotype. IRAK-M has
been confirmed to be involved in the regulation of
macrophage phenotype, wound healing, and tissue
regeneration during progressive CKD after AKI.[24]

Moreover, macrophage subtypes have been proven to
play crucial roles in AKI-to-CKD progression.
Macrophages and renal microenvironment in AKI-to-CKD
transition

Pathogen-associated molecular patterns and damage-
associated molecular patterns released by infectious
organisms and/or cell necrosis may induce and promote
the infiltration of bone marrow-derived macrophage via
TLRs and other innate pattern recognition receptors
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toward a pro-inflammatory phenotype in the micro-
environments of the kidney.[62] In turn, macrophages can
alter the microenvironment of the diseased kidney by
interacting with neighboring cells, including TECs,
endothelial cells, immune cells, fibroblasts, and myofi-
broblasts.[63]
Macrophages and microenvironments

Macrophages alter their phenotypes in response to the
renal microenvironment; however, macrophages can also
modify the microenvironment via a paracrine effect.[64]

M1 macrophages are pro-inflammatory and produce
cytokines, such as IL-1, IL-6, and TNF-a, whereas M2
are mainly anti-inflammatory and express arginase,
mannose receptor, IL-10, and IL-4 receptor-a. Thus,
macrophages display considerable diversity and plasticity
and can promote or inhibit inflammatory (or other)
processes in different contexts. Based on a recent study,
pro-inflammatory macrophages from circulating mono-
cytes play an important role in initial IRI andmay promote
fibrosis.[36] This is confirmed by blocking MCP-1/CCR2
signaling to inhibit macrophage-mediated renal injury.[36]
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GM-CSF expressed by injured TECs can also trigger
macrophages expressing MCP-1 to recruit additional
macrophages, dendritic cells, and T cells into the injured
kidney. Profibrotic macrophages can also highly express
platelet-derived growth factor (PDGF)-b and TGF-b and
stimulate PDGFRb-positive myofibroblasts to produce
extracellular matrix (ECM) components, such as collagen
1, COL3a1, and fibronectin.[36] In addition, T cells and
dendritic cells are involved in the cytokine microenviron-
ment to sustain kidney injury together with macro-
phages.[62,63]

The microenvironment status, such as hypoxia, plays a
regulatory role in the activation of macrophages. Previous
studies revealed that hypoxia can activate TECs, inflam-
matory cells, and fibroblasts and contributes to the
progression of fibrosis.[65] Activation of the hypoxia-
inducible factor (HIF) is the central cellular response to
hypoxia.[66] Multiple studies have revealed that myeloid
HIFs are required for inflammatory macrophage-specific
functions in acute ischemic, hypoxic injury, and various
types of renal diseases.[67,68] For example, macrophage-
specific HIF-1a activation and lowered autophagic flux
stimulate an inflammatory response by activating the
nuclear factor-kappa B signaling pathway.[69] HIF-1a
inducing the exosomal expression of microRNA-23a
mediates the crosstalk between TECs and macrophages
in tubulointerstitial inflammation.[70] Thus, targeting
HIFs can effectively inhibit macrophage activation and
the AKI-to-CKD transition. This is confirmed by a study
that FG4592 (Roxadustat), which induces HIF stabili-
zation, has been approved to decrease macrophage
infiltration and the release of inflammatory cytokines, such
as TNF-a and IL-1b, and to reduce collagen deposition as
well as the expression of fibrosis biomarkers.[71]
Macrophages and renal TECs

Renal TECs are the major cell type in maintaining the
stability of renal homeostasis; however, they are also the
mainvictimofAKIas theyare susceptible tovarious typesof
cellular stress.[72] Tubular injury is not only a primary
trigger ofAKI but also a potential determinant of laterCKD
progression by promoting inflammation and fibrosis.[73,74]

These observations indicate that tubules play an essential
role in AKI-to-CKD progression. Generally, after AKI,
TECs dedifferentiate, proliferate, and re-differentiate,
contributing to the repair of nephrons. Macrophages
infiltrating the kidney in response to injury can influence
these pathophysiological processes by directly or indirectly
interesting with TECs and inducing or promoting TEC
injury and death.[15,24] Intriguingly, TECs can also regulate
the phenotype ofmacrophages. In sepsis-inducedAKI,Csf2
exclusively secreted by injured TECs can promote the
transitionofM1macrophages to theM2phenotype indose-
and time-dependent manners. In addition, Csf2 can also
regulate macrophage transition by activating p-Signal
transducers and activators of transcription 5.[75]
Macrophages and endothelial cells

The endothelium is a dynamic organ that plays an
important role in renal physiopathology. The glomerular
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endothelial cells contribute to the glomerular filtration
barrier and support podocyte structure, whereas endothe-
lial cells of the microvasculature in the kidney contribute
to tubular reabsorption. Endothelial cell injury after AKI
has long-term outcomes of CKD.[76] Epithelial-endothelial
cell interactions exhibit an important effect on capillary
rarefaction. Previous studies suggested that injured TECs
can cause capillary rarefaction, which further leads to
hypoxic TEC injury, thereby resulting in a vicious circle
effect.[77] Endothelial cells can also interact with macro-
phages under kidney disease conditions. Endothelial
progenitor cells, which can differentiate into endothelial
cells, dwell in stem cell niches and can be derived from the
monocyte/macrophage lineage.[78] Pro-inflammatory
macrophages release a large amount of TNF-a, which
induces the apoptosis of endothelial cells by binding to
TNF receptors.[62] Inflammation is closely linked with the
endothelial stress response. Factor Xa and the activation
of protease-activated receptors (PARs) on the surface of
endothelial cells induce glomerular macrophages to
release inflammatory mediators, such as MCP-1 and IL-
1b.[79]
Macrophages and myofibroblasts

Macrophages can produce fibrotic factors, including
fibronectin and collagen, in response to a fibrotic
microenvironment under various disease conditions.[80]

Moreover, macrophages produce several profibrotic
factors (e.g., TGF-b1, galectin-3), pro-inflammatory
cytokines, and other factors (e.g., IL-1, TNF-a) to enhance
the activation, proliferation, survival, and transdifferen-
tiation of myofibroblasts during CKD progression.[31]

Activated a-SMA+, PDGFRb+ myofibroblasts, the main
collagen-producing cells, are believed to be directly
responsible for most ECM expression, including ECM
proteins and collagen, leading to progressive renal
fibrosis.[81] The crosstalk between macrophages and
myofibroblasts has been demonstrated by several groups.
Macrophage-derived PDGFb and/or TGF-b have been
demonstrated to be potentially important for myofibro-
blast activation and play a driving role in pericyte-
myofibroblast transformation.[82] Based on the above
observation, the crosstalk between macrophages and the
surrounding cells may also promote the polarization, fate
of macrophages, and may be partially responsible for the
regenerating kidney.
MMT in AKI-to-CKD transition

Inflammation is regarded as one of the earliest processes
after renal injury. Acute inflammation is followed by tissue
repair or scarring. During successful repair, macrophages
regress or undergo apoptosis. However, if severe or
unresolved injury exists, macrophages can become a
profibrotic phenotype, thereby promoting kidney fibrosis
through myofibroblast activation.[83] Unexpectedly, our
recent studies uncovered that monocyte/macrophages
from bone marrow can acquire myofibroblast phenotype
via the process of MMT in a mouse model of unilateral
ureteric obstruction.[84] This novel finding is consistent
with the profibrotic effect of macrophages as reported by
other studies.[85] Macrophages infiltrating the kidney in
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response to injury can transition directly or via paracrine
effects into myofibroblasts.[31,48] Indeed, MMT cells are
prominently accumulated in sites of fibrosis by co-
expressing macrophage (CD68) and myofibroblast
(a-SMA) markers and are an active form of fibroblasts
with both fibrogenic and pro-inflammatory properties.[86]

Thus, MMT cells correlate better with the CKD progres-
sion including chronic renal allograft rejection.[87] Thus,
MMT may be a newly identified source of myofibroblast
origin during renal fibrosis andmay play an important role
in progressive renal fibrosis.

MMT contributes to fibrosis in diverse diseases and is
mainly driven by the TGF-b1/Smad3 signaling path-
way.[88,89] To identify alternative therapeutic targets
downstream of TGF-b/Smad3 signaling, single-cell RNA-
seq has been employed in an in vitro model of MMT.
Accordingly, Src is identified as a key regulator of the
MMT-dependent gene network. Furthermore, Pou4f1 is
the only transcription factor involved in TGF-b1/Smad3-
mediated MMT based on unbiased gene network
analysis.[90] Pou4f1 is highly expressed by macrophages
undergoing MMT in fibrotic lesions in human and
experimental kidney disease and is considered to
stimulate renal fibrosis directly through the MMT.[86]

Fatty acid-binding protein 4 (FABP4) has also been
revealed to be responsible for the MMT process.
According to Feng et al[89], FABP4 is co-expressed in
MMT cells and serves as an important factor that
contributes to renal interstitial fibrosis by mediating the
MMT process.

The role of the MMT process is still debatable, as MMT
has not been identified in all myeloid lineage tracing
studies in models of renal fibrosis.[91] Furthermore,
another study revealed that bone marrow-derived macro-
phages account for only a small fraction that directly
contributes to myofibroblasts.[92] This discrepancy may
partially be associated with the nature, the stage of the
disease, and the severity of renal fibrosis. In addition, the
MMT process is dynamic and can only be observed in
active inflammatory lesionswith progressive renal fibrosis,
but is rare in diseases with acute inflammation or non-
progressive renal fibrosis.[84] These conflicting results
warrant further investigation.

MMT may account for a substantial component of the
myofibroblast population, arguing for MMT as a
common mechanism of renal fibrosis. However, whether
MMT plays key roles in the AKI-to-CKD model remains
undetermined and needs to be further explored.

Macrophage-related signal pathways in AKI-to-CKD
transition

Notch signaling pathway

ThemacrophageNotch signaling pathway is known for its
indispensable role in various types of AKI (e.g., ischemic
AKI) and CKD by increasing inflammation and apoptosis,
as well as promoting renal fibrosis.[93,94] Recently, a study
revealed that myeloid-specific Notch activation aggravates
renal fibrosis, which is mediated by CCR2 + macrophages
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infiltration.[95] The Notch signaling pathway is also
responsible for determining the balance between the
M1/M2 phenotype in CKD.[96]
TGF-b/Smad signaling pathway

The TGF-b/Smad signaling pathway plays a significant
role in the fibrogenesis of the kidney and is a central
mediator in renal fibrosis.[97] Tubular cells, the primary
target of AKI, could proliferate and regenerate after
injury.[29] However, the TEC injury is persistent and
becomes unrepaired, TECs can contribute to the
transition from AKI to CKD. TGF-b/Smad signaling
has been considered as an important factor during this
progression.[98] This pathway not only perpetuates
TECs injury but also promotes macrophage chemotaxis
after AKI. TGF-b/Smad signaling acts as a potent
chemoattractant for macrophages and may promote
injury by augmenting macrophage infiltration and
activation,[98] although macrophage-derived TGF-b1
may not be essential for UUO-induced renal interstitial
fibrosis.[99] TGF-b/Smad signaling also promotes pro-
gressive renal fibrosis by mediating ECM synthesis,
inhibiting its degradation, and stimulating TECs and
endothelial cells to undergo epithelial-to-mesenchymal
transition or endothelial-to-mesenchymal transition.[100]

Most significantly, our recent studies identified that
TGF-b can induce MMT via the Smad3-dependent
mechanism as deletion of Smad3 from macrophages and
targeting the Smad3-Src-POU4f1 pathway can block
MMT and renal fibrosis.[86,87,90]
Wnt/b-catenin signaling pathway

Under normal conditions, the Wnt/b-catenin pathway is
silent in the kidney; however, Wnt/b-catenin signaling
becomes activated once an injury occurs.[101] Sustained
activation of the Wnt/b-catenin signaling pathway plays a
decisive role in driving the AKI-to-CKD continuum and
accelerates renal fibrosis.[102] This is confirmed by treating
macrophages with Wnt3a to exacerbate IL-4- or TGF-b1-
induced macrophage alternative (M2) polarization during
kidney fibrosis.[59]
Macrophage-targeted Therapy for AKI-to-CKD Transition

To date, therapeutic strategies that interfere with
monocyte/macrophage recruitment, activation, and polar-
ization, or macrophage-cell-based therapy have been
widely studied. Liposomal clodronate-mediated clearance
ofmacrophage alleviates renal fibrosis.[103]Modification of
macrophage activation and infiltration may also prevent
renalfibrosis. For example,macrophageTGF-bRII deletion
results in inhibition of macrophage infiltration and renal
fibrosis after AKI.[104] Blocking NF-kB signaling using
antisense oligonucleotides or its natural inhibitor, IkB,
suppresses the classical activation of macrophages, but
increases anti-inflammatorymacrophages, thereby alleviat-
ing kidney injury.[105] Additionally, treatment with Quer-
cetin or inhibition of Wnt5a has been shown to block
macrophage infiltration and M2 polarization, thereby
preventing ECM production and interstitial fibrosis in a
TGF-b1/Smad-dependent mechanism.[106,107]
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Multiple factors, including CSF-1 receptor (CSF-1R), can
influence the proliferation, differentiation, and survival of
macrophages.[108] Dysfunction in the Csf1r gene selec-
tively inhibits the development of tissue macrophage
populations and leads to an almost complete lack of
F4/80+ cells in tissues.[109] Deletion of the super-enhancer of
the Csf1r gene or blocking CSF-1R depletes macrophages
in the kidney.[109] Treatment with the CSF-1R inhibitor,
GW2580, in an I/R-induced AKI model can inhibit
Ly6C+ M2-like macrophage infiltration.[110] The prote-
ase-activated receptor (PAR)-1 antagonist, vorapaxar, is
reported to suppress macrophage infiltration by inhibiting
MAPK ERK1/2 and TGF-b/Smad signaling during AKI-to-
CKD transition.[111] Intriguingly, macrophage-derived
microvesicles for kidney targeted delivery of dexametha-
sone produce a superior suppressive effect on renal
inflammation and fibrosis.[112]

Multiple cell-based hematopoietic products are another
therapeutic approach.[113] For example, macrophages
could be adoptively transferred after ex vivo genetic
modification.[114] Recently, exogenous macrophage-based
therapies for inflammatory and degenerative diseases,
including renal disease, have been developed.[115,116] For
example, genetically modified bone-marrow-derived mac-
rophages to produce IL-4 or IL-10 (anti-inflammatory
cytokines associated with M2 polarization) have been
shown to effectively inhibit experimental glomerulone-
phritis.[116]
Conclusion

AKI is a major cause of CKD and AKI-to-CKD transition
is a key process leading to progressive renal injury.
Macrophages are a key immune cell that plays a driving
role in AKI-to-CKD. M1 macrophages are pro-inflam-
matory and cause AKI by directly interacting with
intrinsic kidney cells such as TECs and endothelial cells
or indirectly by producing abundant pro-inflammatory
cytokines. M2 macrophages can be renal reparative
involving the repair process by secreting anti-inflamma-
tory cytokines. However, they can become pro-fibrogenic
and again the myofibroblast phenotype via the MMT
process when a renal injury is unresolved and progres-
sive. MMT cells are of pro-inflammatory and profibrotic
phenotype and may play a driving role from AKI-to-
CKD, which is tightly regulated by TGF-b/Smad3
signaling. Thus, modified macrophage phenotypes or
targeting the pathways that regulate M1 macrophage
activation and MMT may be a promising therapeutic
approach for the treatment of kidney disease by
preventing AKI-to-CKD progression.
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