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Animals coordinate their various body parts, sometimes in elaborate manners to swim,

walk, climb, fly, and navigate their environment. The coordination of body parts is

essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant

information. For example, by shaping the movement of the head and body in an active

and controlled manner, flying insects structure their flights to facilitate the acquisition

of distance information. They condense their turns into a short period of time (the

saccade) interspaced by a relatively long translation (the intersaccade). However, due to

technological limitations, the precise coordination of the head and thorax during insects’

free-flight remains unclear. Here, we propose methods to analyse the orientation of

the head and thorax of bumblebees Bombus terrestris, to segregate the trajectories of

flying insects into saccades and intersaccades by using supervised machine learning

(ML) techniques, and finally to analyse the coordination between head and thorax

by using artificial neural networks (ANN). The segregation of flights into saccades

and intersaccades by ML, based on the thorax angular velocities, decreased the

misclassification by 12% compared to classically usedmethods. Our results demonstrate

how machine learning techniques can be used to improve the analyses of insect flight

structures and to learn about the complexity of head-body coordination. We anticipate

our assay to be a starting point for more sophisticated experiments and analysis on

freely flying insects. For example, the coordination of head and body movements during

collision avoidance, chasing behavior, or negotiation of gaps could be investigated by

monitoring the head and thorax orientation of freely flying insects within and across

behavioral tasks, and in different species.

Keywords: bees, machine learning, random forest, decision tree, neural network, coordination, control,

active vision

1. INTRODUCTION

Animals travel in their habitat to chase prey, escape predators, find mates, or food. The motile body
parts, such as legs, wings, or fins, often differ from the sensory ones. For example, the eyes of most
sighted animals are placed on the head, away from wings or legs. The non-collocation of motile
and sensory body parts allows many animal species to decouple where to look and where to move.
Notably, animals frequently stabilize their head while traveling in their environment to compensate
for body motion (e.g., roll movements) that is required for steering (e.g., Van Hateren and Schilstra,
1999a; Ravi et al., 2016) or actively move their head to extract relevant information, for example the
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distance to a prey or landing site (Sobel, 1990; Kral, 2003, 2012).
Adequate motion of an animal in its habitat and perception of
its surrounding requires the well-coordinated orchestration of
sensory and motile body parts.

Flying insects orchestrate their flight similarly to ballet dancers
performing a chainé or a pirouette. They first start turning
their thorax at a slow speed, and then later turn their head
at a higher speed. Between such sharp head turns, the head
direction is mostly stabilized (VanHateren and Schilstra, 1999a,b;
Viollet and Zeil, 2013; Doussot et al., 2020b; Verbe et al., 2020)
allowing flying insects to estimate the distance to neighboring
objects (Srinivasan, 2011; Kern et al., 2012), traveled distance
(Srinivasan, 2011), perceive gaps (Ravi et al., 2019), or land
(Frasnelli et al., 2018) by using the apparent motion of nearby
objects on their retina (Egelhaaf et al., 2014). This active gaze
strategy requires excellent coordination between the head and
thorax, respectively. However, due to the small size of flying
insects, head-body coordination has been analyzed rarely and
most studies have focused on the insect’s thorax orientation.

The thorax orientation of insects gives only a poor proxy of the
viewing direction (Van Hateren and Schilstra, 1999a,b; Riabinina
et al., 2014; Doussot et al., 2020b). Therefore, recordings lacking
head orientation information limit our understanding of the
perception-behavior loop. However, in flying insects, one crucial
aspect of their perception takes place between sharp head turns,
i.e., during intersaccades (Egelhaaf et al., 2014). Therefore, by
predicting the occurrence of the head’s saccades from the time
course of thorax orientation, we could deepen our understanding
of the behavior of flying insects.

We used recordings of the head and thorax orientation of
free-flying bumblebees Bombus terrestis (Doussot et al., 2020a),
that include footage of high spatial and temporal resolution
and from different perspectives to develop methods to lessen
such limitations.

In most previous experiments, only the orientation of the
thorax could be determined, due to technological limitations. We
developed a method to locate the head intersaccades solely from
the time course of thorax orientation. We based our method
on classifiers (decision tree and random forest) and tested our
approach in two scenarios often encountered in experimental
design. First, many insect flights are recorded at frame rates
lower than 500 fps. Second, many recordings only report the
orientation along one axis of rotation (often the z-axis) (for
example, Kern et al., 2012; Lobecke et al., 2018; Robert et al., 2018;
Lecoeur et al., 2019; Ravi et al., 2019). However, the orientation
of an animal is defined around three axes. Thus, we tested our
classifier with only the orientation around the z-axis.

Our first method focused on the saccade/intersaccade
classification. We developed a second method to predict the
detailed time course of head and thorax orientation, elaborating
on an approach developed by Dürr and Schilling (2018) using
an artificial neural network to map the posture of one leg
of the stick insects to another. We extended their method by
adding a temporal component (forecasting or backcasting) and
applied it to our bumblebees’ flight. Our approach may serve
as a computational ground plan for investigating body part
coordination in other animals.

2. MATERIALS AND METHODS

2.1. Data Acquisition
2.1.1. Animal Preparation
Data were collected according to Doussot et al. (2020a). We
explain the procedure here for clarity. We used a healthy hive
of Bombus terrestris provided by Koppert B.V., The Netherlands.
Bumblebees were manually marked and transferred into a 30 ×

30 × 30 cm acrylic box. Marking the head was done by painting
three small dots (∼ 1 mm diameter each) with acrylic paint on
the bees’ heads: one above each eye and the one in between the
eyes at the height of the antenna scape insertion point. Special
attention was paid to not cover the ocelli and the eyes of the
bumblebees (Figure 1B). We marked the thorax by fixing an
equilateral triangle (side length of 5 mm) of black paper with a
white pearl dot (1 mm diameter) at each apex with wax.

The bumblebees entered a cylindrical flight arena with a radius
of 35 cm and a height of 50 cm through a 1 cm hole in the center
of the ground (Figures 1A,C). The flight arena was connected to
a foraging chamber.

2.1.2. Tracking of Head and Thorax Markers
Six learning flights of bees were recorded using three
synchronized high-speed cameras (Optronis CR3000x2)
with a resolution of 1,710 × 1,696 pixels. The three cameras
sampled a volume of ∼ 10 × 10 × 10 cm3 around the nest
entrance from different perspectives. The recording area was
restricted to a small part of the arena as we intended to monitor
the head and thorax orientation at a high spatial resolution. The
recorded volume was illuminated by four blocks of four LEDs
each (HIB Multihead LED, HS vision GmbH, Germany).

We started the recordings as soon as a marked bumblebee
took off. Recordings were made at a shutter speed of 1/2, 000
s, a frame rate of 500 frames per second, and for ∼ 11 s. The
three cameras were calibrated using the Matlab toolbox dltdv5
(Hedrick, 2008).

We developed and assessed our method based on six learning
flights of marked bees. Tracking of head and thorax markers was
achieved with a custom-made Python script, based on OpenCV.
The videos were then manually reviewed with the software
IVtrace (https://opensource.cit-ec.de/projects/ivtools) to ensure
correct detection. We then reconstructed the marker positions in
3D space using the Matlab toolbox dltdv5 (Figures 1D,E).

2.1.3. Orientation
Given a three dimensional space, one can infer the orientation
of any solid object in it, by defining an object-specific coordinate
system of three orthogonal unit vectors centered at a pivot point.
One then can describe the orientation of this object by the
relative orientation of this object-specific coordinate system with
respect to the world coordinate system. In order to describe the
orientation of the bees’ head and thorax at any given time, we
first chose an appropriate coordinate system for our arena and
then reconstructed the bee coordinate system from the markers
we placed on them.

The head (resp. thorax) coordinate system was defined as
follows. Its origin was defined as the center of mass of the three
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FIGURE 1 | Experimental setup and example flight. (A) Virtual setup of the arena. Bee enters the flight arena through the hole at the bottom, that connects to the hive.

(B) Marker positions on head and thorax. (C) Top view of real world arena. (D) Example of a learning flight in 3d space. (E) Temporal structure of a section of a leaning

flight as lollipop plot, with each sticks pointing direction indicating thorax orientation and color indicating movement classification (green = intersaccade;

purple = saccade).

markers placed on the head (resp. thorax). Two of the three
markers were aligned with from left to right in the head (resp.
thorax) coordinate system, and thus formed the y-vector. The
x-vector was orthogonal to the y-axis and passed by the third
marker. Finally, the z-vector being orthogonal to the two other
axes were computed as cross product between the x and y-vector.
In mechanics, the orientation of a solid object is often defined by
three rotational angles (Euler angles). Different conventions can
be used to define the rotational angles. The conventions differ by
the order of elementary rotations. Here, we used the yaw-pitch-
roll convention (Diebel, 2006). This convention is defined as
rotating first around the roll axis (x-axis in the world coordinate
system), then around the pitch axis (y-axis of a temporary
coordinate system), and finally around the yaw axis (z-axis in
the head or thorax coordinate system). This transformation was
performed at each instant of time, yielding the time courses of the
yaw, pitch, and roll angles for the head and the thorax.

2.2. Saccade and Intersaccade
Classification
2.2.1. Ground Truth: Thresholding on Head’s

Orientation
The YPR orientation was filtered with a one-dimensional-
cubic spline function (with smoothing parameter λ = 150)
(Scipy.signal). The smoothing parameter λ, interpreted as the

degree of freedoms, was estimated from a generalized cross-
validation criterion with R (see Supplementary Figure 1 for the
effect of lambda on our method). Cubic splines are often used
in biomechanics data filtering (Woltring, 1985), since abrupt
changes in the data are not smoothed out, in contrast to low
pass filtering. Based on the angular velocity of the head around
the z-axis ωz(t) in the bee coordinate system, intersacades and
saccades were extracted using a two-thresholds method. For
derivatives higher than 372.42◦/s (manually determined), the
time point was considered as being part of a saccade. The
neighboring time points were considered part of the same
saccade, if the derivative was higher than 200.54◦/s, and as part
of an intersaccade otherwise.

2.2.2. Benchmark: Thresholding on Thorax’s

Orientation
In numerous experiments, the orientation of the bee’s head
cannot be resolved. Thus, researchers usually segregate the
trajectories into saccades and intersaccades by using a threshold
on the thorax angular velocities. The threshold is usually chosen
by observing the variation of the thorax angular velocity over
time (Van Hateren and Schilstra, 1999a; Riabinina et al., 2014;
Mertes et al., 2015). Here, head orientation data was available.
Thus, instead of choosing the threshold by visually observing
the time course of the thorax’s angular velocity, we chose them
such that the accuracy of the classification is maximized i.e., the
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FIGURE 2 | Example of the decision process done by a decision tree. The thorax angular z-velocity (in blue) within a given time window 1t (e.g., red and green dotted

rectangle), is the input of the classifier. A decision tree is composed of nodes (circles), with input xi (gray arrows). If the input xi is greater or equal to a learned

threshold ǫ, the right node is selected, otherwise the left (see example in the gray square). The process is repeated until a decision saccade/intersaccade can be

drawn. The red (resp. green) node highlights the decision path for an intersaccade (resp. for a saccade).

number of true positives (a time point t, head and thorax are
saccade), and true negative (a time point t, head and thorax are
intersaccade). The thorax’s saccades extracted by this method are
the benchmark for our classifier method.

2.2.3. Classifier Based Method
We investigated whether non-single-threshold classifiers can
outperform the segregation based on hard thresholding of
the thorax’s angular velocity (i.e., our benchmark). Hence we
compared the established benchmark (Th) with two well-known
non-linear classifiers: a decision tree (DT) and a random forest
(RF). A decision tree can have a high variance in the optimal
tree. The use of a random forest, i.e., multiple trees, reduces the
variance in the optimal classifier. We define the learning task as
follows: Given a finite time series of angular z-velocities obtained
from the thorax, predict the binary class label associated with the
center measurement of this time series, where labels are “head
saccade” or “head intersaccade.”

More formally, the input of the classifier was thus
�thorax

z (t) = [ωz(t − 1t/2), · · · ,ωz(t + 1t/2)] with 1t being
the time window (a hyperparameter of our classifier). Hence, the
classifier yields a class C(t) ∈ C = 0, 1 by applying a function
f :R⋉ → C on the input �thorax

z (t). We have, thus, the equation:
C(t) = f (�thorax

z (t)) (Figure 2). C(t) = 0 [resp. C(t) = 1]
means that the angular velocity at the timepoint belongs to an
intersaccade (resp. saccade).

The classifiers were trained, validated, and tested using scikit-
learn (Pedregosa et al., 2011). The training was used to adjust

the parameters of the classifier. The training set consisted of the
first 70% of samples per learning flight for all 5 learning flights.
The validation was used to select hyperparameters: depth D (i.e.,
the number of layers in a Decision Tree) and the time window
1t, by varying the parameters systematically D ∈ [1, 20], and
1t ∈ [0, 50] ms. The validation set consisted of the remaining
30% of the five flights used for the training set. Since our classes
are sufficiently balanced, we used the accuracy of the classifier to
determine which classifier performed best on the validation/test
data set.

To test the performance of the best classifiers, we used one
learning flight that was neither used for training nor for the
test (i.e., forming the validation data set). The trained saccade-
intersaccade classifier was applied for every time point. The
prediction C(t), saccade, or intersaccade, at time t was compared
to the ground truth H(t) obtained by thresholding the head’s
angular velocity. Our goal was to outperform the classification
from a benchmark, namely the classification T(t) based on the
thresholding of the thorax’s angular velocity. We thus compared
the accuracy of the classifier ACCclassifier with the accuracy of
the benchmark ACCbenchmark. ACCclassifier and ACCbenchmark are
defined by:

ACCclassifier =

∑

t[C(t) == H(t)]

N

ACCbenchmark =

∑

t[T(t) == H(t)]

N

(1)
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Here [· · · ] are the Iverson brackets. The Iverson brackets is
a notation that takes a true/false input. Let P be a true/false
statement. [P] is defined to be 1 if P is true, and 0 otherwise. N
is the number of time points in the learning flights.

2.2.4. Extension: Often Encountered Situations
To further assess the validity of our method, we investigated the
accuracy of our classifier in two often encountered situations.
First, researchers are not always able to record at a high frame
rate. Second, some behavioral assays rely on single-perspective
recordings, and therefore the orientation of the thorax cannot
be determined entirely. Assumptions need to be made about
certain axis of rotations. For example, when the orientation
of the body long-axis is derived from a top view camera, it
is often assumed that the orientations pitch and roll are null.
To investigate the robustness of the classifier at a lower-frame
rate, we down-sampled our recordings and interpolated them
by using a cubic spline in order to recover the 500 fps on
which the classifiers are trained. The classification was then
performed on the angular velocities of the thorax derived from
downsampled and interpolated trajectories. To investigate the
impact of a null-pitch and null-roll assumption, we set the z
positions of the markers at a given frame to their average z
position (mimicking top view recordings). The orientation was
then calculated yielding only the variation of yaw. The accuracy
of the classifiers was then calculated on the angular velocities
(here equivalent to the derivative of the yaw orientation, because
pitch and roll are null).

2.3. Predicting Head Angular Velocity From
Thorax
The time course of the head and thorax position are tightly
linked. However, the head can be in a different orientation as the
body thanks to the neck muscles connecting the two. In flying
insects, the time course of the head angular velocity appears to be
loosely correlated with the thorax angular velocity. Indeed when
the head is rotating fast, the thorax is likely to turn quickly as
well (Kern, 2006). In other words, the head and thorax angular
velocities share some information that may be used to predict the
one from the other (e.g., predict the head angular velocity from
the thorax angular velocity).

Predicting head angular velocity from thorax angular velocity
in a reliable manner could allow researchers to record only the
thorax orientation to study the head orientation, alleviating the
need to mark the head and monitoring it with high-resolution
cameras. Our method focuses on predicting the angular velocity
around the z-axis, because the angular velocity is varying the
most around this axis during bee learning flights. The prediction
of the head angular velocity along the z-axis will be based on the
body angular velocity during a time interval 1t:

ω̂head
z (t) = g(ωthorax

z (t − 1t/2), · · · ,ωthorax
z (t − 1t/2)) (2)

Where ωthorax
z (t) is the instantaneous angular velocity of the

thorax around the z-axis at time t. ω̂head
z (t) is the prediction of

the instantaneous angular velocity of the head around the z-axis

at time t. g() :Rn → R is a function (e.g., a neural network) used
for prediction.

Predicting the motion of one body part from another (e.g.,
head angular velocity from thorax angular velocity), could inform
about the predictive causality between the two body-parts and
therefore the underlying control mechanisms (Granger, 1969).
Thus, we predicted the thorax angular velocity along the z-axis
based on the head angular velocity during a time interval 1t.
Our method will, therefore, be described for predicting the head
angular velocity from thorax angular velocity.

2.3.1. Neural Network Architecture
To predict the motion of one body part from another, we used
a feed-forward artificial neural network. The neural network
consisted of three layers. The input layer contained as many
neurons as measures of instantaneous angular velocity within
the time window 1t plus a bias neuron (acting in a similar
manner as the intercept in a linear fit). So for recording at
500 fps and 1t express in ms: 1 + 0.51t neurons. The second
layer, i.e., the hidden layer, contains N + 1 neurons with N ∈

1, 2, 4, 8, 16, 32, 64, 128. The activation functions of the units were
rectified linear (relu). A neuron with a relu activation function
will have an output proportional to its input when the input
is positive. However, when the input is negative, the neuron
will output zero. The last and third layer contained two output
neurons with a hyperbolic tangent activation function. A neuron
with an hyperbolic tangent activation with an input x will output
tanh x. The two neurons encoded the sine and cosine of the
predicted angular velocity around the z-axis, and their response
at time t will be referred to as Os(t) and Oc(t), respectively.

The neural network has two hyperparameters: the number of
neurons in the hidden layers N and the size of the time window
1t. To find the optimal N and 1t, we performed a grid search
over the parameter space with 1t ∈ {1, 3, 5, · · · , 53}ms and
N ∈ {1, 2, 4, 8, 16, 32, 64, 128} resulting in 40 neural networks.

2.3.2. Training
The neural networks were implemented and trained using
tensorflow API for python (Abadi et al., 2015). The weights of
the networks were randomly initialized. To train the network we
used the Adam optimizers (Kingma and Ba, 2015) with the loss
function that the training procedure aim at minimizing:

L =
∑

t

∣

∣

∣

∣

(

cos(ωhead
z (t))

sin(ωhead
z (t))

)

−

(

Oc(t)
Os(t)

)∣

∣

∣

∣

2

λ

∣

∣

∣

∣

(

cos(ωthorax
z (t))

sin(ωthorax
z (t))

)

−

(

Oc(t)
Os(t)

)∣

∣

∣

∣

2

+ ǫ

(3)

The numerator in the loss contains the euclidian norm of a
vectorial difference. The vector (cos(ωhead

z (t)), sin(ωhead
z (t)))T is

the direction of the bee’s head velocity expressed in Cartesian
coordinates. The vector (Oc(t),Os(t))

T is formed by the two
output neurons of our network. The euclidian norm of the
vectorial difference can therefore provide of a measure of the
network performance, because when the two vector match their
difference is a null vector. In the loss function, the numerator
(resp. denominator) decreases as the output of the network
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approaches the angular velocity of the head (resp. thorax). The
loss function is thus small when the prediction is close to the head
angular velocity and far from the thorax angular velocity. The
denominator, thus, guarantees that when the prediction is close to
the thorax angular velocity, the loss function is high, decreasing
the risk of the network learning the identity, i.e., predicting the
thorax from the thorax. λ is a regularization term and is equal to
0.5. ǫ is a small value to avoid division by zero and is equal to 0.1.
The networks were trained for 30 epochs on the first 70% of each
of the five learning flights.

2.3.3. Choosing Hyperparameters and Validation
To choose the hyperparameters 1t and N of our predictive
method, we evaluated the performance of the network on the
remaining 30% of the five learning flights (i.e., on the test data
set). From the 40 trained networks per hyperparameter tuple,
we calculated the unsigned error angle 1� between predicted
head angular velocity ω̂H

z (t) and the measured head angular
velocity ωH

z (t) over time. The hyperparameters yielding the
smallest median unsigned error angle were retained for validation
(Supplementary Figure 2 and Supplementary Table 1).

To assess the performance of our predictive method, we use
the previously trained neural networks on data never seen by the
networks. We use the sixth recorded learning flight. The thorax
to head prediction the optimal number of neurons is 32 and the
optimal window size is 29. For the head to thorax prediction we
have an optimal number of neurons of 4 and the optimal window
size is 45.

2.3.4. Temporal Shift
The share of information between head and thorax angular
velocities may be delayed. For example, the thorax angular
velocity until a time point t − τ may be used to predict the
angular velocity of the head at time point t. In that case,
the thorax angular velocity contains enough information to
forecast the head angular velocity. We apply the same procedure
described above, but with temporally shifted head and thorax
angular velocities.

The forecasting of the head angular velocity along the z-
axis will be based on the body angular velocity during a time
interval 1t:

ω̂head
z (t − τ ) = g(ωthorax

z (t − 1t), · · · ,ωthorax
z (t)) (4)

Here, τ is the time between the last observation used for
prediction and the time at which the angular velocity of the
head is predicted. Similarly, the backcasting of the head angular
velocity along the z-axis will be based on the body angular
velocity during a time interval 1t:

ω̂head
z (t − τ ) = g(ωthorax

z (t), · · · ,ωthorax
z (t + 1t)) (5)

τ is thus the temporal shift between observation and prediction.
For forecasting τ is negative. For backcasting τ is positive.

3. RESULTS

Flying insects are thought to coordinate their thorax and head
motion in order to maximize head stabilization. They segregate
their flights into saccade and intersaccade. We investigated
methods aimed at evaluating two different aspects of head-body
coordination during insect flight: (1) Head saccade identification
and (2) head angular velocity prediction based on the time
structure of thorax movements. We applied and tested these
methods to the learning flights of bumblebees, B. terrestris.

3.1. From Thorax Angular Velocities to
Head Saccades
In agreement with previous descriptions of flying insects’
behavior, we observed that the angular velocity ωz of the head
is segmented into segments of high velocity (called saccade) and
low velocity (called intersacade) Figure 3. The angular velocity
of the thorax shows a similar pattern, but with a less neat
segmentation between the intersaccades and saccades.

In the past, segmentation of insect flights into saccade and
intersaccade was based on thresholding the angular velocity:
angular velocities higher than the threshold are considered part
of a saccade. Recording the head orientation of flying insects
during free flights is technically demanding and has rarely been
done (Van Hateren and Schilstra, 1999a; Riabinina et al., 2014).
Thus, researchers have often only access to the orientation of the
insects’ thorax (Van Hateren and Schilstra, 1999a; Kern et al.,
2012; Philippides et al., 2013; Ravi et al., 2013, 2019; Riabinina
et al., 2014; Lobecke et al., 2018; Robert et al., 2018).

It thus raises the question: how well can we extract head
saccades based on the thorax angular velocity? The first set of
methods we investigated concerned the accurate classification of
head saccades from thorax angular velocities.

3.1.1. Decision Tree and Random Forest
Choosing a hard threshold to segment the time course of angular
velocity based on the thorax is challenging, due to slower
speeds during saccades and higher speeds during intersaccades.
Thanks to the segmentation based on the head angular velocity,
we can choose this threshold to maximize the accuracy
(i.e., the percentage of frame correctly classified as saccade
and intersaccade). Despite an optimally chosen threshold, we
observed that many frames are incorrectly classified (compare
misaligned red and blue stripes in Figure 3). The thresholding
approach uses the velocity observed at time t to classify it as either
saccade or intersaccade. However, head saccades have a time span
of several 10 ms; thus, using neighboring observations may help
classify the behavior.

Instead of choosing a single linear threshold, the field of
machine learning offers algorithms that classify data. Here, the
input is the angular velocity within a time window 1t around a
given time point t. The binary class to be predicted is either a head
saccade or not a head saccade (intersaccade).

Both classifiers DT and RD are classifying the thorax
angular velocity with higher AUC than our benchmark (i.e., the
thresholding method) Figure 4 on the test set. The Decision
Tree, and Random Forest yielded an error rate of 11.91
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FIGURE 3 | Time course of yaw angles and ωz (t) of the head and thorax of a learning flight. Head saccades (blue regions) are extracted with manually chosen

thresholds (red dotted line). Body saccades (red regions) are extracted with thresholds to best match the head saccades.

FIGURE 4 | Time course of head saccades (blue) and predicted head saccades (orange and green) from thorax angular velocity ωy ). Thorax saccades (in red) are

extracted with a double thresholds (as in Figure 3). Two trained classifiers (a decision Tree, in green, and a Random Forest, in orange) were applied to the learning

flight (which was not used for training) to predict head saccades.

and 11.26% (i.e., a 36.29 and 39.72% smaller error than the
benchmark), respectively.

3.1.2. Robustness at Low Sampling Rates
Our video footages were filmed at a relatively high frame-
rate (500 fps) and captured using multiple perspectives to
extract the 3D positions and orientations of the bee’s head
and thorax. However, recording at high frame rates and high
spatial resolution requires special hardware not always affordable
or available (for example during field experiments). Therefore,
many experiments have been performed with frame-rate between
50 and 100 fps (Kern et al., 2012; Philippides et al., 2013; Ravi
et al., 2013, 2019; Riabinina et al., 2014; Lobecke et al., 2018;
Robert et al., 2018). At such a frame rate, data can usually be
processed online (Straw et al., 2011; Stowers et al., 2017) or saved
requiring reasonable space on hard drives. To assess the ability
of our classifiers to identify saccades and intersaccades from
low temporal resolution thorax orientation, we down-sampled
our original recordings. We then interpolated the data with

cubic splines to retrieve the 500 fps on which our classifiers
were trained. The accuracy of the classifiers decreases with
decreasing temporal resolution. Still, for frame rates higher than
40fps our classifiers perform better than (or as good as) our
benchmark (Figure 5).

3.1.3. Robustness to Single Camera Recordings
Obtaining the 3D orientation of the thorax requires the
identification of at least three points on multiple views
or, when sufficient visual features are visible, use advanced
computer vision techniques for pose estimation from a single
perspective (Graving et al., 2019). The orientation can, however,
be approximated from a single perspective by making some
assumptions. For example, assuming a null pitch and roll, the
yaw orientation can be obtained from a single perspective view
at the flying insect from above (Kern et al., 2012; Philippides
et al., 2013; Lobecke et al., 2018; Robert et al., 2018; Ravi et al.,
2019). We replicated this assumption on our data and assessed
how well our classifiers could segment the flights into saccades
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FIGURE 5 | Area under the curve between saccade/intersaccade

classifications from classifier or double thresholds on thorax angular velocity

and head saccade/intersaccade classification as a function of frame rate. The

benchmark is the classification from ωz of the thorax based on the optimally

chosen double threshold at 500 fps. The classifier outperform the benchmark

for frame rates above 40 fps even when angular velocity of the thorax is

determined by assuming zero pitch and roll orientation (classifier followed

by 2D).

and intersaccades. The classifiers still performed better than our
benchmark for frame rates higher than 70 fps.

3.2. Predicting Head and Thorax Angular
Velocity
Flying insects orchestrate the movements of their head and
thorax in a timely manner, such that the head saccade and thorax
saccade temporally overlap. The neurons controlling the head
and thorax movements receive inputs from different brain areas
(Schröter et al., 2007; Ibbotson et al., 2017; Steinbeck et al., 2020)
One of these inputs could be an efference copy (i.e., a copy of an
outflowing movement-producing signal generated by the motor
system) of the head motion that affects the control of the thorax.
The reciprocal would be an efference copy of the thorax motion
affecting the control of the head. The efference copy signal needs
to be processed and transmitted to another part of the bee’s
body, to affect the control of the targeted movement. If this were
the case, we would expect two characteristics: (1) information is
shared between the head and thorax angular velocity, and (2) the
information at a given time t can be mapped to information at a
later time t + τ .

3.2.1. Predicting Head Velocity From Thorax Velocity

(τ = 0)
We observed that the head and thorax angular velocity
temporally overlap. It therefore seems likely that a mapping
between the movements of the two body parts at τ = 0
exists. Dürr and Schilling (2018) used an artificial neural network
(ANN) to investigate whether information from a given body
part can bemapped to another.We used anANN tomap the head
to the thorax angular velocity (and vice versa) without temporal
delays (i.e., τ ) Figure 6E. We observed that the predicted head
angular velocity co-varies with the bees’ head angular velocity
(Figures 6B,D). A similar observation is made for the prediction

of the thorax angular velocity from the head angular velocity
(Figures 6A,C). The errors between the prediction and target
are concentrated below 200 deg/s, i.e., below the variation of
angular velocity during intersaccades. However, we observed that
a prediction of the thorax angular velocity from the head angular
velocity yielded lower errors than the reciprocal prediction
(Figures 6F,G).

3.2.2. Forecasting and Backcasting Head Velocity

From Thorax Velocity (τ 6= 0)
We investigated the mapping of information between body
parts for different delays τ . Similarly to the τ = 0 case, we
used an ANN to map the angular velocity of one body part
to another. However, the observation (for example, the head
angular velocity) was temporally shifted relative to the target (for
example, the thorax angular velocity). When τ is negative, the
observation occurred before the target. Thus, this observation
could be used to control the behavior of the target. For example,
the thorax velocity at time t is sent as an efferent copy to the head
control arriving at t − τ . We will refer to this case as forecasting
(Figure 7D). If, τ is chosen to be positive, the observation
occurred after the target, hence we will speak of backcasting
(Figure 7F). This case mainly serves the purpose of avoiding
over-interpretation of the results and will be later discussed.

We observed that the prediction error varied as a function
of time (Figures 7A,B). By comparing the time course of the
errors (Figures 7A,B) and the observation (Figure 7C), we
observe higher errors during saccades. Such a pattern may be
observed, when the network predicts a zero angular velocity,
because during intersaccades the angular velocity is close to
zero. This may happen when the potential relationship between
the two body parts cannot be learned by the network. The
prediction from the network and the target are, in this case,
not correlated. Thus, we quantify the error as a function of
the time-shift by using the correlation between the target (e.g.,
head angular velocity) and its prediction (e.g., head from thorax
angular velocity).

The prediction of the head angular velocity correlates well
with the network prediction, but the correlation is lower for large
temporal time shifts. We observe a plateau between τ = −12ms
and τ = 0ms (i.e., for forecasting), and a sharp decrease for
τ > 0, and a smooth decrease for τ < −12ms (Figure 7E). In
contrast, the prediction of the thorax angular velocity correlates
poorly with the network prediction, except between τ = 0 and
τ = +12 ms, i.e., for backcasting.

It, therefore, seems that an efference copy of the head angular
velocity is sent to control the thorax angular velocity.

4. DISCUSSION

To understand how different body parts work together and
interact with each other, their kinematics must be recorded.
However, some small animals can move very fast (for example
a bee performing a saccade). Thus, the necessary equipment to
track such fast movements, is often not available. Hence, the
orientation of the thorax, which is relatively easy to track, is often
used as a proxy for head orientation. However, this proxy is prone
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FIGURE 6 | Predicting head and thorax angular velocity (without temporal shift) on a given flight not seen during training of the artificial neural network. (A) Prediction,

in blue, of the thorax angular velocity from head angular velocity (orange). (B) Prediction, in blue, of the head angular velocity from thorax angular velocity (orange).

(C,D) Zoom on (A,B), respectively. The prediction (blue line) follow the target (green line). (E) Schematic of a prediction at a given time point. (F,G) distribution of error

between predictions and targets.

to errors. We used data of head and thorax orientation during
learning flights of bumblebees and developed two methods
to reduce this error. The coordination of head and thorax
is of particular interest for understanding how information is
gathered and processed by the bee, for example, the estimation
of the distance to surrounding objects during intersaccades.
Our first method predicts the saccades of the bee’s head from
the time course of thorax movement. Usually head saccades
are identified by applying a threshold on the thorax angular
velocity. This method does not lead to optimal results. Therefore,
we trained a decision tree and a random forest classifier to
automatically determine when head saccades take place, given the
time course of thorax orientation. We were able to reduce the
mis-classifications made when choosing the threshold manually
from 39.72 to 11.26 %. A binary classification between saccades
and intersaccades is likely not sufficient to fully understand the
coordination between body parts in detail. Dürr and Schilling
(2018) showed that it is possible to use an ANN to map the
posture of one leg of a stick insect to the posture of another.
We successfully used this concept and applied it to predict the
orientation of a bee’s head angular velocity from that of its thorax.
Furthermore, we added a temporal component (forecasting or

backcasting) to analyse how head and thorax work together. Our
findings show that for a temporal shift of up to 10ms it is possible
to predict the head orientation from thorax orientation. If the
shift is bigger the error increases drastically.

4.1. Technological Aspects
Many moving animals and robots alike actively shape their
gaze to extract relevant information about their surroundings
(Egelhaaf et al., 2012; Wisniewska et al., 2012; Tuhkanen et al.,
2019). For example, during translation, the apparent motion of
an object informs the agent about its relationship in space to
the surroundings. If one can track the head of an animal during
its course of movement, one could pinpoint for example when
distance information is perceived. However, tracking the animal
as a whole might already pose a challenge, rendering the tracking
of specific body parts a nearly infeasible endeavor. For instance,
researchers have to restrict the space of the recording area and
use expensive recording devices to allow high spatio-temporal
resolution. The spatial limitations constrain research potentially
to only a part of the behavior. Additionally, researchers are often
obliged to manually track the body parts of interest, a labor-
intensive process which introduces a potential experimenter
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FIGURE 7 | Error for one flight (validation set) for thorax to head (A) and head to thorax (B) prediction. Time course of the head and thorax angular velocity (C) are

shown in blue and orange, respectively. (D,F) Example of a positive and negative shift of ±τ11 time steps of the observation. (E) Correlation between target and

prediction for different temporal shifts.

bias to the data. Our method solves this issue by allowing us
to infer the timing of head saccade/intersaccade from thorax
orientation at a rather low temporal resolution (40 fps) and
a spatial resolution sufficient to record only the thorax. For
example, in the case of bumblebee learning flights, by only
tracking body orientation, one could predict head orientation
and, thus, unravel when and how distance information might be
learned about the nest-hole environment to enable later returns
(Doussot et al., 2020a). Similarly, when bumblebees are crossing
a difficult passage such as a gap in a wall (Baird et al., 2016; Ravi
et al., 2019), head movements may be used to extract relevant
information. By studying head movements, one can interpret
the flight sequence performed at the entrance of this aperture.
We should note, however, that we cannot infer the complete
orientation (yaw, pitch, roll) of the head from thoraxmovements;
therefore, our method cannot account to assess roll and pitch
rotations in these behaviors.

4.2. Other Machine Learning Approaches
Our two methods are based on supervised machine learning
techniques. First, for our classification task, we used two different
classes of models. We decided to use an easily trainable Decision
Tree. However, this class of models brings several disadvantages,
of which one is its high variance, meaning small changes

in data can lead to drastically different optimal trees. We
therefore employed a more powerful class of models, Random
Forests, which extend the concept of Decision Trees, mitigating
the previously mentioned problem up to a certain amount.
Unfortunately, Random Forests often become very complex and
are not as clearly to be interpreted as Decision Trees. In any case,
both models have shown that classification is possible, indicating
two possibilities to pursue in future research.

First, one could utilize feature engineering. All our models
operated directly on the input data, but research shows that
feature engineering can improve performance (Wang et al.,
2016; Banerjee et al., 2019). Second, more sophisticated (but
potentially also data demanding) approaches could be employed.
An example, is the use of Convolutional Neural Networks, which
have been shown to work on time series classification with some
minor adjustments (Gamboa, 2017).

Second, for our prediction task, we used a feed forward
neural network inspired by the work of Dürr and Schilling
(2018) to predict head orientation from body orientation.
Alternative forecasting methods, such as ARIMA and Echo State
Networks, have been used to forecast thorax position from
previous observations (Meyer et al., 2018). These approaches
may also be used to study the coordination of multiple body
parts. Indeed, in the field of machine learning, the problem

Frontiers in Behavioral Neuroscience | www.frontiersin.org 10 January 2021 | Volume 14 | Article 610029

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Odenthal et al. Head-Thorax Choreography During Free-Flights

presented in this paper is coined time series classification,
which spawned an extensive research endeavor (for a review see
Bagnall et al., 2017).

4.3. Biological Implications
Our method to estimate the head angular velocity from the
thorax angular velocity relied on an artificial neural network.
The network can only relate the two angular velocities when a
function between them exists and the network design can capture
such function (Csáji et al., 2001). For example, by increasing
the number of neurons in the network more complex functions
can be found (Dürr and Schilling, 2018). The existence of such
a function, embedded in the network, implies that input and
output of the network share information. We applied this idea
to the head and thorax angular velocities and found that indeed
information is shared between the two.

Information in a dynamic system (such as the thorax and
head control) is transmitted through the system either directly
between subsystems or via another subsystem (for example
a brain region). Hence, the sharing of information between
subsystems in a dynamic system (e.g., between head and thorax)
can be due to a common source (e.g., a central pattern generator;
Guertin, 2013) or efference copies sent from one target to
another (Straka et al., 2018). In both cases, a signal needs to be
transmitted. Hence, generating a delay between the source and
the destination will occur. By temporally shifting the recorded
source (for example the head) relative to the target (for example
the thorax) and using an artificial neural network, we studied the
information flow. We found no evidence that the information
flows from the thorax to the head.

A unidirectional flow of information between head and thorax
can be observed when a source S (e.g., visual perception)
is coupled to the head control (H), and also drive to some
extent thorax control (T) in a way that the source can predict
thorax but not vice versa (Granger, 1969; Diebold, 2006). Then
due to transitivity of causality (if H → S and S → T,
then H → T), information flows uni-directionally from H
to T either directly (without a source) or indirectly (via the
source) (Sugihara et al., 2012; Ye et al., 2015). Whereas, a
direct flow implies biologically an efference copy, an indirect
flow implies common brain regions implicated in the control
of the two body parts. In addition, a source S (e.g., the
brain) could control the head H and thorax T movement. Our
method can not disambiguate between an efference copy or a
feedforward control from or via a common brain region, but
may be used to suggest how the information does not flow in
the system.

Our data suggests no efference copy sent to the wing motor
neurons to control head-yaw velocity during saccades. However,
in the context of roll stabilization, to align the field of view to the
horizon line (Raderschall et al., 2016), it has been suggested that
head stabilization in flight is controlled by a feed-forward signal,
where a copy of the command signals to the wing motorneurons
is sent with an opposite sign to the head position control system
(Viollet and Zeil, 2013)but also with the visual horizon (Goulard
et al., 2015). Interestingly, these observations suggest different
flows of information and pathways controlling the head and

thorax’ movements underlying roll stabilization and a saccadic
gaze strategy.

The use of an artificial neural network to test the predictability
of the output of one subsystem from the other informs not only
about the potential causal relationship between these systems, but
also provides a function relating the two. Thus, predictions can be
made based on this function when information about one of the
systems is not available.

5. CONCLUSIONS

We built our model on the bumblebee’s complex maneuvres
performed during learning flights. These flights are convoluted
and are significantly different from the flights shown by
bumblebees crossing a cluttered environment (Srinivasan, 2011),
for example. The saccadic flight and gaze strategy at high
temporal frequencies and high velocity is observed in multiple
species. Flies or honeybees, for example, perform saccades similar
to bumblebees. Flies’ saccades tend to be slightly faster ( 5000◦/s)
than the ones of bumblebees (Van Hateren and Schilstra, 1999a;
Braun et al., 2012). In contrast swimming seals turn their head
with an angular velocity of only up to 100◦/s in a saccadic
manner (Geurten et al., 2017). Our saccade-intersaccade classifier
based on the thorax angular velocity of bumblebees is likely
to require retraining before being applied to other species.
Nonetheless, because precise predictions could be made despite
the complexity of the learning flights, it is likely that the presented
methods can be adapted and extended to evaluate data from
different animals.

Similarly to the classifier, our method to study the
orchestration of movements of different body parts can be
used to study movements of different animals, but the resulting
trained networks are likely usable only for closely related
datasets. It would, therefore, be of interest to apply this
method to different species and behavioral assays to test its
broader applicability.
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