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A relatively new type of identity theft uses morphed
facial images in identification documents in which
images of two individuals are digitally blended to create
an image that maintains a likeness to each of the
original identities. We created a set of high-quality
digital morphs from passport-style photos for a diverse
set of people across gender, race, and age. We then
examine people’s ability to detect facial morphing both
in terms of determining if two side-by-side faces are of
the same individual or not and in terms of identifying if
a face is the result of digital morphing. We show that
human participants struggle at both tasks. Even modern
machine-learning-based facial recognition struggles to
distinguish between an individual and their morphed
version. We conclude with a hopeful note, describing a
computational technique that holds some promise in
recognizing that one facial image is a morphed version
of another.

Introduction
We frequently rely on photo-based identity

documents to verify identity in critical settings such as
border control. Much research, however, has shown
that matching pairs of unfamiliar faces is a difficult
task (Bruce et al., 1999; Megreya & Burton, 2007;
Burton et al., 2010), including for trained identification-
checkers (White et al., 2014). The difficulty of this
task leaves identity verification processes vulnerable to
fraudulent attacks. One relatively new type of fraud
that border control agencies are facing is the use of
morphed passport photos. Early research exploring
human detection of morphed images indicates
that people frequently accept both low-quality and
high-quality morphed images as genuine (Robertson
et al., 2017; Robertson, 2018; Kramer et al., 2019).
The face databases used in these previous studies,
however, have a number of limitations, most notably

low-quality morphs and/or limited diversity in terms
of the race, gender, and age of the faces used to create
the stimuli. Here, we extend this previous literature by
examining human and computer-based detection of
face morphing using a diverse set of facial images to
generate high-quality morphs.

Attempts to obtain fraudulent identity documents
are not new. Traditionally, it was common for fraudsters
to attempt to create fraudulent identifications by
producing fake passports or removing and replacing
the photo in a real passport. In response, passport
anti-counterfeit measures were developed, making
such attempts easy to detect (UK HM Passport Office,
2020) (e.g., patterns that are visible only under specific
artificial illumination). In light of these anti-counterfeit
measures, fraudsters have started to find ways to obtain
fraudulently obtained but genuine (FOG) passports
(ITW Security Division, 2017; Middleton, 2014). These
FOG passports are real documents that are issued by
an official and can therefore circumvent the previously
mentioned anti-counterfeit measures. A common
strategy for obtaining a FOG passport is through an
accomplice, who holds a genuine passport, submitting a
renewal application with the photo of a similar-looking
fraudster. Most recently, this issue has intensified
through the increased availability of advanced image
manipulation software that enables fraudsters to
create morphed facial images. Face morphing involves
digitally combining images of two (or more) individuals
to create a manipulated image that maintains a likeness
to each of the original identities. To highlight how this
process might work, imagine the following scenario:
A fraudster (ID1) who is not legally able to obtain a
passport morphs a photo of their face with the face
of another person who is legally able to obtain a
passport (ID2). This morphed facial image is submitted
alongside ID2’s passport application. When checked
against the photo stored on file at the passport issuance
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office, the morphed face resembles ID2 closely enough
to result in the issuance of a passport. And crucially,
the morphed face also resembles ID1 closely enough to
allow them to pass through border control. Of course,
the use of a morphed facial image rather than an image
of a similar-looking accomplice carries a clear benefit
for the fraudster: the manipulated image contains some
of their facial features. This scenario will, however, fail
if the morphed facial image is detected at either the
issuance or ID-check stage. An important question,
then, concerns whether identification examiners (both
human and machine) are able to detect morphed facial
images.

Research on this topic is in its infancy, but early
studies suggest that people cannot reliably detect
morphed faces. In one study, participants were
presented with two face images and were asked to
indicate whether those faces depicted the same person
or not (Robertson et al., 2017). Participants completed
49 trials, seven in which the two faces were of the
same person, 7 in which the two faces were of different
people, and 35 in which a face was paired with a morph
of that face and a different person. People accepted
50/50 face morphs (weighting both original identities
equally) as a “match” for the face it had been paired
with 68% of the time. In a follow-up, participants were
given basic guidance on how to detect morphs and also
given an additional response option of “morph.” This
time, 50/50 face morphs were accepted as “matches”
21% of the time. These results indicate that such
morphed faces might provide an opportunity to commit
identity fraud.

In another study, Robertson and colleagues (2018)
examined the effect of simple training on morph
detection. Participants were assigned at random to
either a guidance-only or guidance and training group.
The guidance consisted of basic information about
morphing and tips for detection, for example, to look
for a ghost-like outline of another face or another
person’s hair over the forehead. As well as receiving this
guidance, participants in the training group completed
a two-alternative forced-choice (2AFC) task where
they had to determine which of the faces was a morph
and were given accuracy feedback after each of the
20 trials. Both before and after the guidance/training,
participants were shown a series of trials each
consisting of an array containing 10 faces, half
morphs and half original. On each trial, participants
indicated which of the faces were morphs. Baseline
performance before guidance/training, measured as
d’ sensitivity, was d ′ = 0.96 for the guidance-only
group and d ′ = 0.56 for the guidance and training
group. After guidance/training, performance improved
significantly to d ′ = 2.32 for the guidance-only
group and d ′ = 2.69 for the guidance and training
group. These results suggest that performance can
be significantly improved through guidance and
training.

There are, however, a number of important
limitations with these two studies. First, although
the morphs were created using advanced morphing
software, there was no manual editing stage to remove
obvious artifacts that are known to result from the
morphing process, such as the outline of another
person’s hair. In fact, such artifacts were precisely
what the authors guided participants to look for to
help them to detect morphs. This limitation might
artificially inflate the effect of the guidance and training
manipulation. Second, the stimuli were created using
facial images from the Glasgow Face Matching Test
(Burton et al., 2010), which includes mostly White
individuals. This lack of racial diversity in the stimuli
further limits the extent that the results of these studies
are likely to be representative of the detection of
morphs in the real world.

In 2019, another research group sought to address
the first limitation noted above by replicating the
study by Robertson et al. (2018) using higher-quality
face morphs (Kramer et al., 2019). Using these
higher-quality morphs, they also found that initial
detection was poor, but unlike Robertson et al.’s (2018)
study, training had no effect on accuracy. The use
of the 10-image array paradigm makes it difficult
to determine chance performance and is not akin
to the process identification checkers use in the real
world. In a second experiment, participants saw a
single image per trial, half morphs and half original
images, and were asked to indicate if the image was a
morph or not. Half of the participants saw a number
of morph detection tips before completing the task
while the other half did not receive this information.
Both groups performed poorly and the tips did not
reliably improve performance—perhaps, then, tips and
guidance about morph detection might only be useful
when using low-quality morphs that clearly contain
visual morphing artifacts. In a third experiment,
participants completed a live face-matching task rather
than a computer-based one. For this task, 48 models
(44 White) were photographed and paired with a
visually similar model (foil). The models approached
participants on a university campus and presented
either a photo of the (1) model (match), (2) model
morphed with the foil individual (50/50 morph), or (3)
foil (mismatch). The participants were asked to indicate
if they thought the photo was of the model or not. For
the match and mismatch conditions, average accuracy
was 83% and 84%, but the morph photos were accepted
nearly half of the time (49%). The pairing of models
to create the morph photos revealed an interesting
finding: In the majority of the pairs, the morph was
accepted as a valid identification for one model more
frequently than for the other model. Kramer et al.
(2019) conclude that even when generating 50/50
morphs, the morph does not represent each of the
original faces equally. Because in previous work (e.g.,
Robertson et al., 2017), the morphs were only presented
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alongside one of the original identities, the results
might not accurately represent true morph detection
rates.

These three experiments indicate that human ability
to detect morph faces is extremely limited and that basic
training is not sufficient to improve this performance. In
a final experiment, Kramer et al. (2019) tested whether a
simple computational model could outperform human
ability to detect morphs. Principal components analysis
was used to extract a low-dimensional representation of
the faces. These representations were then used to train
a linear discriminant analysis model with two classes,
morph and original. Using this model to classify the
remaining images that were not used in the training set
resulted in an average accuracy of 68%, corresponding
to a sensitivity of 1.01. This result suggests that a simple
computational model can outperform humans at morph
detection but remains a far from perfect classifier.

Identity fraud is a serious issue that poses significant
risk to national security. In fact, in Germany, the
threat of face morphing to commit identity fraud has
prompted plans to heighten security by making people
take passport photos in official government-owned
booths that transfer the photo directly to official
computers (Huggler, 2020). Given the significance of
the threat face morphing poses, it is critical that further
research is conducted to better understand human
and machine ability to detect morphing as well as
finding reliable ways to improve detection. To advance
work on this important topic, we describe the creation
of a data set that addresses the limitations noted in
previous work in this field. Specifically, our data set
includes high-quality morphs that are diverse across
race, gender, and age. Addressing limitations noted
in Kramer et al. (2019), we selected our image pairs
from a large initial pool of faces using a computational
approach to automatically find similar-looking faces.
In addition, rather than generating 50/50 morphs, we
generated morphs that represent each of the original
faces equally.

Using this data set, we conduct a series of perceptual
experiments examining people’s ability to perceptually
detect morphed faces. Our approach is rooted in the
goal of understanding how accurately an analyst will
be able to compare an identity to a morphed identity
and how accurately they will be able to recognize
a morphed face. This study unfolds in a series of
experiments designed to measure accuracy and bias
in the corresponding recognition and detection task,
as well as examining if certain interventions might
improve performance. We conclude with a comparison
of perceptual accuracy to strictly computational
approaches for detecting morphed faces.

Data set
This section describes the creation of a data set used

in all of our experiments. We note four main limitations

of other data sets that have been used in similar research
(Robertson et al., 2017; Robertson et al., 2018; Kramer
et al., 2019): (1) obvious visual morphing artifacts, (2)
a small number of faces from which to select matching
faces, (3) a manual process to match similar faces, and
(4) a lack of racial/gender diversity. We address these
limitations to create a high-quality and diverse data
set.1

We collected 3,500 passport-format facial images
from 13 face databases (Phillips et al., 1998, 2000;
Flynn et al., 2003; Weyrauch et al., 2004; Phillips et al.,
2005; Azam et al., 2007; Kasiński et al., 2008; Utrecht
ECVP Face Database, 2008; Wang & Tang, 2008;
Thomaz & Giraldi, 2010; Watson, 2010; Vieira et al.,
2014; Ma et al., 2015; Strohminger, 2016; DeBruine
& Jones, 2017). These 3,500 images included a diverse
range of individuals across gender, age, and race. To
ensure diversity in our final stimulus set, we manually
selected 54 individuals constituting 6 African American
or Black, 16 East Asian, 16 South Asian, and 16
Caucasian. Of these, 26 were women and 28 were men,
spanning a range of apparent ages. Some of the face
databases specified the race/gender of each face. Where
this information was not available, we relied on the
subjective judgment of the three authors.

We matched each of these 54 individuals with their
most similar-looking counterpart in the remaining
faces in our data set. A standard convolutional neural
network descriptor (termed VGG) (Parkhi et al., 2015)
was used to extract a low-dimensional, perceptually
meaningful, representation of each face in the full
data set. The extracted representation—a 4,096-D
real-valued vector—for each of the 54 manually selected
target faces was compared with all other representations
in the data set to find the most similar face as defined by
the face whose representation is most similar—in terms
of Euclidean distance—with the target face (Tariq et al.,
2018; Zhang et al., 2018). A midway morph was then
generated for each pair of matched faces as follows.

A total of 68 corresponding points on the two
faces were extracted using a standard facial landmark
detector (King, 2009; Figures 1a,b). These points were
augmented with an average of 116 manually selected
points along the hairline and top of the head, ears,
and neck (Figures 1d,e). These manually selected
points improved the overall visual quality of the
generated morphs (Figure 1c vs. f). After extracting
corresponding facial landmarks, and prior to generating
the facial morphs, the two faces were aligned by an
affine transform, consisting of anisotropic scaling,
shearing, rotation, and translation. This alignment
ensured that facial features did not significantly move
during the morphing process. In particular, denote the
68 corresponding feature points on each face as (xi, yi)
and (ui, vi), i ∈ [1, 68]. The six-parameter affine is given
by (

ui
vi

)
=

(
a1 a2
a3 a4

) (
xi
yi

)
+

(
a5
a6

)
, (1)
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Figure 1. Shown are original faces of two different people f and g (a, b) with the automatically extracted facial landmark points
overlaid (blue dots). Their midway morphmfg generated using only these automatically extracted landmarks is shown in panel (c).
Shown in panels (d) and (e) are the same original faces f and g, now with both the automatically and manually selected facial
landmark points overlaid (blue dots). Shown in panels (g) and (h) are a tessellation of the faces used for the image morphing. The
midway morph generated using both the automatically extracted and manually selected landmarks is shown in panel (f). Shown in
panel (i) is the tightly cropped and manually touched-up and color and sharpness-adjusted final image. (Original image sources:
Utrecht ECVP [Utrecht ECVP Face Database, 2008] and PUT face database [Kasiński et al., 2008].)
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where the affine parameters a1, a2, a3, and a4 embody
the anisotropic scaling, shearing, and rotation, and
the parameters a5 and a6 embody the horizontal and
vertical translation. The transform that best, in the
least-squares sense, aligns the features on each face are
estimated by first defining the following quadratic error
function:

E (�a) =

∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎝

x1 y1 0 0 1 0
0 0 x1 y1 0 1
...

...
...

...
...
...

x68 y68 0 0 1 0
0 0 x68 y68 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a1
a2
a3
a4
a5
a6

⎞
⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

u1
v1
...
u68
v68

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥

2

(2)

= ‖M�a −�b‖2. (3)
This quadratic error function is minimized using
standard least-squares estimation: differentiate with
respect to �a, set the result equal to 0, and solve for �a to
yield the least-squares estimate of the aligning affine
transform:

�a = (MtM )−1Mt�b. (4)

Given two aligned faces f and g (with VGG-
representations �v f and �vg), a morphed face mfg is
generated using a standard image-warping technique
(Szeliski, 2010). Briefly, a triangular mesh is created
on each face using the facial landmarks as vertices
(Figure 1g, h). A midway morph is created by
geometrically warping each triangular patch according
to a morphing parameter α ∈ [0, 1], where a value
of 0 corresponds to the source image f , a value of 1
corresponds to the source image g, and an intermediate
value corresponds to a midway morph. The underlying
pixel values are similarly computed as a weighted
combination, (1 − α) f + αg, of the original pixel values
(applied separately to each image color channel).

In past studies, morphs have often been generated
with α = 0.5, which means that the original faces f and
g are weighted equally to generate a 50/50 morphed
face mfg. Previous research, however, has indicated
that, when creating a morphed face, if one individual
in the pair is more distinct than the other, then the
50/50 morph typically resembles the more distinct
individual (Tanaka et al., 1998; Kramer et al., 2019).
To compensate for this effect, we generated a range
of morphs mα

f g with α ranging from 0.1 to 0.9, in
steps of 0.1. The value of α was selected that led to a
morphed face mα

f g that was, in the Euclidean sense on
the underlying VGG-representation, midway between
the source images f and g.

To improve overall contrast, each morph mα
f g was

gamma-corrected with γ = 1.5. The morphs were then
tightly cropped around the face and manually edited
to remove obvious morphing artifacts (Figure 1f vs.
i). Lastly, to ensure that the morphing process did not

create any obvious artifacts, the images were matched in
terms of luminance, color, and sharpness. In particular,
the mean luminance of each source image f and g was
matched to the mean luminance of the morph image
mfg, and the source image mean and variance of the
chrominance channels (Cb/Cr) were matched to the
morphed image. Because image morphing tends to lead
to blurring, each RGB color channel of each source and
morph image was high-pass filtered until the average
gradient of each image channel matched the maximum
gradient across all three images. The resulting 54
pairs of different individuals and their midway morph
comprise our different-individual data set.

An analogous same-individual data set was created
by selecting a new set of 54 facial images from the
original data set of 3,500 for which there were two or
more distinct images of the same person. We manually
selected individuals to match the gender, age, and race
distribution of our different-individuals data set. A
midway morph was created for each pair of images
using the same technique described above.

In summary, our data set consists of 108 face pairs,
54 of two different individuals and 54 of the same
individual taken at different times, each with a midway
morph. A representative set of these different and same
faces and morphs is shown in Figure 2.

Experiment 1a: Identification (original and
morph)

In this first experiment, we examined people’s ability
to determine whether two facial images, one original
and one morphed, are of the same person or not.2

Methods
One hundred workers on Amazon’s Mechanical Turk

(AMT) completed the experiment. The participants
self-reported as 65 men, 34 women, and 1 prefer not
to say; between 22 and 72 years of age (μ = 36.8;
σ = 9.6); and 74 White, 14 South Asian, 7 East Asian,
and 5 African American. Participants received $5
for completing this experiment. As an incentive to
encourage effort on the task, a $5 bonus was offered
and paid for those achieving an accuracy in the top
20th percentile.

A within-subject design was employed in which each
trial consisted of two images (one original, one morph)
displayed side-by-side in one of eight configurations.
Denote the original images of different people as f
and g and their midway morph as mfg, and denote the
original images of the same people as h and h̃ and their
midway morph as mhh̃. There are four configurations
for each data set consisting of 54 pairs from the
“different-individual” data set with one image on the
left and one on the right: f + mfg, mfg + f , g + mfg,
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Figure 2. Example stimuli. Shown for each set of three images are two original images (left/right) and their midway morph (center).
Shown in the left half of this figure are images from different-individual data set and shown in the right half are images from
same-individual data set. (Original image sources: MR2 [CC BY-NC-SA 4.0], Chicago Face Database [permission to publish images
granted], CUHK student database [Wang & Tang, 2008], NIST color FERET [image publication permitted under fair use policy], and
CVRL ND-Collections B and D, and FRCG v.2.0 [image publication permitted under fair use policy].)
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Figure 3. Catch trials used in Experiments 1a, 1b, and 1c to ensure that participants were paying attention to the task. (Original image
sources: Face Research Lab London Set [CC BY 4.0] and CVRL ND-Collections B and D, and FRCG v.2.0 [image publication permitted
under fair use policy].)

mfg + g, and 54 pairs from the “same-individual” data
set: h + mhh̃, mhh̃ + h, h̃ + mhh̃, mhh̃ + h̃, for a total of
432 possible displays. Each participant viewed only 108
image pairs using the following fully counterbalanced
block design. Four blocks were created, each containing
27 trials for a total of 108 trials. The first and second
blocks each consisted of 14 different and 13 same image
pairs; the third and fourth blocks each consisted of 13
different and 14 same image pairs. Each block consisted
of the same number of men, women, and racial groups.

On each trial, participants were instructed to specify
if the images were of the same person or not and
asked to rate the confidence in their response. In this
discrimination task, chance performance is 50%. Four
attention-check trials were created, one for each block.
These trials were intentionally easy, comprising two
images of distinctly different-looking people, one male
and one female (Figure 3).

Participants first received task instructions, including
a brief description of what face morphing is and how it
can be used to commit identity fraud. Participants then
completed a practice trial; they viewed two images on
the screen, an original image and a morph. Participants
had an unlimited amount of time to indicate whether
or not they thought that the images were of the same
individual. After responding to the same/different
individual question, participants rated their confidence
in their decision using a 6-point Likert-type scale, from
1 (50%—guessing) to 6 (100%—absolutely certain).

Following the practice trial, participants completed
the 108 trials in blocks of 27 plus one attention-check
trial per block, shown in a randomized order within
each block. Blocks were shown in one of four possible
counterbalanced orders. At the end of the session,
participants were asked a few basic demographic
questions.

A precision-for-planning analysis revealed that at
least 99 participants would provide a margin of error
that is 0.2 of the population standard deviation with
95% assurance (Cumming et al., 2012; Cumming, 2013).
This analysis applies to all reported experiments.

Results
The average accuracy of identifying a facial image

as the same person or not was 59.2% (chance is

Experiment d′ β % correct [95% CIs]

1a 0.68 1.81 59.2 [57.6, 60.7]
1b 1.74 1.03 80.8 [78.8, 82.8]
1c 0.57 1.44 59.2 [57.9, 60.6]
2a 0.21 0.98 54.1 [52.5, 55.5]
2b 0.53 0.92 60.4 [58.9, 61.9]

Table 1. Participant accuracy in five experiments, reported as
sensitivity (d′), bias (β), and accuracy (% correct with [95%
confidence intervals]). Experiment 1a: determine if two images,
one original and one morphed, are of the same person;
Experiment 1b: determine if two images, both original, are of
the same person; Experiment 1c: replication of Experiment 1a
with training; Experiment 2a: determine if a single facial image
is a morph or not; and Experiment 2b: replication of
Experiment 2a with training and feedback.

50%), corresponding to a sensitivity of d ′ = 0.68
and bias of β = 1.81, where the bias corresponds to
a tendency to label faces as “same” (Table 1). The
accuracy for faces of different/same individuals was
29.5%/88.8%—participants were heavily biased to
saying that faces were of the same individual.

Shown in Figure 4 (Experiment 1a) is, for each level
of participant-reported confidence (on a scale of 1 to 6
[certain]), the participant accuracy. With similar average
accuracy across all levels of confidence, we see that
participants are not well calibrated in their response
and confidence.

Discussion
The results of this experiment suggest that human

participants have a limited ability to reliably determine
the identity in a midway facial morph. There are
two possible interpretations of this result: (1) The
morphs are of high enough quality and similarity
as to mask identity, or (2) participants are simply
unable to accurately distinguish two unfamiliar faces.
In the next experiment (1b), we seek to differentiate
between these two possibilities by asking participants
to distinguish between two original nonmorphed
facial images consisting of the same or different
person.
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Figure 4. Confidence-accuracy curves for Experiments 1a, 1b, and 1c. The dashed line represents perfect accuracy-confidence
calibration.

Experiment 1b: Identification (original and
original)

Methods
One hundred workers on AMT completed the

experiment. The participants self-reported as 53
men and 47 women; between 23 and 69 years of age
(μ = 39.4; σ = 10.9); and 74 White, 14 South Asian,
6 African American, 2 East Asian, and 4 other/prefer
not to say. Participants received $5 for completing
this experiment. As an incentive to encourage effort
on the task, a $5 bonus was offered and paid for
those achieving an accuracy in the top 20th percentile.
A further two participants were excluded because
they responded incorrectly on at least one of the
attention-check questions. There was no overlap
between the participants in this experiment and
Experiment 1a.

A within-subject design was employed in which
each trial consisted of two original images—from the
same data set as used in Experiment 1a—displayed
side-by-side in one of four configurations. Each
participant saw 54 different individuals ( f , g) with two
possible configurations: f + g or g + f , and 54 same
individuals (h, h̃) with two possible configurations:
h + h̃ or h̃ + h, for a total of 216 possible displays.
Each participant viewed 108 image pairs using the
counterbalanced block design per Experiment 1a.
Given that this experiment did not include any morphed
facial images, we removed the brief explanation of face
morphing from the task instructions and amended the
practice trial to show two distinct original images of the
same person. The procedure was otherwise identical to
that of Experiment 1a.

Results
The average accuracy of identifying two facial

images as depicting the same person or not was 80.8%,

corresponding to a sensitivity of d ′ = 1.74 and bias
of β = 1.03. The accuracy for faces of different/same
individuals was 80.4%/81.3%—unlike the previous
experiment, participants were not biased in their
responses. Shown in Figure 4 (Experiment 1b) is, for
each level of participant-reported confidence, the
participant accuracy. With slightly higher accuracy
at the higher levels of confidence, it appears that
participants are fairly well calibrated in their response
and confidence.

Discussion
The results of this experiment suggest that

participants can reliably determine whether two original
facial images depict the same person or two different
people. Therefore, participants’ limited ability in the
task in Experiment 1a may be interpreted as a result of
the morphs being of high enough quality and similarity
to mask identity.

Given that participants can distinguish two
unfamiliar faces with reasonable accuracy, we next
examine whether participant accuracy in distinguishing
identity in morphed faces can be improved with
training. To develop our training initiative, we draw on
the finding that attending to certain facial features when
comparing two faces can help to improve the accuracy
of face matching decisions (Kemp et al., 2016; Towler
et al., 2017). In the next experiment (1c), we replicate
Experiment 1a but this time using masked facial images
that allow participants to only compare the eyes, nose,
and mouth.

Experiment 1c: Identification (original and
morph) with masking

Methods
One hundred workers on AMT completed the

experiment. The participants self-reported as 51 women,
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Figure 5. Example masked stimuli from Experiment 1c. Shown in each image pair is an original image of an individual f (left) and the
midway morphmfg (right) to a different person g, with only the eye region or mouth and nose region visible. (Original image source:
Chicago Face Database [permission to publish images granted].)

48 men, and 1 prefer not to say; between 22 and
65 years of age (μ = 40.3; σ = 9.6); and 81 White,
7 East Asian, 6 African American, 5 South Asian,
and 1 other/prefer not to say. As in the previous two
experiments, participants received $5 for completing
this experiment. As an incentive to encourage effort
on the task, a $5 bonus was offered and paid for
those achieving an accuracy in the top 20th percentile.
There was no overlap between the participants in this
experiment and Experiments 1a and 1b.

Other than the two exceptions enumerated below, the
design, underlying stimuli, and procedure were identical
to that used in Experiment 1a.

(1) In each trial, participants saw a pair of images
(one original and one morph) displayed side-by
side. One image pair revealed only the eyes, and
the other image pair revealed only the nose/mouth
region (Figure 5). The creation of these masks was
automated as follows. The pixel locations of the
facial features (eyes, nose, mouth) were extracted
using OpenFace (Baltrušaitis et al., 2016). For the
eyes, a bounding box was extracted that contained
all of the features on both eyes. For the nose/mouth,
a bounding polygon was extracted that contained
all of the features on the nose and mouth. To
ensure that the mask did not occlude the features,
these bounding boxes were enlarged by 5% of
their original size. The final images (Figure 5) were
generated by reducing the contrast of all pixels
outside of the mask to 15% of full contrast, making
it difficult for participants to use the entire face for
recognition, while leaving enough context for the
visible features.

(2) The order in which participants viewed the two
feature regions was counterbalanced, resulting in
twice the number of display configurations as in
Experiment 1a. Participants saw 27 of each of the
different people configurations ( f + mfg, mfg + f ,

g + mfg, mfg + g) with the eye region shown first
and the mouth and nose region shown second and
27 with the mouth and nose region shown first and
the eye region shown second. Participants saw 27 of
each of the same people configurations (h + mhh̃,
mhh̃ + h, h̃ + mhh̃, mhh̃ + h̃) with the eye region shown
first and the mouth and nose region shown second
and 27 with the mouth and nose region shown first
and the eye region shown second. Each participant
viewed a total of 108 image pairs.

Results
The average accuracy of identifying a facial image

as the same person or not was 59.2%, corresponding
to a sensitivity of d ′ = 0.57 and bias of β = 1.44 (cf.
Experiment 1a: 59.2%, d ′ = 0.68, β = 1.81; Table 1).
The accuracy for faces of different/same individuals
was 36.1%/82.3%—although overall accuracy was still
not high, the masking reduced the bias to report that
faces were of the same individual. As in Experiment
1a, average participant accuracy is similar across all
levels of confidence, suggesting that participants are
still not well calibrated in their response and confidence
(Figure 4 [Experiment 1c]).

Discussion
Had the strategy of focusing participants’ attention

on facial features been successful in increasing accuracy
or decreasing bias, this would have been a simple
strategy for a passport issuance office to adopt.
The results of this experiment, however, reveal that
facial-feature comparison did not significantly improve
participants’ accuracy in determining identity of
morphed faces. Compared to Experiment 1a, however,
participants showed a smaller bias to respond “same.”
Participants clearly struggle to distinguish identity
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Figure 6. Catch trials used in Experiments 2a and 2b to ensure that participants were paying attention to the task. (Original image
sources: CVRL ND-Collections B and D, and FRCG v.2.0 [image publication permitted under fair use policy] and Pixy.org
[CC BY-NC-ND 4.0].)

when presented with two images, one of which is a
midway morph.

Distinguishing identity, however, is only one way in
which a fraudulent identity might be determined. The
other way is to simply identify a face as having been
morphed relative to some unknown face. In the next
set of experiments, we examine participants’ ability to
perform this task.

Experiment 2a: Classification (original or
morph)

Methods
One hundred workers on AMT completed the

experiment. The participants self-reported as 57
men and 43 women; between 24 and 72 years of age
(μ = 40.4; σ = 10.2); and 78 White, 10 South Asian,
5 African American, 4 East Asian, and 3 other/prefer
not to say. Participants received $5 for completing
this experiment. As an incentive to encourage effort
on the task, a $5 bonus was offered and paid for
those achieving an accuracy in the top 20th percentile.
A further three participants were excluded because
they responded incorrectly on at least one of the
attention-check questions. There was no overlap
between the participants in this experiment and
Experiments 1a, 1b, or 1c.

A within-subject design was employed in which
each trial consisted of a single original or morphed
face. For the morphed face trials, each participant
saw 27 different-people midway morphs (mfg) and 27
same-person midway morphs (mhh̃). For the original
image trials, participants saw 27 images, either f or
g, from the different-individual image pairs and 27
images, either h or h̃, from the same-individual image
pairs.

Each participant viewed 108 images using the
following fully counterbalanced block design. Four
blocks were created, each containing 27 trials for a total
of 108 trials. The first and second blocks each consisted
of 14 original face trials and 13 morphed face trials; the
third and fourth blocks each consisted of 14 morphed
face trials and 13 original face trials. The selection of
the original or midway morph from each of the 108
image sets was also counterbalanced, resulting in two
versions of each block.

On each trial, participants were instructed to
specify if the image was a morph or not and asked
to rate the confidence in their response. In this task,
chance performance is 50%. Four attention-check
trials were created, one for each block. These trials
were intentionally easy, comprising a morphed face
of a person with an image of a cartoon character
(Figure 6).

Participants first received task instructions, including
a brief description of what face morphing is and how it
can be used to commit identity fraud. Participants then
viewed four videos demonstrating how two faces can
be digitally combined to create a morph of those two
faces. To create these videos, we selected four additional
face pairs from the original data set of 3,500 faces. For
each face pair, we generated morphs using the same
method as described previously (see Data set section).
To demonstrate the gradual morphing of two faces,
we generated five morphs with a different blending
value α ranging from 0.1 to 0.5 in steps of 0.1. The
0.5 − α morph was then manually edited to remove
obvious morphing artifacts. In the video, the two
original images ( f and g) were displayed on either side
of their morph (mfg). The six versions of the morph
appeared sequentially, starting with the 0.1 − α morph.
Each version of the morph remained on the screen for
1 s. Participants viewed all four videos and were asked
to indicate if they were able to see the videos clearly.
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Figure 7. Confidence-accuracy curves for Experiments 2a and 2b. The dashed line represents perfect accuracy-confidence calibration.

Participants then completed a practice trial consisting
of a single image on the screen, an original image, or a
midway morph.

Following the practice trial, participants completed
the 108 trials in blocks of 27 plus one attention-check
trial per block, shown in a randomized order within
each block. Blocks were shown in one of eight possible
counterbalanced orders. At the end of the session,
participants were asked a few basic demographic
questions.

Participants had an unlimited amount of time to
indicate whether they thought that the image was a
morph or not. After responding to the morph or not
question, participants rated their confidence in their
decision using a 6-point Likert-type scale, from 1
(guessing) to 6 (absolutely certain).

Results
The average accuracy of identifying a face as

a morph or not was 54.1%, corresponding to a
sensitivity of d ′ = 0.21 and bias of β = 0.98. The
accuracy for original/morphed faces was 50.0%/58.1%.
As in Experiments 1a and 1c, average participant
accuracy was similar across all levels of confidence,
again suggesting that participants are not well
calibrated in their response and confidence (Figure 7
[Experiment 2a]).

Discussion
The results of this experiment suggest that human

participants cannot reliably determine when a facial
image has been morphed and when it is an original
image. Two possible explanations for this result are that
(1) the morphed faces are of high enough quality that
there are no artifacts that can be reliably perceived by
human participants, or (2) participants are unaware
of the artifacts to look for in morphed faces. To try
to determine which of these two possibilities best
accounts for our results, in the next experiment, we

replicate Experiment 2a, but before attempting the task,
participants completed a short training session that
highlights some common morphing artifacts to look for
in the images.

Experiment 2b: Classification (original or
morph) with training/feedback

Methods
One hundred workers on AMT completed the

experiment. The participants self-reported as 58 men,
41 women, and 1 prefer not to say; between 24 and
68 years of age (μ = 39.7; σ = 9.9); and 81 White,
9 South Asian, 4 African American, 2 East Asian,
and 4 other/prefer not to say. As in the previous
experiments, participants received $5 for completing
this experiment. As an incentive to encourage effort
on the task, a $5 bonus was offered and paid for
those achieving an accuracy in the top 20th percentile.
A further five participants were excluded because
they responded incorrectly on at least one of the
attention-check questions. There was no overlap
between the participants in this experiment and
Experiments 1a, 1b, 1c, and 2a.

Other than the inclusion of a training session as
described below and accuracy feedback after each trial,
the design, underlying stimuli, and procedure were
identical to that used in Experiment 2a.

After viewing the four videos demonstrating how
two faces can be digitally combined to create a morph
of those two faces, participants completed a short
training. The training provided information about
common morphing artifacts that may be helpful to look
for when deciding if the facial images were morphs or
not. Participants were told that:

(1) Morphed faces tend to look less sharp: The
complexion of a morphed face is usually smoother
with a more uniform appearance.
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(2) Morphing hair can be difficult, and morphs often
have fewer wayward strands of hair and ghosting (a
ghost-like outline of another person’s hair).

(3) When morphing images of two people with different
postures or different clothing/hair coverage, the
editing process might make the neckline appear
unnaturally straight and flat.

To check that participants paid attention to the
training, they were then asked to select the three
artifacts from a list of six possible options, where
the three incorrect answers were easily identifiable as
they were not mentioned in the training. Participants
were given the option to view the training session a
second time if they were unsure of the correct options.
The other change from Experiment 2a was that after
responding on each trial, participants were provided
with feedback indicating whether their response was
correct or not.

Results
The average accuracy of identifying a face as a

morph or not was 60.4%, corresponding to a sensitivity
of d ′ = 0.53 and bias of β = 0.92 (cf. Experiment 2a:
54.1%, d ′ = 0.21, β = 0.98; Table 1). The accuracy
for original/morphed faces was 54.6%/66.2%. Average
accuracy was only slightly higher at the higher levels
of confidence (4–6) than the lower levels (1–3) of
confidence, suggesting participants had a limited ability
to calibrate their response and confidence (Figure 7
[Experiment 2b]).

Discussion
The results of this experiment indicate that raising

awareness of morphing artifacts and providing
feedback led to only a small improvement in
participants’ accuracy in determining whether a facial
image has been morphed or not. Even with this training,
participants struggled to reliably identify a face as
having been morphed relative to an unknown face.

Taken together, the results of our five experiments
suggest that people are unable to reliably detect face
morphing, neither by distinguishing identity nor by
classifying a face as having been morphed. Next we
examine whether computational approaches can be
used to detect face morphing.

Discussion: Experiments 1 and 2
Crowd wisdom

To determine whether groups are more accurate
in the detection of face morphing than individual

decision makers, we next examined whether there is
“wisdom in the crowd” (Hastie & Kameda, 2005). For
each experiment, we aggregated the 100 participant
responses for each of the 108 trials using a majority
rules criterion.

Using this crowd-based approach in Experiment 1a
resulted in an average accuracy of 53.8% for identifying
a facial image as the same person or not, which was
not reliably different from the average of individual
responses (59.2%). In Experiment 1b, however, average
accuracy using the crowd-based approach was 16.4%
higher than the averaged individual responses (97.2%
vs. 80.8%, 95% CI [12.7%, 20.1%]). In addition, in
Experiment 1c, where participants received training, the
crowd-based approach resulted in an average accuracy
similar to the individual approach (58.3% vs. 59.2%).
The improved accuracy in Experiment 1b suggests that
participants make different mistakes, and so pooling
across multiple responses improves overall accuracy.

In Experiment 2a, accuracy in classifying images
as original or morphs was similar when averaging
individual (54.1%) and crowd (58.4%) responses.
When participants received training and feedback
(Experiment 2b), the crowd-based approach resulted in
an average accuracy 12.2% higher than the individual
approach (60.4% vs. 72.6%, 95% CI [6.1%, 18.4%]).
Without any training (Experiment 2a), participants
typically made the same mistakes, but having received
training (Experiment 2b), there was greater variation in
which of the trials participants responded correctly on.
This result suggests that with training and feedback,
the crowd becomes wiser.

It is possible that aggregating across identity
verification decisions of multiple passport officers
might lead to greater accuracy in real-world passport
issuance. Of course, this additional effort might not
be feasible, and we also note that when people know
a decision is group based, it can lead to social loafing
(Hastie & Kameda, 2005).

Computational identification
The results of Experiments 1a and 1c show that

participants’ ability to determine whether two facial
images, one original and one morphed, are of the same
person or not is limited. We next examine whether
computational techniques can perform this task.
A standard convolutional neural network (Parkhi
et al., 2015) was used to extract a low-dimensional,
perceptually meaningful (Tariq et al., 2018; Zhang
et al., 2018) representation of each face in our data
set of 108 face pairs and their corresponding midway
morph. This is the same VGG representation used
earlier to determine the similarity between two faces
and to compute the midway morph.
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Figure 8. Receiver-operating-characteristic curves for (a) same individuals (true positive) and different individuals and their midway
morph (false positive). (b) Same individuals (true positive) and different individuals (false positive).

For each of the 54 pairs of faces of the same
individual taken at different times (h and h̃), the
similarity between these faces was measured as the
Euclidean distance between the VGG representation
of the two original faces. Similarly, the distance was
computed between the VGG representation for each of
the 54 pairs of different individuals ( f and g) and their
midway morph (mfg).

Shown in Figure 8(a) is the receiver operating
characteristic (ROC) curve plotted as the true-positive
rate (correctly identifying the same individual) as
a function of the false-positive rate (incorrectly
identifying an individual and their midway morph as
the same). The area under the curve (AUC) is 0.38,
where a chance classifier would have an AUC of 0.5,
showing that even a state-of-the-art, machine-learning,
face recognition algorithm is not able to perform
this identification task. We note that, in a flipped
classifier, this result effectively corresponds to an AUC
of 0.62, still illustrating a fairly limited performance.
Interestingly, however, the below-chance AUC result
indicates that a morphed face is highly similar to
the source faces, a finding that we draw on in the
subsequent Computational Classification section.

We next evaluate if this computational approach can
perform the task of face recognition outside of the
issue of morphing (as in Experiment 1b). The distance
was computed between the VGG representation for
each of the 54 pairs of faces of two different individuals
( f and g). Shown in Figure 8b is the ROC for this
task, now with an AUC of 0.90. Although VGG-based
facial recognition is generally effective in distinguishing
between different individuals, it struggles to distinguish
between morphed faces, reinforcing just how difficult
this task is.

Facial recognition systems have been shown to
perform worse at recognizing faces of women and
Black individuals (Klare et al., 2012; Buolamwini
& Gebru, 2018). We next examined whether these
biases were present when using the VGG-based face
recognition algorithm to perform our identification
task. When identifying pairs of faces of the same
individual taken at different times (h and h̃) and the
54 pairs of different individuals ( f and g) and their
midway morph (mfg), the face recognition algorithm
performed worse on Black faces (AUC = 0.00) than
East Asian (AUC = 0.29), South Asian (AUC = 0.61),
or White (AUC = 0.29) faces. The algorithm performed
slightly better for women (AUC = 0.43) than for men
(AUC = 0.33). In addition, in the absence of morph
faces, the VGG-based facial recognition performed
worse for Black faces (AUC = 0.75) than for the other
races (all AUCs > 0.90). There was no difference in face
recognition performance for women and men.

Computational classification
In the previous sections, we saw that a midway morph

between two different people looks similar enough to
each person so as to cause consistent misidentification
by human participants and state-of-the-art facial
recognition. In this section, we attempt to leverage the
unusual similarity between two photos of a person as a
possible indication that one of the photos is a midway
morph.

Consider, for example, the use of a midway morph
in identity theft in which person f is attempting to
steal person g’s identity and submits a request for a
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Figure 9. Photometric and geometric measurements between
two distinct images of the same individual (original) and an
image of an individual and a midway morph to another
individual (morph). A lower geometric measure corresponds to
a higher degree of similarity, and a higher photometric measure
corresponds to a higher degree of similarity.

new passport with a midway morph photo mfg. The
passport office will compare the original photo g
with the new photo mfg to make sure that it is the
same person. Per our earlier results, and assuming a
high-quality morph, the faces will look similar enough
to match. The two photos g and mfg, however, will
share significant geometric and photometric properties
because the morphed image mfg is composed of
one half of the original image g, as compared to a
completely new photo of person g, which will almost
certainly differ somewhat in terms of head pose, facial
expression, lighting, and so on.

We hypothesize, therefore, that a pair of images of
an individual, one of which is a morph, will be more
geometrically and photometrically similar than two
separately photographed images of an individual. Each
of the original images was registered to the morphed
image using a standard local and nonrigid registration
(using MATLAB’s imregdemons), parameterized
as a local two-dimensional motion field (vx, vy). The
magnitude of the geometric distortion between two
images is quantified as the average magnitude of the
gradient of the underlying motion field (

√
v2
x + v2

y).
Once aligned, the photometric similarity between two
images is quantified as the mutual information (Cover
& Thomas, 2012) on the luminance channel.

Shown in Figure 9 are the geometric and photometric
measurements for morphed (filled red circles) and
original (open blue circles) images. Each original data
point corresponds to the average difference h aligned
to h̃, and h̃ aligned to h, where h and h̃ correspond to

distinct images of the same person. Each morphed data
point corresponds to the average difference between
f aligned to mfg and g aligned to mfg, where f and g
correspond to images of different people. The morphed
images are distinctly more photometrically similar
(having a higher luminance mutual information) and
more geometrically similar (having a smaller warp-field
gradient). This, again, is as it should be given how the
morphed image is created.

Because all of the images in our data set are
passport-style photos, this unusually high similarity
among the morphed images is not simply an artifact of
the style of the photographs. This unusual similarity
can, therefore, be used as a cue to flag potentially
suspiciously similar images.

General discussion
We have examined both perceptual and

computational approaches for detecting face morphing.
Across five perceptual studies, human participants
showed a limited ability to detect face morphing, both
by distinguishing identity (Experiment 1a) and by
classifying a morphed face (Experiment 2a). Training
did not significantly improve performance in the
identification task (Experiment 1c), and training and
feedback resulted in only a small improvement in
performance in the classification task (Experiment 2b).
Additionally, we found that even a state-of-the-art,
machine-learning, face recognition algorithm could not
reliably distinguish one person from a midway morph.
We did, however, identify a computational technique to
leverage the unusual similarity between a pair of images
when one is a midway morph. This technique could be
implemented at passport issuance to help in flagging
suspicious applications for further processing.

Our results are in line with previous work showing
that human ability to detect face morphing is limited
(Robertson et al., 2017; Robertson et al., 2018; Kramer
et al., 2019). Our results, showing that training
participants to detect morphing artifacts has a limited
effect on performance when using high-quality face
morphs, are concordant with the findings of Kramer
et al. (2019). Although facial masking has been found
to improve performance in unfamiliar face matching
tasks (Kemp et al., 2016), we note that this strategy
did not have a reliable effect on participants’ ability to
distinguish identity in morphed faces; it did, however,
reduce participants’ bias to respond that two faces
were of the same individual. That said, our approach
involved masking the face to only reveal certain facial
features (eyes, nose, and mouth) and does not provide
a direct replication of the method used in previous
research where the outer contour of the face was
hidden (Kemp et al., 2016). Future investigations
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might examine the effectiveness of a training approach
that, rather than masking the faces, involves either
removing the outer contour (Kemp et al., 2016) or
asking participants to rate the similarity of certain
facial features (Towler et al., 2017).

In the absence of morphing (Experiment 1b),
there is wisdom in the crowd not seen in individual
responses. One possible reason for this crowd wisdom
is that there are both individual and intraindividual
differences in face-processing strategies and abilities
(Hong & Page, 2004; Webster et al., 2004; Bindemann
et al., 2012; White et al., 2013). According to the
diagnostic feature-detection hypothesis, people’s
ability to accurately distinguish between two faces
varies according to the extent to which they rely on
diagnostic features (features that differ across faces)
or nondiagnostic features (features that appear the
same across faces) (Gibson, 1969; Mundy et al., 2007;
Wixted & Mickes, 2014). Even when participants
consider and compare specific features, the individual
reliance placed on the most diagnostic features during
the task varies across individuals, thereby creating
differences in per trial accuracy. Moreover, individual
decision-making is affected by context (Çelen et al.,
2004; Kremer et al., 2014). In our case, participants’
sequential decision-making might be influenced by
factors carrying over from the previous trial. In other
words, it is possible that the ability to use diagnostic
facial features (signal) and ignore the similar features
(noise) varies not only across individuals but also that
there is variation in how an individual applies this
strategy over time. It is likely that these differences
in decision-making are also influenced by contextual
factors, including an effect of feedback (Kremer et al.,
2014), which might help to explain why there is wisdom
in the crowd in Experiment 2b but not in 2a. It will be
interesting to explore morph recognition and detection
by experts in face perception (e.g., trained forensic
examiners) and superrecognizers, who perhaps rely
more on diagnostic than nondiagnostic facial features
(Carey, 1992; Furl et al., 2002; Hills & Lewis, 2011;
Kemp et al., 2016; Towler et al., 2017; Phillips, 2018).

In the real world, fraudsters attempting to use
morphed facial images to commit identity fraud are
likely to try to find the most similar-looking accomplice
and take the time to generate a high-quality morph
with minimal visible artifacts. It seems, therefore, that
the possible advantage of training passport officers
to look for certain artifacts may be of limited value.
As technological advances allow for increasingly more
sophisticated face morphs, it seems reasonable to not
rely entirely on human review and move toward other
interventions.

Given the difficulty of detecting face morphing
paired with the threat posed by not detecting this type
of fraud, it is not surprising that calls have been made to
modify the passport issuance process. Specifically, some
researchers have suggested that the best solution to the

face-morphing problem is to have government officials
acquire photos at the place of issuance (Ferrara et al.,
2014). In fact, reports suggest that Germany might
already be preparing to take such a move (Huggler,
2020). Although this would solve the problem of digital
face morphing, it is likely to be a costly change and still
does not deal with the issue of physical identity fraud
techniques, such as the use of hyperrealistic silicon
masks (Sanders, 2017).

Concluding on a more hopeful note, in the current
article, we have identified one limitation of the
morphing process that can be leveraged as a way to
flag suspicious images at the issuance stage using a
computational classification technique. The proposed
technique is based on the assumption that the morphed
facial image submitted with an application for a new
identity document has been generated using the original
facial image that the issuance office has on record
with some unknown face. Using the image that is
stored on record results in the newly submitted face
morph image being too similar—photometrically and
geometrically—to the image on record than would be
found in photos of the same individual taken at two
different times. This technique is low cost and easy
to implement for flagging suspicious applications for
further processing. Given the high error rates of human
participants and the limited effect of training, this
and other computational approaches might provide a
more reliable and practical method for detecting face
morphing.

Keywords: facial morphing, morph detection, identity
fraud
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