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Key points

� The blood–brain barrier (BBB) is an important and dynamic structure which contributes to
homeostasis in the central nervous system.

� BBB permeability changes occur in health and disease but measurement of BBB permeability
in humans is not straightforward.

� Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to model
the movement of gadolinium contrast into the brain, expressed as the influx constant Ki.

� Here evidence is provided that Ki as measured by DCE-MRI behaves as expected for a marker
of overall BBB leakage.

� These results support the use of DCE-MRI for in vivo studies of human BBB permeability in
health and disease.

Abstract Blood–brain barrier (BBB) leakage can be measured using dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) as the influx constant Ki. To validate this method we
compared measured Ki with biological expectations, namely (1) higher Ki in healthy individual
grey matter (GM) versus white matter (WM), (2) GM/WM cerebral blood volume (CBV) ratio
close to the histologically established GM/WM vascular density ratio, (3) higher Ki in visibly
enhancing multiple sclerosis (MS) lesions versus MS normal appearing white matter (NAWM),
and (4) higher Ki in MS NAWM versus healthy individual NAWM. We recruited 13 healthy
individuals and 12 patients with MS and performed whole-brain 3D DCE-MRI at 3 T. Ki and
CBV were calculated using Patlak modelling for manual regions of interest (ROI) and segmented
tissue masks. Ki was higher in control GM versus WM (P = 0.001). CBV was higher in GM
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versus WM (P = 0.005, mean ratio 1.9). Ki was higher in visibly enhancing MS lesions versus
MS NAWM (P = 0.002), and in MS NAWM versus controls (P = 0.014). Bland–Altman analysis
showed no significant difference between ROI and segmentation methods (P = 0.638) and an
intra-class correlation coefficient showed moderate single measure consistency (0.610). Ki behaves
as expected for a compound marker of permeability and surface area. The GM/WM CBV ratio
measured by this technique is in agreement with the literature. This adds evidence to the validity
of Ki measured by DCE-MRI as a marker of overall BBB leakage.
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Introduction

The blood–brain barrier (BBB) is important for the
maintenance of a stable microenvironment in the central
nervous system (CNS), and in the regulation of solute and
cellular traffic between systemic and CNS compartments
(Abbott et al. 2010). BBB permeability is a physio-
logical phenomenon, present in the healthy state; however,
it increases with age and in disease (Elwood et al.
2017). Measuring BBB permeability in humans is not
straightforward. The cerebrospinal fluid/serum albumin
ratio is a common and well-established method to
assess BBB permeability, but it is invasive and there are
concerns that it does not reliably reflect BBB permeability,
with a substantial influence from CSF flow (Reiber,
1994). Neuro-imaging after an intravenous injection
of tracer is an attractive technique to measure BBB
permeability, and while positron emission tomography
was first utilized in this way (Iannotti et al. 1987), there
are disadvantages which have precluded its widespread
use, including radioactivity and suboptimal resolution.
Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a newer technique which can measure
all levels of BBB leakiness, including levels invisible to
conventional imaging (Cramer et al. 2014). To achieve
this high sensitivity, the brain is scanned continuously
for a period of time (e.g. 15 min) to acquire kinetic
data capturing the periods before, during and after
contrast injection. Mathematical modelling is then used
to derive an index of BBB leakiness (the transfer
coefficient, Ki), using values derived from regions of inter-
est (ROIs) representing the concentration in the inter-
nal carotid artery and in the brain parenchyma itself. Ki

is expressed as a rate constant per gram of brain tissue
(ml (100 g)−1 min−1); it is the permeability-surface area
(PS) product including the effect of regional cerebral blood
flow (CBF). The PS product adjusted for regional vascular
surface area (S) is the permeability (P) in cm min−1.
Hence one would expect a higher Ki in areas with a higher
vascular surface area available for tracer exchange. The
latter phenomenon can be utilized as one of several ways
to validate Ki derived from DCE-MRI in healthy control

individuals, since it has been histologically established
that vascular density in the grey matter (GM) is higher
than in white matter (WM) (Lierse & Horstmann, 1965).
Assuming a very simple vascular architecture model
comprising cylindrical vessels with constant radius, it can
be seen that both S and CBV scale with vessel density, and
CBV should then predict Ki.

A neuroimaging technique measuring BBB permea-
bility should be able to detect increased permeability
in central nervous system conditions where the BBB is
impaired, such as multiple sclerosis (MS). In MS, highly
active inflammatory lesions have pronounced BBB leakage
and therefore visibly enhance on T1-weighted MRI after
intravenous gadolinium administration. In addition, BBB
abnormalities in the ‘normal-appearing brain tissue’ have
been demonstrated histologically (Kirk et al. 2003; Vos
et al. 2005), and DCE-MRI can detect this slightly higher
Ki in normal appearing white matter (NAWM) (Cramer
et al. 2014). However, a number of observations suggest
caution in interpreting Ki as a BBB permeability marker.
First, other studies using variations of DCE-MRI have
only shown insignificant trends for higher Ki values in MS
subjects (Silver et al. 2001; Lund et al. 2013; Taheri et al.
2013). Secondly, we reported a correlation between Ki, CSF
leukocyte count, and matrix metalloprotease 9 (Cramer
et al. 2015), an enzyme involved in leukocyte infiltration,
in MS patients. Hence it is possible that the higher Ki

seen in MS reflects low-level leukocyte recruitment into
the brain parenchyma, rather than BBB permeability to
solutes – the movements of solutes and cells across the BBB
are distinct processes (Bechmann et al. 2007). Thirdly, it is
possible that gadolinium may reach the brain parenchyma
without permeating through the BBB, namely across the
choroid plexus into the CSF (Jost et al. 2017), and sub-
sequent equilibration with the brain interstitial fluid via
the glymphatic pathway (Iliff et al. 2012).

Essentially, it remains to be conclusively demonstrated
that Ki as measured by DCE-MRI is a valid marker of
BBB leakage, and this is important given the technical
challenges of DCE-MRI and the potential for a false
positive error. In order to validate DCE-MRI-derived
Ki as a BBB permeability marker, we hypothesized that

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 597.3 Blood–brain barrier imaging using DCE-MRI 701

DCE-MRI-derived Ki is in line with a number of biological
expectations, namely (1) higher Ki in healthy individual
grey versus white matter, (2) grey/white matter vascular
surface area ratio close to the histologically established
value, (3) higher Ki in contrast-enhancing white matter
multiple sclerosis (MS) lesions versus MS NAWM, and (4)
higher Ki in MS NAWM versus healthy individual NAWM.
By acquiring data in three dimensions, we also aimed
to test whether automated segmentation yields similar
NAWM Ki results to manual region of interest analysis.

Methods

Ethical approval

The study was approved by the National Research Ethics
Service Committee South Central (reference 12/SC/0176).
Experiments were conducted in accordance with the
Declaration of Helsinki and all subjects gave informed
written consent.

Study participants

Healthy adult individuals were recruited by advertisement;
inclusion criteria were as follows: no systemic or
neurological disease (including migraine), no regular
medication use, and no family history of MS. Adults
with relapsing–remitting MS (RRMS) were recruited
from the MS service at the Wessex Neurological Centre,
Southampton, UK. Demographic and clinical data was
collected including: MS disease duration, Expanded
Disability Status Scale (EDSS), treatment status, relapses
in the prior 12 months, steroid use in the prior 12 months,
concomitant medication, and other medical conditions.
All subjects had normal renal function. Subjects were
scanned in an interleaved fashion to prevent the possibility
of systematic bias due to longitudinal scanner signal drift.

DCE-MRI protocol

We performed DCE-MRI on a 3 T MR unit (Skyra,
Siemens, Erlangen, Germany) using a 20-element
phased-array head coil. For the dynamic sequence we
used a 3D gradient echo sequence with TR=2.48 ms, TE=
0.99 ms, flip angle = 15, linear phase ordering, GRAPPA
undersampling with parallel imaging factor = 2, acquired
matrix=192×144×30, voxel size=1.3×1.3×5.0 mm3,
field of view = 250 × 188 × 150 mm3, reconstructed into
30 slices of thickness = 5.0 mm. The dynamic sequence
comprised 300 dynamic frames at a time resolution of
3.2 s, giving a total scan duration of 16 min. Intravenous
contrast injection was given after the 10th time point using
an automated injector (Medrad; Newbury, UK), with
speed 3 ml s−1, followed by a 30 ml saline flush at the same
rate. Contrast agent was Gadovist (Bayer; Newbury, UK)
at a dose of 0.05 mmol kg−1. We used half the standard

clinical dose to avoid truncation artefacts of the bolus
peak and provide an adequate washout curve (Taheri et al.
2011). In an initial optimization exercise, we performed
a series of DCE-MRI studies without injection of contrast
agent, to estimate drift on our scanner over time; a linear
fit of the trend in signal intensity over 15 min gave a mean
drift of 0.2% min−1. This is comparable to previous studies
by our group (Cramer et al. 2014) and others (Heye et al.
2016).

MRI sequences

Initial measurement of T1 relaxation time was performed
prior to the DCE sequence using a 3D gradient echo
sequence with identical coverage and matrix, with a
series of flip angles (5, 10, 15 and 18°), allowing
calculation of baseline T1 using the variable flip angle
approach, a well-studied technique (Bojorquez et al.
2017). We used the same sequences for T1 mapping as
for the dynamic acquisition, to avoid differences in B1.
Prior to the dynamic acquisition we also performed a
3D magnetization-prepared gradient echo (MP-RAGE)
sequence (TR = 2200 ms, TE = 2.45 ms, TI = 900 ms, flip
angle = 8°, field-of-view 263 × 350 × 350 mm3, voxel size
1.0 × 1.0 × 1.0 mm3), axial T2-weighted sequence (turbo
spin echo; TR = 3600 ms, TE = 9.4 ms, field-of-view
263 × 350 × 350 mm3, voxel size 0.3 × 0.3 × 4.0 mm3,
35 slices), and coronal fluid-attenuated inversion recovery
(FLAIR) sequence (TR = 9000 ms, TE = 81 ms, TI =
2500 ms, field-of-view = 186 × 220 × 160 mm3, 40 slices).
MP-RAGE provides excellent contrast between grey and
white matter and is widely used for tissue classification
(Ashburner & Friston, 2000). After the dynamic
acquisition, we performed a post-contrast MP-RAGE with
identical parameters to the pre-contrast image.

Manual regions of interest

MS lesions were defined by T2 hyperintensity and typical
location on FLAIR (Filippi et al. 2016). Non-specific T2
hyperintense lesions in white matter were also excluded.
Visibly contrast-enhancing lesions (CELs) were identified
through visual inspection of the post-contrast T1 image.
NAWM ROIs were drawn in the centrum semiovale on
the axial FLAIR image (to distance from T2 hyperintense
lesions), co-registered to the post-contrast T1 (to distance
from CELs and grey matter), and then applied to the
dynamic sequence. Co-registration ensured that ROIs
were placed >10 mm from MS lesions and >30 mm
from CELs, both within slice and by reference to adjacent
slices (see Fig. 1). Four NAWM ROIs were placed in total,
two in each hemisphere, one anterior and one posterior
to the central sulcus. In controls, grey matter ROIs were
drawn in the thalami, one in each hemisphere. ROI size was
standardized by visual inspection and intentionally aimed
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to capture the same volume of tissue as in our previous
study (Cramer et al. 2014). The voxel count in ROIs was
recorded to enable systematic examination for bias. ROI
placement was performed by a single operator (A.V.). The
operator could not be blinded to group due to the obvious
presence of lesions in the RRMS cases, but the Ki values
were only calculated after finalization of ROI placement,
to minimize the potential for bias.

Lesion detection

Lesions were segmented by the lesion growth algorithm
(Schmidt et al. 2012) from LST version 20.0.15 (www.
statistical-modelling.de/lst.html), operating within SPM
version 12 (Ashburner & Friston, 2006). This algorithm
first segments the isotropic T1 image into tissue classes,
and then combines the information with co-registered
FLAIR intensities to calculate lesion belief maps. These
maps were thresholded with a cut-off (0.3) determined by
visual inspection, to produce an initial binary lesion map.
This was then grown along voxels that appear hyperintense
in the FLAIR image, to produce a lesion probability map.

Tissue segmentation

The high-resolution T1 image was first brain-extracted
using BET (Smith, 2002). Tissue-type segmentation was
then performed using FAST (Zhang et al. 2001) and the
resulting tissue probability map was transformed into
the space of the dynamic images, so that thresholding
of tissue probability could be performed in the DCE
space. For RRMS cases, lesion filling was performed
prior to segmentation using the LST toolbox. To ensure
zero tolerance for partial volume artefact, a threshold of
100% was applied to the probability map to define the
tissue mask. NAWM voxels were defined as those within
the white matter mask with a zero value in the lesion
probability map. All masks were quality-controlled by
visual inspection. Further analysis was performed on those
slices covering the supratentorial brain (telencephalon).

Tracer kinetic analysis

We used custom-built code in MATLAB (The Mathworks;
Natick, MA, USA) to extract a signal–time series for
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Figure 1. Region of interest (ROI) placement and Patlak plots
A, axial fluid-attenuated inversion recovery sequence (FLAIR) in a control subject with manual ROI placement in
the normal-appearing white matter. B, first dynamic frame from the same subject, with ROI transposed. C, Patlak
plot derived from the ROI. D–F, same images for a subject with relapsing–remitting multiple sclerosis. ‘Time’ in the
x-axis of the Patlak plots is normalized to arterial concentration.
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each voxel (Fig. 2). The mean behaviour of voxels
within either ROI (for the manual ROI method) or
tissue mask (for the segmentation method) was used for
further analysis; voxelwise analysis was computationally
intensive and sensitive to noise. Baseline T1 combined
with the contrast agent relaxivity of 4 s−1 mM−1 (value
quoted by the manufacturer) was used to convert the
signal–time series into a concentration–time series. The
arterial input function (AIF) was measured for each sub-
ject by determining the maximal signal change within an
axial ROI drawn over the supraclinoid segment of the
right internal carotid artery. The same AIF was used for
both ROI and segmentation methods. Ki and CBV were
calculated from the AIF and tissue concentration curve
using the Patlak one-tissue-compartment model (Patlak
et al. 1983). The necessary prerequisite for this model to be
true is that the tracer is trapped ‘irreversibly’, meaning that
significant back-diffusion from tissue to blood does not
occur during the measuring period. The Patlak equation
is as follows:

Ct(t)

Ca(t)
= K i

∫ t
0 Ca(τ)dτ

Ca(t)
+ Vb

It plots the instantaneous tissue/arterial concentration
ratio on the y-axis and the integrated arterial
concentration curve normalized to instantaneous
arterial concentration on the x-axis. The slope is Ki, the
volume of blood cleared of contrast per unit time. In a
one-tissue-compartment model with no back diffusion,
the intercept Vb is the CBV, as previously discussed
(Larsson et al. 2009), so CBV is used in place of Vb

throughout the paper. The linear part of the Patlak
plot, i.e. the last two-thirds of the data points, were
included in the fitting procedure, to allow for steady state
arterial concentration. Perfusion estimation was done
by model-free deconvolution of the tissue concentration
with the arterial input function (using all data points), ad
modum Tikhonov, which is a general form of singular value
decomposition having a regularization term (Larsson et al.
2008). Values of Ki were reported as ml (100 g)−1 min−1,
assuming brain tissue density of 1 g ml−1. In the
ROI method, the mean of ROIs was quoted for each
subject.

Statistical analysis

Analysis was conducted in SPSS version 24 (IBM Corp.,
Armonk, NY, USA). Frequency distribution, normal
probability plots and Kolmogorov–Smirnov testing were
used to test normal distribution of raw or logarithmically
transformed data. Appropriate two-tailed tests were used
to detect significance between groups for parametric or
non-parametric data. ANCOVA was used to compare
RRMS and control Ki, to enable inclusion of age as a scalar
covariate. Multivariate linear regression was employed
to examine CBV, CBF and tissue type as predictors of
ROI-determined Ki. A P-value of <0.05 allowed rejection
of the null hypothesis. Bland–Altman analysis was used
to assess agreement between the ROI and segmentation
methods, as this has been shown to be the most appropriate
tool for this purpose (Zaki et al. 2012). The intra-
class correlation coefficient was used to assess reliability,
incorporating both agreement and correlation (Koo & Li,
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Figure 2. Representative signal-time curves
A, maximal signal change in the internal carotid arterial input function. B, mean behaviour of voxels from a tissue
ROI in normal-appearing white matter (NAWM). Both curves are from the same subject in Fig. 1D–F.
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Table 1. Characteristics of subjects

HC (n = 13) RRMS (n = 12) P

Age (years) 31.08 (10.38) 42.75 (10.47) 0.01
Sex (% female) 61.5 75.0 0.673a

Disease duration (years) – 10.75 (8.86)
EDSS – 2.29 (1.92)
ROI size (voxels) 144 (16) 145 (23) 0.862
T2 lesion count – 12.80 (7.45)
T2 lesion volume (ml) – 3.80 (3.47)
Cases with CELs – 3b

Treatment type
No treatment 13 4
Interferon – 4
Glatiramer – 1
Fingolimod – 2
Alemtuzumab – 1

Values are mean (standard deviation). Difference in means is by
unpaired t test, except in aFisher’s exact test. bOne RRMS subject
did not have a post-contrast sequence for detection of CELs.
CEL, contrast-enhancing lesion; EDSS, Expanded Disability Status
Score.

2016). All statistical analysis results are included in the
Supporting information.

Results

Subjects

Thirteen control individuals and 12 patients with RRMS
were recruited. Characteristics of participants are shown
in Table 1. The RRMS group was older (P = 0.01, Student’s
t test), and age was therefore factored into all further
analyses comparing groups, since BBB permeability
increases with age (Elwood et al. 2017). The gender
ratio between groups was not significantly different
(P = 0.673, Fisher’s exact test). The RRMS cohort
was diverse, including both patients with early and
patients with established disease, and those on and off
treatment (Table 1). All RRMS subjects had typical MS
lesions, and three patients had a total of four visibly

contrast-enhancing lesions (CELs). Tolerability of the
scanning protocol was good, except for one RRMS subject
who experienced discomfort towards the end of the session
and required omission of the post-contrast MP-RAGE; for
this subject all pre-contrast sequences and the full DCE
sequence were acquired and included in the analysis, but
the presence of CELs could not be assessed.

Comparison of white and grey matter

Ki was significantly higher in grey matter than in white
matter (P = 0.001, Wilcoxon) in healthy controls (Fig. 3).
CBV was significantly higher in grey than white matter
(P = 0.005, Wilcoxon), with a mean pair-wise grey/white
matter CBV ratio of 1.9 (range 1.0–3.6). A multivariate
linear regression including ROI-derived CBV, CBF and
tissue type was performed to ascertain the extent to
which these could explain Ki (full results in Supporting
information, section 7). All variables were included in the
final model, which explained 82% of the variance in Ki

(r2 = 0.816). Only CBV predicted Ki (β = 0.036, P <
10−8). Tissue type did not significantly predict Ki though
a trend was observed (β = 0.015, P = 0.066). CBF did not
correlate with Ki (Spearman’s ρ = 0.32, P = 0.111).

Multiple sclerosis

Mean Ki in CELs (ROI method) was 0.139 ml (100 g)−1

min−1, significantly higher than NAWM in either RRMS
(0.052 ml (100 g)−1 min−1, P = 0.002, t test) or controls
(0.020 ml (100 g)−1 min−1, P = 0.005, Mann–Whitney). Ki

in NAWM was significantly higher in RRMS than controls
by both the ROI method (P = 0.014, ANCOVA, no effect of
age) and the segmentation method (P = 0.019, ANCOVA,
no effect of age). The results are shown in Table 2 and
Fig. 4.

Comparison of ROI and segmentation methods

A Bland–Altman plot comparing ROI and segmentation
methods showed no clear difference between the
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Figure 3. Pairwise plots of Ki and CBV values in white matter (WM) and grey matter (GM), for individual
control subjects
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Table 2. Results for BBB permeability calculations in NAWM

Measured values
Estimated marginal

mean

Ki (ml (100 g)−1 min−1)
HC

(n = 13)
RRMS

(n = 12)
P-value for

effect of group
Partial η2 for

effect of group
P-value for

effect of age
HC

(n = 13)
RRMS

(n = 12)

ROI 0.020
(0.038)

0.052
(0.037)

0.014 0.246 0.789 0.003 0.051

Segmentation 0.003
(0.027)

0.045
(0.061)

0.019 0.226 0.090 0.010 0.052

Values are mean (standard deviation). Analysis is by ANCOVA incorporating age as a covariate.

Table 3. Comparison of ROI and segmentation methods and
results of intra-class correlation coefficient (ICC) with 95%
confidence intervals

Parameter Value

n 25
Minimum difference −0.08523
Maximum difference 0.09050
Mean difference −0.00384
Standard deviation of difference 0.04033
Upper 95% limit of agreement

(95% confidence intervals)
0.07520

(0.04637 to 0.10404)
Lower 95% limit of agreement

(95% confidence intervals)
−0.08288

(−0.11172 to −0.05405)
Difference between 95% limits

of agreement
0.15809

ICC 0.610 (0.291–0.807)

calculated Ki values for NAWM. Full parameters are
reported in Table 3. The difference in values by each
method was not significantly different from zero (P =
0.638, one-sample t test). Examination of the plot revealed
no evidence of proportional bias according to Ki value (see
Fig. 5). Accordingly, linear regression (with difference in
Ki between the two methods as dependent, and mean Ki as
predictor variable) confirmed absence of proportional bias

(P = 0.859). The two-way mixed intra-class correlation
coefficient (see Table 3) showed good single measure
consistency (0.610).
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Figure 5. Bland–Altman plot comparing ROI and
segmentation methods
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Horizontal line is group mean.
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Discussion

This study supports the concept that DCE-MRI can
measure low-level BBB leakage, since the influx constant
Ki behaves according to the biological expectations of
a marker of BBB leakage. It is higher in control GM
compared to control WM, higher in MS NAWM compared
to control WM and higher in CELs compared to NAWM.
DCE-MRI is capable of detecting BBB leakage more than
an order of magnitude below the level found in CELs by
conventional imaging.

Histological study in the human brain has shown that
vascular volume is higher in GM than WM, with a
mean GM/WM ratio of 2.9 (range 1.1–8.0) (Lierse &
Horstmann, 1965). Other histological (Klein et al. 1986)
as well as imaging studies (Leenders et al. 1990; Carroll
et al. 2008) support this finding. If one assumes that the
mean vessel radius is the same in GM and WM (in the
absence of any evidence to the contrary), the GM/WM
CBV ratio should be equal to the GM/WM vascular surface
area ratio. If the influx constant Ki truly corresponds to the
permeability-surface area (PS) product, the larger vascular
surface area in GM should contribute to a higher Ki in
GM versus WM in the healthy brain. We show that the
behaviour of Ki corresponds with that expected for the
PS product in this regard. Other DCE-MRI studies report
conflicting findings: (1) higher GM CBV and Ki (Heye
et al. 2016), (2) higher GM Ki (Cramer et al. 2014), (3)
higher GM CBV but lower Ki (van de Haar et al. 2016),
and (4) lower GM Ki (Montagne et al. 2015).

In healthy controls, we find that CBV, which scales with
surface area, predicts Ki. When controlling for CBV, CBF
and tissue type did not significantly predict Ki. A trend
for tissue type (P = 0.066) was seen, but only explained
2% of the variance in Ki, when CBV explained 63% of the
variance in Ki in an ANCOVA (Supporting information,
section 8). This could be due to minor differences in
permeability or vessel radius between GM and WM, and
should be investigated further.

According to the Crone–Renkin equation (Renkin,
1959; Crone, 1963), when CBF is much larger than the PS
product (which is the case at the BBB), Ki approximates
the PS product and there should not be a correlation
between CBF and Ki. In keeping with this theory, we do
not observe a correlation between CBF and Ki, which
is additional supporting evidence for the validity of the
method.

This study has some limitations. Firstly, we used a
half-dose of contrast agent, which reduces the contrast-
to-noise ratio and impairs detection of enhancing lesions
(Rovira et al. 2015). This means that our definition of
NAWM could have been confounded by the presence
of undetected enhancing lesions. However, the choice of
half-dose was based on a trade-off between increasing
contrast-to-noise ratio, and introducing truncation

artefact to the bolus peak and/or T2∗ effects at high
concentrations. We have reported good results with
half-dose injection in numerous studies (Larsson et al.
2009; Cramer et al. 2014, 2015, 2018).

Secondly, there were potential sources of error in the
acquisition. B1 inhomogeneity can lead to errors in base-
line T1 estimation and therefore the conversion of dynamic
signal to concentration. However, as we used the same
sequence for T1 measurement and dynamic run, any such
bias is constant between the two, so that B1 errors in
T1 mapping and DCE will tend to mutually cancel. Also,
we used M0 values derived from the T1 measurement
when converting signal to concentration, which would also
tend to compensate for B1 inhomogeneity. We measured
a background signal drift that was comparable to pre-
vious studies (Cramer et al. 2014; Heye et al. 2016). The
causes of signal drift are poorly understood. Signal drift
affects the accuracy of absolute measurements of Ki, but
this is less of an issue in studies with control groups,
where comparison is made between diseased and healthy
subjects, or between experimental and non-experimental
situations. Future studies should examine methods for
measuring and correcting for signal drift, ideally in a
subject- and tissue-specific fashion.

Thirdly, we measured a carotid AIF, which has advant-
ages and disadvantages compared to a venous ‘input’
function (VIF) measured in, for example, the sagittal sinus.
Theoretically the AIF represents a true input, unlike the
VIF. The curve shape and peak sharpness of the AIF and
VIF may be different. The time delay on the venous curve
may not influence the Patlak calculation of Ki but will
have a significant impact on the estimation of CBF. On the
other hand the AIF is more prone to partial volume and
the in-flow phenomenon. In practice, choice of AIF or VIF
does not seem to significantly impact the Ki, as shown by
one published study (Filice & Crisi, 2016) and work of our
own (unpublished, in preparation). In the present study,
we have minimized partial volume effects by selecting the
voxel with maximum signal change during bolus passage
in the AIF ROI, and we have used a relatively high acquired
spatial resolution.

Fourthly, the FLAIR sequences used were 2D, which
is inferior to 3D in the detection of MS lesions (Bink
et al. 2006). The automated lesion detection algorithm is
validated for 3D FLAIR (Egger et al. 2017). Thus we could
have inadvertently included lesional tissue in NAWM
during segmentation. However, we avoided this by visually
inspecting all the masks. Also, this would have affected the
ROI method to a much lesser extent, but we observed
similar results.

Fifthly, age was significantly higher in RRMS versus
control groups. Increasing age is associated with higher
BBB permeability (Montagne et al. 2015; Elwood et al.
2017; Erdö et al. 2017; Bors et al. 2018), so this was
a possible confounder. However, age was included as a
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covariate, and a significant effect of age on Ki was not
observed in this small dataset (see Table 2).

Inter-species differences in BBB structure and function
limit the applicability of animal studies to humans (Deo
et al. 2013), and in vitro models cannot fully recapitulate
the natural complexity of the BBB (Naik & Cucullo,
2012). Human studies have been hampered by the lack
of a validated non-invasive method for the quantification
of BBB permeability. This study provides incremental
evidence to increase confidence in the interpretation of
Ki derived from DCE-MRI as a BBB permeability marker
in research and clinical applications. Comparing Ki with
CSF/serum albumin ratio (Qalb) may be another way to
cross-validate these two markers of BBB leakage. In one
study, hippocampal Ki correlated with Qalb (Montagne
et al. 2015) but WM Ki did not correlate with CSF/serum
albumin ratio in another study (Taheri et al. 2011). It
is hard to draw conclusions since Qalb integrates BBB
leakage across the whole neural axis, and the relative
timing of lumbar puncture and DCE-MRI was not
stated in these studies. It is possible that DCE-MRI is
measuring gadolinium adhering to the luminal surface
of cerebral capillary endothelial cells at the BBB, as
opposed to transendothelial permeation, but this is
unlikely since gadolinium can be detected in the neuro-
nal interstitium itself (McDonald et al. 2015). Future
studies may use DCE-MRI to explore (1) physiological
variation in BBB function related to variables such as
age (Elwood et al. 2017) or sex (Maggioli et al. 2015);
(2) BBB changes in pathology; (3) the effect of different
physiological states on the BBB; and (4) the evaluation
of pharmacological agents which prevent or reverse BBB
disruption.

It has already been shown that measurement of
BBB leakage with DCE-MRI has moderate-to-excellent
reproducibility (Wong et al. 2017). However there are
hurdles restricting the widespread use of DCE-MRI.
Factors such as scanner field strength, careful detection
of baseline pre-contrast signal (Barnes et al. 2016), use of
individual AIFs for each subject, partial volume correction
of the AIF (Hansen et al. 2009), selecting the optimal
time resolution and total scan time (Cramer & Larsson,
2014), and choosing a suitable pharmacokinetic modelling
approach (Sourbron & Buckley, 2013) appear to be
important for accurate estimation of subtle BBB leakage.
Another hurdle is the time and skill required for manual
ROI placement and the potential for operator bias. We
show how automated tissue segmentation eliminates the
need for manual ROI placement, capturing more diffuse
abnormality whilst reducing operator dependence and
providing ease of batch processing. If we take the mean
difference between controls and RRMS to be meaningful,
then the difference between 95% limits of agreement
exceeded this level, so the ROI and segmentation methods
cannot be used interchangeably. However, the two

methods show good agreement in ratio of change, as
evidenced by the ICC. Another hurdle is reproducibility of
results between scanners. However, multi-centre studies
using DCE-MRI might be feasible if the study outcome
is the ratio of change in Ki (in the case of longitudinal
Ki measurements, e.g. before and after treatment) or
inter-group Ki ratios (in the case of controlled studies,
e.g. placebo and active drug). Such an approach would
be particularly suitable for studies assessing the effect of
therapeutics targeted at the BBB.

Conclusion

We provide evidence for the validity of Ki derived from
three-dimensional DCE-MRI as a marker of overall BBB
leakage, assessed against the following criteria: (1) higher
Ki in control grey versus white matter, (2) grey/white
matter vascular surface area ratio close to the histologically
established value, (3) higher Ki in contrast-enhancing
white matter lesions versus RRMS NAWM, and (4) higher
Ki in MS NAWM versus control WM. By incorporating
3D imaging, we enable automated tissue segmentation,
and we demonstrate that the DCE-MRI protocol is robust
to segmentation. This will help reduce operator bias and
facilitate uptake of DCE-MRI for further study of the
human BBB.
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Rovira À, Wattjes MP, Tintoré M, Tur C, Yousry TA, Sormani
MP, De Stefano N, Filippi M, Auger C, Rocca MA, Barkhof
F, Fazekas F, Kappos L, Polman C, Miller D, Montalban X;
MAGNIMS study group (2015). Evidence-based guidelines:
MAGNIMS consensus guidelines on the use of MRI in
multiple sclerosis – clinical implementation in the diagnostic
process. Nat Rev Neurol 11, 471-4882.

Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A,
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