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Abstract

Purpose: Segmentation of liver organ and tumors from computed tomography (CT)

scans is an important task for hepatic surgical planning. Manual segmentation of

liver and tumors is tedious, time-consuming, and biased to the clinician experience.

Therefore, automatic segmentation of liver and tumors is highly desirable. It would

improve the surgical planning treatments and follow-up assessment.

Method: This work presented the development of an automatic method for liver

and tumor segmentation from CT scans. The proposed method was based on fully

convolutional neural (FCN) network with region-based level set function. The frame-

work starts to segment the liver organ from CT scan, which is followed by a step to

segment tumors inside the liver envelope. The fully convolutional network is trained

to predict the coarse liver/tumor segmentation, while the localized region-based

level aims to refine the predicted segmentation to find the correct final segmenta-

tion.

Results: The effectiveness of the proposed method is validated against two publi-

cally available datasets, LiTS and IRCAD datasets. Dice scores for liver and tumor

segmentation in IRCAD datasets are 95.2% and 76.1%, respectively, while for LiTS

dataset are 95.6% and 70%, respectively.

Conclusion: The proposed method succeeded to segment liver and tumors in

heterogeneous CT scans from different scanners, as in IRCAD dataset, which proved

its ability for generalization and be promising tool for automatic analysis of liver and

its tumors in clinical routine.
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1 | INTRODUCTION

Computer-aided diagnosis and surgery system (CAD/CAS) for liver

cancer is a group of methods that use the computing technology

to help in the preoperative planning, resection risk assessment, or

actual surgery treatments. Liver cancer is one of the most fre-

quent cancerous diseases that cause high number of deaths every

year. Liver cancer treatments require accurate diagnosis and

planning.1

Liver treatment options require accurate diagnosis, to assess the

size and location of the tumors and arrive at the best clinical deci-

sion on the treatment. Medical imaging using computed tomography

(CT) scans is the most commonly used imaging techniques for liver

cancer diagnosis, since it gives accurate anatomical information
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about the abdominal organs in the human body.2 Liver organ and

tumor segmentation from CT scans is an important step in the visu-

alization of liver anatomy for surgical planning.3

Manual segmentation of liver organ and tumors from CT scans is

tedious and time-consuming. It greatly depends on the skills of the

physician or doctor who performs the segmentation task. Liver organ

has high variability in terms of shape and volume between different

patients.4 Low contrast and blurry edges are the main characteristics

of CT images, which make liver delineation a challenging task.5

Tumor segmentation adds more challenge due to the small observ-

able changes between tumor and healthy tissues especially at their

borders. In addition, tumors vary greatly in terms of shape, size, and

texture. Despite these challenges, which complicate tumor segmen-

tation, the automated approach is desirable, as it is, ideally, more

objective and removes dependence on human skill.6

Liver surgical planning treatments would benefit from an accu-

rate and fast liver and tumor segmentation that allows for subse-

quent determination of tumor burden and texture-based information.

Moreover, having a standardized and automatic segmentation

method would facilitate a more reliable therapy response classifica-

tion.7

Organ segmentation from CT scans has been a hot research

topic during the past few years. Recently, due to the advancement

in computer vision, the development of deep fully convolutional neu-

ral (FCNs) networks enhanced the performance of the semantic seg-

mentation, and leads to outperform other competitors in the field of

medical imaging.8,9 General FCN focuses its task on image classifica-

tion, where input is an image and output is one label. However, in

medical imaging, it requires, besides the classification, to localize the

area of abnormality.10

Following the FCN success, many attempts have been carried to

use the FCN for liver and tumor segmentation11; one of the best

FCN architectures has been created is the U-Net.12 U-Net is suc-

ceeded to classify the images and locate the specific structures, and

it has the ability to locate and distinguish borders by doing classifica-

tion on every pixel.

Recently, the liver tumor segmentation (LiTS) competition chal-

lenge was organized in conjunction with ISBI 2017 conference.13

The top-rated automatic methods submitted to the competition used

FCN networks. For this purpose, different works used U-Net archi-

tecture for liver and tumor segmentation.11,14,15

Despite the high accuracy achieved by deep learning FCNs in

segmenting organs from CT scans, these methods depend on the

training step on many datasets to cover all expected features of the

intended organ and build a trained network to detect that organ in

the test dataset. However, these methods overlook to get benefit of

the local features in the test dataset itself to refine and improve the

final segmentation from the target CT scan.

Due to the previously explained issue, the recent research moves

toward the combination between deep learning methods with local

information-based techniques. In liver and tumor segmentation

domain, many intensity-based techniques have been proposed to

find the intensity range of the liver and tumor by applying a

statistical analysis on the intensities in CT scans.16,17 One of these

techniques that can be used more independently is the level set-

based active contour methods.18 Level set-based active contour

method is used to deform an initial mask, that is coarse segmenta-

tion, to match more accurately the boundary of the liver/tumor in

the test CT scan.19,20

In this work, two cascaded FCN networks are constructed using

U-Net, the same work proposed by Christ et al.21 The first subnet-

work aims to locate and predict the liver organ, while the second

subnetwork work on the segmented liver envelope to detect and

segment tumors. The output of these networks represents the

coarse segmentation of liver and tumors, that are considered as ini-

tial mask used by the level set method to be deformed to the liver/

tumor boundaries in the target CT image and generate the final seg-

mentation.

2 | MATERIALS AND METHODS

2.A | Overview of the proposed framework

The proposed segmentation framework is presented in Fig. 1. The

workflow consists of three main steps. It is applied first for liver seg-

mentation and then for tumor segmentation. The first step (Sec-

tion 2.B) deals with data preprocessing, windowing, and filtering

steps are applied on LiTS datasets for liver and tumor segmentation.

In a second step (Section 2.C), U-Net FCN is constructed and

trained—one network to segment liver organ and another network is

trained to segment the tumors inside the liver region of interest

(ROI). In the third step (Section 2.D), the localized level set is applied

on the predicted U-Net segmentation for further enhancement to

get the final liver and tumor segmentation.

F I G . 1 . Overview of the proposed liver and tumor segmentation
framework.
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2.B | Data preparation

For liver segmentation step, the contrast-enhanced CT scans undergo

median filtering to improve intensity homogeneity especially in liver

region. Step of intensity windowing is applied to exclude irrelevant

organs and focus on liver organ intensity range. Based on intensity-

based techniques,16-20 liver organ and tumors Hounsfield (HU) intensi-

ties range is 0–200. In this work, HU windowing is applied on datasets

used in the FCN training step for both liver and tumor segmentations,

the used HU window is −50–250. Figure 2 presents the effect of

applying windowing and median filtering on CT slice example.

For tumor detection and segmentation using U-Net network, the

training datasets are enhanced using tensor-based 3D edge enhanc-

ing diffusion (EED) filtering,22 that would improve the prediction of

U-Net network to detect and segment tumors. EED filtering uses dif-

fusion tensor to adapt the diffusion based on the image structure.

Edge enhancing diffusion filter is used to enhance the contrast, fil-

ters the noise in the homogeneous regions, and preserves the

boundaries of the shape.22

Edge enhancing diffusion filtering enhances the contrast of tumors

by enhancing the homogeneities inside the liver and tumor tissue

regions. In addition, it preserves the boundaries between tumors and

liver tissue. Figure 3 shows an example of a CT scan before and after

being enhanced using EED filtering. The intensity of the liver parench-

yma is enhanced and appears brighter than the tumor regions, while

the tumors appear darker compared to the liver tissue.

In this work, EED filtering improves the contrast of tumor struc-

tures by enhancing the homogeneities inside the liver and tumor tis-

sue regions, and preserves the boundaries between them. This step

would teach and orient the U-Net FCN network to extract and learn

the features that differentiate the tumor structure from the sur-

rounding tissues. Figure 3 shows the effect of the preparation step

on the raw medical CT slice.

2.C | Fully convolutional neural networks

In this work, the U-Net architecture is used to build the FCNs. The

networks are used to compute the soft probability label maps. Both

U-Nets enable accurate pixel-wise prediction by combining spatial

and contextual information in a network architecture comprising 19

convolutional layers.

Figure 4 shows the U-Net architecture, the input passes and is

processed by a sequence of convolution blocks, where the feature

maps are doubled and resolutions are decreased (contracting path).

The expanding path of the U-Net reverses the process using the

transposed convolution. The network contains dropout layer (0.5)

before the final output layer to avoid over fitting. The output layer is

designed using a linear classifier, sigmoid, that outputs a probability

value (0–1) for each pixel being liver (tumor) or the background. The

U-Net FCN architecture is implemented using Keras1 with the Ten-

sorFlow backend.

The two U-Net FCNs are implemented in a cascading way. 100

LiTS CT scans with various image dimensions are used for training. All

training slices are resized to have common size, so the inputs for both

FCNs are two-dimensional (2D) grayscale slices of size 256 × 256,

and their outputs are binary mask images of size 256 × 256.

The first network is trained to segment the liver envelope in

whole abdomen slices, which are resampled to input size

(256 × 256), so that the network concentrates on learning features

that discriminate liver from background. The second network is

trained to segment the tumors, given the liver envelope image. The

segmented liver from the first framework step is cropped and resized

to the second network input. The liver ROI helps in reducing the

percentage of misclassified nontumor pixels. The second U-Net FCN

can concentrate on learning features that discriminate tumors from

liver background segmentation.

The soft dice coefficient (DSC) is used as loss function that is

computed on the pixel-wise softmax of the FCN final feature map.

Due to segmenting small objects like tumors, class balancing accord-

ing to the pixel-wise frequency of each class in the data is required.

To deal with this case, the training datasets ensured to have the cor-

responding mask for each input 2D slice, so each batch contains

patches where both tumor and background are present. In addition,

to focus the model on the liver/tumor structure, the training process

excludes slices that does not have corresponding mask.

Both networks are trained with 20 epochs (mini-batch size 32).

The network parameters are updated using Adam optimizer with

0.001 learning rate. The learning rate is reduced by factor of 0.1

F I G . 2 . Effect of windowing and median
filtering. The raw computed tomography
slice (left) and the enhanced slice using
median filtering (right).
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every 5 epochs to ensure a balanced loss, if no improvement in net-

work optimization is acquired. Figure 5 shows the learning curves of

the proposed FCNs for liver and tumors; the achieved validation

accuracies for liver and tumor FCNs are 97.7% and 88.8%, respec-

tively.

2.D | Localized region-based level set

Fully convolutional neural-predicted segmentation may not reach the

liver or tumor boundaries in some test CT scan, since the FCN out-

put accuracy is limited by the learned features from the training

datasets. Level set-based active contour method is used in this work

to refine the FCN-predicted segmentation, to match more accurately

the boundary of the liver organ or the tumors inside the CT scan.

Active contour-based techniques have been widely used for

image segmentation and boundary tracking.18 The basic idea of

active contour methods is to start with initial boundary shapes rep-

resented in a form of closed curves, that is contours, and iteratively

allow the contour to deform so as to minimize a given energy func-

tional according to the constraints of the image, in order to produce

the desired segmentation. Level set-based active contour is a formu-

lation to implement active contours that was proposed by Osher and

Sethian.23

Two main categories exist for level set active contours: edge-

based and region-based. Edge-based active contour models utilize

image gradients in order to identify object boundaries; however, this

type has been found to be very sensitive to image noise and depend

on the initial contour place. On the other hand, the region-based

level set active contour has advantages compared to edge-based

level set methods that include robustness against initial contour

place and insensitivity to image noise.24

Since the FCN-predicted segmentation is expected to be close to

the liver/tumor boundary, the region-based level set active contour

seems to be more suitable than other level set types, namely that

proposed by Chan and Vese.18 The Chan-Vese energy (Ecv), which is

aimed to be minimized, is referred by Eq. (1):

F I G . 3 . Computed tomography scan
enhancement using edge enhancing
diffusion filtering.

F I G . 4 . Illustration of U-Net fully
convolutional neural network architecture
for liver/tumor segmentation.
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ECV C½ � ¼ μ

ZL Cð Þ

0

dsþ∬
Ωc

I x,yð Þ�c1ð Þ2dxdy þ∬
Ωc

I x,yð Þ�c2ð Þ2dxdy (1)

where Ωc represents the interior of the curve C, and c1 and c2 are

the mean intensities for the interior and the exterior of the curve to

be defined in an image I. The first term is the regularization term

that minimizes the curve length s, and the second term maintains

the balancing between the interior and the exterior. To make this

step more efficient, the localized implementation of this active con-

tour method is used.25

Instead of modeling the region of the whole image, the curve is

modeled by many neighborhood local regions, each local region is

considered separately, which is divided into local interior and local

exterior, as explained in Fig. 6. After defining the interior and exte-

rior local regions, the energy optimization then done by fitting the

curve at each local region, the algorithm incorporates the Chan-Vese

energy implementation18 to model the local interior and exterior

forces of each local region contour.

The localized active contour step is used in both liver and tumor

segmentation steps. The FCN-predicted output is used as an initial

contour (C, in Eq. 1) for the level set function, that is the coarse liver

or tumor as initial segmentation for the liver or the tumor segmenta-

tion steps.

Starting from U-Net-predicted segmentation of the liver or

tumor, the localized contouring algorithm is applied on all slices

sequentially. Besides the HU windowing, a simple thresholding step

using Otsu technique is applied to extract and concentrate more on

the liver intensity range for the liver segmentation step. The same

thresholding is applied on the EED-enhanced liver ROI to extract

more accurate tumor intensity range inside the liver envelope. The

thresholded intensities help the localized level set function to deform

the initial FCN segmentation with limited number of iterations to

match the liver/tumor boundaries and generate best final segmenta-

tion.

3 | RESULTS

3.A | Datasets

The FCN networks are trained using a subset of publically available

training LiTS datasets. LiTS training datasets2 contain 131 contrast-

enhanced CT scans obtained from different clinical institutions. The

CT scans come with manual delineation of the liver and tumors done

by experts. The LiTS dataset contains 908 lesions.

The LiTS datasets are divided into two groups, 100 datasets used

for FCN training and validation, while the remaining 31 datasets are

used for testing and evaluation. For LiTS datasets that come without

F I G . 5 . Learning curves of the two U-Net fully convolutional neural networks: Liver U-Net (left) and Tumors U-Net (Right).

F I G . 6 . Local interior and local exterior regions.25
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tumor masks, they are excluded from the FCN training step for

tumor segmentation. The number of slices extracted from the 100

LiTS datasets that are used for FCN network training are 15 125

and 3459 for liver and tumors segmentation, respectively.

In order to demonstrate the robustness, generalization, and scala-

bility of the proposed method, the proposed method is applied on

50 datasets from two publically available datasets, LiTS and IRCAD.

As mentioned earlier, 31 LiTS CT scans are devoted for testing and

evaluation. Besides that, the 3D IRCAD dataset3 is also used for

testing and evaluating the proposed methods. IRCAD dataset has

higher variety and complexity of livers and its tumors, and IRCAD

dataset includes 20 venous phase-enhanced CT volumes acquired

with different CT scanners. IRCAD datasets are pathological CT

cases, which have 111 tumor cases residing inside the liver enve-

lope.

3.B | Qualitative and quantitative results

The qualitative results of the automatic liver segmentation for two

different examples are visualized in Fig. 7. Comparison with seg-

mented liver using the proposed method, U-Net-predicted segmen-

tation and ground truth, gives rise to the assumption that the

proposed approach is highly promising to achieve high performance.

The U-Net computes the soft label probability maps. It examines

each pixel of the test CT scan and assigns it to one of the two

labels, liver or background for the liver segmentation step, and tumor

or liver tissue for tumor segmentation step. The localized region-

based level set step deforms the U-Net output (liver or tumor) to

match the boundary of the structure based on the intensity differ-

ences around the initial contour.

The proposed method succeeded to segment the liver organ

from different CT scans that come with complex structures and dif-

ferent intensity homogeneities. In general, it can be observed from

Fig. 7 the significant improvement of the localized level set step in

enhancing the U-Net-predicted segmentation. It deforms the FCN

output segmentation (blue) to match the liver boundary (green) with

high accuracy in the target CT scan.

Figure 8 shows the qualitative results of the proposed approach

for automatic tumor segmentation inside liver ROI for different

examples. The examples in the figure highlight the differences by

comparing the segmented tumor (green) using the proposed method

(level set + U-Net) and U-Net-predicted segmentation (blue) with

ground truth segmentation (red).

For tumor segmentation, the level set improvement on the U-

Net-predicted segmentation is relatively small compared to liver seg-

mentation, as the U-Net succeeded with high accuracy to learn and

segment the tumor from the EED-enhanced liver ROI. However, the

other side of level set improvement on final tumor segmentation is

to exclude nontumorous objects that could appear in the predicted

segmentation, as pointed by the arrow in the second example of

Fig. 8. The level set method aims to maintain mean intensities on

both contour sides, which does not work with nontumor small

objects. These structures contain similar mean intensities inside and

outside the contour that would lead the contour to collapse, vanish,

and not appear in the level set segmentation.

To quantitatively evaluate the proposed performance, the most

commonly used evaluation metric in semantic image segmentation,

dice coefficient (DSC), is applied. The DSC, defined by (2), is an over-

lap measure that computes the ratio between the correctly seg-

mented pixels (intersection) with respect to the average number of

voxels of the segmentation output and the ground truth. Where (A)

denotes the segmentation result by the proposed method and (B) is

the ground truth segmentation.

Dice A,Bð Þ¼2∗ A∩Bj j= Aj jþ Bj jð Þ: (2)

The two FCNs for liver and tumor segmentation predictions are

trained using 100 LiTS datasets with Dice metric as training accuracy

metric. The achieved validation accuracies for liver and tumor FCNs

are 97.7% and 88.8%, respectively.

The Dice (DSC) per case evaluation metric values for liver organ

segmentation step is summarized in Table 1. The table shows the

mean Dice results for both LiTS and IRCAD evaluation datasets. In

addition, the table presents the improvement of level set steps on

the predicted FCN output. The liver segmentation evaluation scores

demonstrate that the proposed method performs remarkable good,

provided that the combined level set and U-Net approach outper-

forms the use of only U-Net FCN, and the use of level set boosted

the liver segmentation performance.

The Dice values for liver tumor segmentation step are summa-

rized in Table 2. The table shows the mean Dice per case results for

both LiTS and IRCAD evaluation datasets. In addition, the table high-

lights the level set improvement on the predicted FCN output, which

is relatively small compared with liver segmentation step. This is due

to the small size of tumor segmentation compared to liver organ seg-

mentation. In addition, the FCN network improvement is high

because it succeeded to learn and extract the tumor features from

EED-enhanced training datasets that helped in predicting the tumors’

structure inside the target liver ROI.

The mean Dice values for LiTS dataset are lower than for IRCAD

dataset, due to the reason that LiTS set contains several very small

tumors that make it hard for FCN and level set to detect and seg-

ment them. On other side, the level set improvement on FCN output

for LiTS dataset is larger compared to the IRCAD, since the level set

step helped in removing the small nontumorous predicted objects

from the FCN output. Moreover, Table 2 demonstrates that while

the FCN U-Net is trained using LiTS datasets without any fine-tun-

ing toward IRCAD datasets, the method shows impressive results for

IRCAD segmentation. Hence, the proposed method demonstrates

strong generalization and scalability features.

Table 3 presents the proposed method listed with other related

works that implement 2D FCN network to segment liver and tumors

from CT scans. Most of these methods use U-Net implementation or

deviated version of U-Net, to design their models.15 The table outli-

nes the related work performance in terms of Dice metric values for

LiTS and IRCAD datasets. The proposed method has a comparable

performance in terms of liver segmentation compared to other
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works, while it shows a superior performance for tumors segmenta-

tion.

The proposed method outperforms other similar works that rely

on combining local-based techniques with FCN. Some works com-

bined level set with FCN26; however, they used different form of U-

Net that examines blocks of image features instead of pixel-wise in

network learning, and they used level set as refining postprocessing

step. Other method that was introduced by Nanda et al utilizes cas-

caded U-Net networks, which are optimized using genetic algorithm

(GA), to segment liver and tumors from LiTS dataset. Other authors

proposed a model that consists of two U-Nets that are connected

and trained sequentially in one step from end to end, and simultane-

ously segmented into three classes.15 However, the one-step model

approach could work fast but is prone to misclassification, especially

in the tumor segmentation task.27

Another 2D U-Net-based FCN combined with an object-based

postprocessing step is proposed by Chlebus et al to segment liver

and tumors; the model is supported by forest classifier step which is

trained by extracted features, like shape and intensity, that help in

discriminating the tumors from other structures. Other work used

threefold FCN networks trained with high number of epochs, to seg-

ment the liver and tumors.28 The authors used two cascaded FCNs

to segment liver organ in two steps, coarse then fined segmentation,

which justify the higher accuracy in segmenting liver compared to

tumor segmentation. On the other side, as most of the listed works

used LiTS training datasets to train their models, other works used

their own private datasets for model training,29 and fine-tuned the

model on LiTS dataset, which could affect the evaluation process

and the method generalization.

4 | DISCUSSION AND CONCLUSION

Automatic segmentation of liver and tumor from CT scans is a crucial

step for preoperative planning of surgical treatment. It gives precise

delineations of the liver and tumors located inside it. In this work, the

proposed method utilizes the strength of deep learning FCN to

extract features from many examples to predict the segmentation in

test dataset; besides that, the method adds more strength by incorpo-

rating the local information in the target CT scan to refine and

improve the segmentation accuracy. The proposed method proved its

ability of generalization by applying it on hidden test datasets from

different sources. The observable promising results on the hidden

datasets can clearly suggest that the proposed method can be gener-

alized to test other different datasets. The combination of localized

level set showed the significant improvement added on the predicted

segmentation, despite that the U-Net is trained with limited number

of datasets from LiTS datasets with few number of epochs (20) com-

pared to other methods that use hundreds of training epochs.

The proposed framework starts by improving the intensity fea-

tures of the liver and tumor objects. Median filtering for liver organ

aims to enhance the intensity homogeneity, which helps both the

FCN and level set steps to extract the accurate intensity features

from this region. For tumor segmentation, the EED filtering is used to

increase the contrast between the tumor tissue and other liver par-

enchyma. Computed tomography slices of liver envelope shown by

the first row in Fig. 6 highlight the importance of EED filtering and

how it increased the contrast of tumors. For liver tumor segmentation,

the combined segmentation approach using deep learning and local-

ized level set function started first by extracting the main feature,

F I G . 7 . Automatic liver segmentation
with fully convolutional neural networks U-
Net and region-based level set. Green
depicts correct liver segmentation (level
set + U-Net). Blue for predicted liver
segmentation (using U-Net) and red is the
corresponding ground truth.
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especially the contrast differences between tumors and liver parench-

yma, from different training datasets to train the FCN network. This is

followed by extracting the tumor intensity range of the target image

using region-based level set step, which is used to refine the initial

segmentation of the FCN-trained network. In this work, the 2D

region-based level set method is used instead of the 3D version, that

is because the 2D level set segmentation performs better than the

3D in terms of curve evolution on each individual slices.

As the framework consists of two consecutive steps, liver then

tumor segmentation, the potential limitation of the proposed method

is that accuracy of tumor segmentation relies on the liver organ seg-

mentation step. The segmentation of the tumors is carried inside the

extracted liver envelope from first step. It could happen in some

datasets that liver parenchyma has similar intensity homogeneity

F I G . 8 . Automatic tumor segmentation
from liver region of interest with U-Net
FCN and region-based level set. Green
depicts correct tumor segmentation (level
set + U-Net), blue for predicted liver
segmentation (using U-Net) and red is the
corresponding ground truth.

TAB L E 1 Mean dice evaluation for automatic liver segmentation.

Method IRCAD LiTS

U-Net FCN 88.1% 90.2%

U-Net + level set 95.2% 95.6%

TAB L E 2 Mean dice evaluation for automatic tumor segmentation.

Method IRCAD LiTS

U-Net FCN 75.0% 64.7%

U-Net + level set 76.1% 70.0%

TAB L E 3 Dice comparison of the liver and tumor segmentation on
LiTS and IRCAD datasets.

Method (dataset) Liver Tumor

Chen et al.29 (LiTS) 95.7% 66.6%

Ahmad et al.26 (IRCAD) 91.8% –

Bi et al.30 (LiTS) 93.4% 64.5%

Christ et al.21 (IRCAD) 94.3% 56.0%

Vorontsov et al.15 (LiTS) 95.1% 66.1%

Yuan et al.28 (LiTS) 96.3% 65.7%

Nanda et al.31 (LiTS) 95.5% 69.7%

Chlebus et al.11 (LiTS) 96.0% 67.6%

Proposed method (IRCAD) 95.2% 76.1%

Proposed method (LiTS) 95.6% 70.0%
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with tumors that impose a challenge to extract accurate liver enve-

lope. This work assumes that all CT scans are acquired at the portal

venous phase of image acquisition, in which the tumors and liver

parenchyma have a clear contrast.

The proposed method demonstrated the improvement of using

level set technique and the use of local information in the target

image to enhance the FCN-predicted segmentation and achieve

accurate segmentation output. Based on the evaluation results, the

proposed method achieved high segmentation quality in detecting

liver and tumors from CT images. The proposed method succeeded

to segment liver and tumors in heterogeneous CT scans from differ-

ent scanners, as in IRCAD dataset, which proved its ability for gener-

alization and be promising tool for automatic analysis of liver and its

tumors in clinical routine.
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1 https://keras.io/
2 https://competitions.codalab.org/competitions/17094
3 available at http://ircad.fr/research/3d-ircadb-01
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