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Abstract: Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design
scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align
with those found in the natural tissue. Combining these aspects poses challenges for material and
construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several
of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into
a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore,
silk-based materials are versatile candidates for biomedical applications in the field of hard tissue
engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and
how to find the balance between sufficient material stiffness upon mineralization and cell survival
upon attachment as well as nutrient supply.

Keywords: silk fibroin; silk spidroin; biomineralization; composite materials; bone; teeth; carti-
lage; tendon

1. Introduction

The development of hard tissue in the human body is a process of mineral forma-
tion by cellular metabolism, named biomineralization, yielding support structures of the
skeleton and neighboring tissues such as tendon and cartilage or functional tissues such
as teeth [1]. There are several different mineralization pathways, but they are not yet
fully explored [2]. Generally, mineral formation in tissues needs to be highly controlled to
prevent local over-mineralization, which could be pathogenic [2]. The high process control
of biomineralization is provided by tissue-specific cells and biopolymers such as proteins,
which are templating and nucleating mineral formation [3]. Therefore, biogenic crystals
often exhibit a different morphology than their geogenic counterpart [4].

Tissue-specific cells are taking a crucial role in biomineralization as they trigger min-
eral nucleation and growth upon secretion of so-called non-collagenous proteins [2,5].
The main proteinous material (90 wt.%) of hard tissues is collagen type I as flexible
filler in this composite material, while the non-collagenous proteins cover the remain-
ing 10 wt.% [2]. Collagen is not mineralized on its own, but collagen fibrils can interact
with non-collagenous proteins, which induce mineralization from saturated media at the
gap regions of the stacked triple-helical collagen fibrils [2,5]. The phosphorylated, non-
collagenous proteins of the so-called SIBLING family (Small Integrin-Binding Ligand,
N-Linked Glycoprotein) include bone sialoprotein and osteopontin in bone-related tissues,
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whereas in teeth dentin and cementum, dentin matrix protein 1 and dentin phosphoryn
are present. These proteins provide two functions, as on the one hand, they can bind at
specific locations to the structural collagen scaffold and on the other hand, they can bind
ions due to their, in most cases, highly charged nature with repetitive motifs of glutamic or
aspartic acid residues [5]. This local charge density allows to accumulate mineral ions and,
thereby, to initiate crystal nucleation, when the ion density reaches a critical concentration,
which then triggers the further mineralization processes in mineralized tissues, such as
bone, teeth, cartilage and tendon [5].

Further, mineralization is driven by tissue-related osteoblasts (in bone and tendon),
odontoblasts (in teeth) and chondrocytes (in cartilage) upon the accumulation of ions from
the surrounding environment in mostly separated membrane vesicles [6]. With ongoing
mineralization, the extracellular matrix around these cells densifies, and nutrients and
oxygen are increasingly provided only passively by diffusion until easy nutrient supply is
finally prevented. In the case of bone and neighboring tissue, osteoblasts differentiate into
osteocytes [1]. Osteoclasts, on the other hand, are constantly remodeling fully mineralized
tissue to guarantee healthy and reconstructed bone [7].

For traditional and engineering approaches to reconstruct hard tissues, natural pro-
cesses have to be understood. Further, as bone represents the most abundant fully mineral-
ized tissue, a majority of tissue engineering approaches focus on respective reconstructive
solutions. Bone defects such as fractures easily occur, for example due to critical non-
physiologically high loads. Shortly after fracture, inflammatory responses are initiated at
the defect site, followed by a cell-induced regeneration cascade for initial callus formation,
which is then remodeled to form new bone. With progressing age, bones become increas-
ingly brittle due to changes in the cellular metabolism of osteoblast cells, which is indicated
by 10–40 times lower strain rates until breakage. One possible reason might be remodeling
cycles, which affect the mineral phase and allow more micro-cracking, finally leading to
bone failure [8]. Once fractured, bone defects can be detected by X-raying of the defect site.
New techniques such as ultrasonography for detecting bone fractures are more sensitive
than classical radiographs, which are typically used to trace fractures of long bones. Sono-
graphic methods provide the advantage of no radiation exposure, lower cost and wider
availability in non-hospitals. A study among German general practitioners showed that
most articulated sono-methods are inferior to classical X-ray [9]. In clinical procedures, the
defect site is often bridged and stabilized with bone platelets or screws to stabilize material
in place during the regeneration process [10]. In order to further support bone healing or
large defects with bone loss, hard tissue engineering methods are increasingly used. In
contrast to the self-regenerating ability of bone tissue, other mineralized tissues rely more
on artificial replacement than supportive healing.

In the following, approaches for hard tissue engineering, with the focus on bone, and
some examples including teeth, cartilage and tendon, based on silk scaffolds are discussed
in detail.

2. Tissue Engineering Approaches

Defined in 1993, tissue engineering is the combination of principles of engineering
and life sciences with the goal of developing biological substitutes that are able to restore,
maintain or improve biological tissue function or a whole organ [11,12]. While one part of
this interdisciplinary field deals with the generation of 3D models for the development of
therapies, its main potential lies in regenerative medicine. With the goal of replacing tissues
and organs damaged by trauma, disease or age, the ever-extending field of TERM (tissue
engineering and regenerative medicine) includes basic and advanced cell and stem cell bi-
ology, scaffold material research and various fabrication and processing techniques [13,14].
The classical TERM approach to overcome drawbacks of autografts or allografts consists of
scaffold-based top-down strategies (Figure 1). Such engineered tissues are typically created
by manufacturing biodegradable polymeric scaffolds on which cells are seeded. During
cultivation, and in some cases stimulated by perfusion, growth factors or mechanical
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cues, cells dynamically remodel and replace the scaffold through degradation and new
extracellular matrix (ECM) deposition [15]. Traditionally, three-dimensional scaffolds are
manufactured by employing techniques such as freeze-drying, leaching of particles or salt,
chemical or gas foaming and thermally induced phase separation [16–19]. While these
processes allow partial control over the scaffold properties, there are severe restrictions to
generate precise micro-architectures, including pore size, geometry and connectivity.
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lation. This technique is called tissue engineering. Bottom-up approaches use cells and raw materi-
als simultaneously to build larger constructs, which are then maturated. This technique is called 
biofabrication. 
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tissue right from the beginning, as well as the possibility to generate constructs made from 
different types of assemblies, leading to various cell types and materials organized hier-
archically within the resulting construct. Different assemblies can be divided into two 
main categories, mostly scaffold-free cell-rich and cell-biomaterial assemblies. Adhesive 
surfaces, possibly in combination with functionalized and/or non-adhesive surfaces, are 
used to generate monolayer cell sheets by cultivation and subsequent detachment of the 
grown layer. Stacking, rolling and folding of these monolayer sheets is the basis to create 
combined three-dimensional assemblies, including multicellular and pre-vascularized 
constructs [23,24]. By using cellular spheroids, often made of mesenchymal stem cells, as 
scaffold-free building blocks, processes like cell-cell and cell-ECM interactions, differenti-
ation and fusion are recapitulated [25,26]. In addition, genetic or chemical engineering of 
the cell surface allows control over cellular behavior and assembly into higher-order struc-
tures [27,28]. Inclusion of biological materials is a crucial part of bottom-up tissue engi-
neering strategies, such as the addition of biocompatible layers within cellular sheets, 
functionalized with nucleic acids, viruses, enzymes and structural proteins, as well as 
peptides and polymers. To increase structural assembly within cellular spheroids or hy-
drogels, fibers and particles can be incorporated. These materials can add structural sup-
port and guidance, promote and/or control the assembly of building blocks and stimulate 
cellular behavior in general [21,29,30]. For example, a silk fibroin derived hydrogel was 
used as a scaffold for articular cartilage tissue engineering, and integrated poly(lactid-co-
glycolid) nanoparticles were used to simultaneously deliver two growth factors, resulting 
in beneficial effects on proliferation and differentiation of dental pulp stem cells [31]. On 

Figure 1. Schematic illustration of engineering approaches to fabricate tissue. In top-down strategies,
a scaffold is produced, followed by cell seeding and/or addition of factors for cellular stimulation.
This technique is called tissue engineering. Bottom-up approaches use cells and raw materials
simultaneously to build larger constructs, which are then maturated. This technique is called
biofabrication.

With the rise of additive manufacturing, more techniques are available to create
scaffolds for tissue engineering, overcoming previous restrictions. With an emphasis on the
regeneration of bone tissue, four major layer-by-layer methods have been reviewed recently
by Madrid et al. [20]. A variety of natural and synthetic polymers, as well as ceramics and
bioceramics and even metals can be processed using stereolithography (SLA), selective laser
sintering (SLS), fused deposition modeling (FDM) and three-dimensional printing (3DP).
These techniques generally allow for more accurate scaffolds with better resolution. The
specific processes, including laser and heat treatment, nevertheless tremendously restrict
the choice of material [20]. Since additive manufacturing is based on computer-aided-
design, structures that are more sophisticated can be created, including patient-specific
scaffolds with the help of computer tomography. While these top-down approaches allow
for good reproduction of the macroscopic structures of desired tissues and organs, the
complexity, micro-arrangement and heterogeneity of natural tissues, including different cell
types and materials, is far beyond what is found in such artificial acellular scaffolds [15,21].

To overcome this limitation, a multitude of bottom-up approaches has been developed
in recent years. In contrast to traditional top-down approaches, where first the scaffold is
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produced, followed by seeding with cells, in bottom-up approaches, cells are used from the
very beginning in combination with materials to build up tissue constructs step-by-step
(i.e., bottom-up) (Figure 1). Biocompatible materials in various morphologies, like particles,
one-dimensional fibers, two-dimensional films and three-dimensional hydrogels, have been
used, alongside cells, as building blocks to generate assemblies at the nano- or micro-scale.
Further self- or directed-assembly leads to engineered macroscopic three-dimensional tissue
constructs. A comprehensive review examining these advanced bottom-up approaches has
recently been published by Gaspar et al. [21,22].

Benefits of these strategies include the involvement of cells in the development of
the tissue right from the beginning, as well as the possibility to generate constructs made
from different types of assemblies, leading to various cell types and materials organized
hierarchically within the resulting construct. Different assemblies can be divided into two
main categories, mostly scaffold-free cell-rich and cell-biomaterial assemblies. Adhesive
surfaces, possibly in combination with functionalized and/or non-adhesive surfaces, are
used to generate monolayer cell sheets by cultivation and subsequent detachment of the
grown layer. Stacking, rolling and folding of these monolayer sheets is the basis to create
combined three-dimensional assemblies, including multicellular and pre-vascularized
constructs [23,24]. By using cellular spheroids, often made of mesenchymal stem cells, as
scaffold-free building blocks, processes like cell-cell and cell-ECM interactions, differen-
tiation and fusion are recapitulated [25,26]. In addition, genetic or chemical engineering
of the cell surface allows control over cellular behavior and assembly into higher-order
structures [27,28]. Inclusion of biological materials is a crucial part of bottom-up tissue
engineering strategies, such as the addition of biocompatible layers within cellular sheets,
functionalized with nucleic acids, viruses, enzymes and structural proteins, as well as pep-
tides and polymers. To increase structural assembly within cellular spheroids or hydrogels,
fibers and particles can be incorporated. These materials can add structural support and
guidance, promote and/or control the assembly of building blocks and stimulate cellular
behavior in general [21,29,30]. For example, a silk fibroin derived hydrogel was used as a
scaffold for articular cartilage tissue engineering, and integrated poly(lactid-co-glycolid)
nanoparticles were used to simultaneously deliver two growth factors, resulting in benefi-
cial effects on proliferation and differentiation of dental pulp stem cells [31]. On the way
to tissue or organ replacement, such multicellular and multimaterial assemblies are used
to generate vascularized multicomponent constructs or spatially organized multiblock
hydrogels [21].

In the context of advanced bottom-up tissue engineering approaches, a new field
called biofabrication has been reviewed recently by Groll et al. [32]. Biofabrication mainly,
but not solely, uses additive manufacturing techniques to process bottom-up building
blocks into hierarchically structured cell-biomaterial constructs. Biofabrication describes
the automated generation of biologically functional constructs through bioprinting, mean-
ing the direct spatial arrangement of cells, materials and/or factors, and through the
automated assembly of cell-containing building blocks, so-called bioassembly. In both
cases, in vitro maturation and or fusion of the products is a crucial step before obtaining a
tissue equivalent for implantation or pharmaceutical screening [32]. Relevant technologies
within biofabrication have been recently reviewed by Moroni et al. [33]. With the possibility
of simultaneous deposition of cells and material in an additive manufacturing process,
bioplotting, ink-jet bioprinting and valve-jet bioprinting are major biofabrication tools for
bottom-up tissue engineering and regenerative medicine. Formulations of materials, cells
and biological molecules, so-called bioinks, are processed using these technologies. Bioplot-
ting, also called robotic dispensing or extrusion bioprinting, dispenses continuous filaments
of hydrogel materials or bioinks through a nozzle (piston-, screw-, or pneumatic-driven).
Droplets are ejected over a nozzle head, controlled either by piezo- and thermal-actuators
(ink-jet) or by solenoid micro-valves (valve-jet) [32,33].

All approaches, whether they include manufacturing a scaffold followed by cell-
seeding or bioprinting/bioassembly, have strict requirements on the used material. Phys-
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ical and mechanical properties need to be suitable for processing using the respective
technology on the one hand and ensure cellular survival and proliferation on the other.
The material also plays an important role in guiding specific cellular development and
maturation, for example, by surface functionalization, the inclusion of biological molecules
or the tuning of degradation behavior. With the goal of implantation of constructs, bio-
compatibility, meaning the performance of intended purpose without evoking an immune
response, is absolutely required and can be enhanced e.g., upon introduction of nanopar-
ticles [34–36]. Due to their inherent biological and chemical similarities to native tissue,
natural polymers, natural polymer-based composites and bioceramics are of great interest
for tissue engineering applications. Due to the high load-bearing requirement, hard tissue
engineering approaches so far mainly focus on top-down strategies using porous scaffolds
for cell seeding [37,38].

3. Hard Tissue Engineering
3.1. State of the Art

After diagnosis of a bone defect, the respective site is commonly deprived from ex-
tensive movement as both bone sides need to reconnect during regeneration in a correct
manner, otherwise malfunction might be the result of improper healing. The origin of the
cells, which are taking part in bone repair, were found to influence the healing progress.
The cells present in bone encompass, for example, stem cells during bone healing or
endothelial cells building vasculature, but also pre-osteoblasts, which differentiate into
osteocytes during bone formation and maturation as described above. Osteoclasts are
undertaking the function of degradation, which is a continuously ongoing process to
maintain healthy bone and allow for expansion of the skeleton during the development
of children [39]. When artificially delivered into bone defects, neural crest-derived frontal
bone and mesoderm-derived parietal bone cells from newborn rats were found to exhibit
both similar bone regeneration ability, although the mesodermal cells showed a potentially
higher bone regeneration efficiency in vitro [40]. MC3T3 E1 pre-osteoblast cells were posed
in hydroxyapatite microcracks similar to bone fractures and found to underlie initial apop-
tosis at a region of 200 nm around the cracks [41]. Besides fixation, flexoelectricity, meaning
the ability to generate electricity under pressure, was found crucial for bone healing [41].
Exposed to strain such as physical activity during bone healing, bone regeneration was
increased, and so rehabilitation measures actively contributed to tissue regeneration [42].
With near-infrared fluorescent probes [43], bone repair could be imaged concerningin vitro
differentiation of human mesenchymal stem cells into osteoblasts. A cyclic peptide coupled
with a fluorophore was used to bind to α5β1 integrin as an osteoblast-specific marker.
A second probe was coupled with the drug pamidronate to a fluorescent gold nanoclus-
ter, where the drug bound specifically to hydroxyapatite and allowed for monitoring
osteogenesis [43].

Loss of bone material due to cancer or other pathogenic relations such as osteoporosis
is often not recovered spontaneously and needs tissue replacement. Autologous bone
grafts are still considered as the gold standard transplant due to facilitated integration at
the defect site. As concerns about donor availability, healing and disease transmission arise,
artificial bone substitutes become increasingly attractive to overcome these obstacles [39].
Therefore, titanium implants are state of the art as they are biologically inert materials,
which offer high load transmission. Unfortunately, these foreign body materials are rarely
fully integrated into the surrounding tissue and might become loose; therefore, surgical
rearrangement might be necessary. One major reason for this issue is a bacterial infection,
especially concerning dental implants with extensive biofilm formation [34]. To improve in-
tegration, for example titanium alloy (Ti6Al4V) implants with TiO2 nanotubes were coated
with silk fibroin, which was found to enhance osteoconductive and osteogenic properties
in case of bone implant performance [44]. Bone, cell and implant interaction was found to
be enhanced for MG63 bone cells and human mesenchymal stem cells, which is beneficial
for implant applicability. Biomimetic minerals for hard tissue engineering, which enhance
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osseointegration, can rely on biosimilars such as calcium sulfate or phosphate ceramics as
synthetic and hydroxyapatite as a naturally occurring form of bone mineral [39]. Building
scaffolds out of these materials can be realized upon melting and fusing individual ceramic
particles using laser sintering at temperatures above 1000 ◦C [45–47]. Utilizing this rapid
prototyping technique, also polymeric carrier materials can be fused at lower temperatures
(about 70–200 ◦C) whilst molding and binding ceramic particles into bionanocomposites
and simultaneously removing the binder [48,49]. With such polymeric binders, 3D extru-
sion and additional sintering of the composite materials is possible, yielding solely the
remaining solid ceramic structures (Figure 2) [50,51].
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Figure 2. Scaffolds containing 50 wt.% hydroxyapatite nanoparticles suspended in poly(vinyl
alcohol) as matrix material. (A) CAD design of a layered scaffold showing porous structures in
the cylinder. Extrusion printed scaffolds after drying and thermal curing in side-view (B(i)) with
higher magnification of a channel pore (B(ii)), and in top view (C(i)) with higher magnification of a
channel (C(ii)), showing individual hydroxyapatite particle agglomerates (C(iii),C(iv)). Reprinted
and adopted with permission from ref. [50]. Copyright 2015 Elsevier.

Further, injectable calcium phosphate cements including ceramics and a curing agent
were invented by Brown and Cho in the 1980ies to fill dental cavities in the first place [52].
As state of the art, synthetic polymeric materials are widely used as matrix materials in
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hard tissue engineering, however, they often cannot complement features of biomaterials
such as non-toxic degradation products and bioactive surfaces for cell adhesion [53].

3.2. Design Criteria and Challenges

It is important that various design criteria and factors have to be taken into account in
tissue engineering approaches to fulfill the requirements of a successful tissue engineering
construct (Figure 3). In the case of hard tissues, besides biological and physico-chemical
cues, also the appropriate mechanics play an important role. In the following, these
aspects are discussed in more detail and illuminated why they can be challenging during
scaffold preparation.
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Concerning the mechanical design, it has to be taken into account that mature bone
has compressive strengths in the order of up to 20 GPa [54], whereas they are far lower
for immature bone, as the mineralization process is still ongoing [55,56]. However, not
only high strength but also flexibility must be provided. Therefore, mostly brittle materials
are not suitable for bone regeneration applications, as the risk of failure is high [8]. It
can be challenging to combine high load-bearing materials with high flexibility, but these
mechanical requirements can be fulfilled in biomaterial matrices applying reinforcing
filler materials such as ceramic particles into composite materials. To gain homogenous
mineralization, it is important that filler and matrix material interact well with each other to
avoid phase separation, which is an additional criterion. Practical hints can be found when
taking a closer look at the natural blueprint: Bone is a composite material [57] with collagen
fibrils (20–30 wt.%) and ceramic particles made of hydroxyapatite (60–70 wt.%) [2]. Besides
composite materials, biomineralization of protein precursor materials can be triggered
in vitro upon immersion in mineralization agents forming calcium phosphate species.
These can for example be single aqueous salt solutions, which are subsequently applied to
the materials [58–60]. More complex mineralization is provided by Simulated Body Fluid, a
model solution at pH 7.4, which was designed to simulate mineralization processes found
during bone formation. Its ion composition and concentration are proximately close to
human blood plasma [61].

Tailoring mechanical properties upon controlled mineralization is highly intercon-
nected with the scaffold’s biological function and vice versa. During mineralization of
tissue, cells play an important role as they secrete non-collagenous proteins with highly lo-
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cated charge [2]. Especially SIBLING proteins [5] are to be mentioned among others, as they
coordinate nucleation, growth and inhibition phase during mineral formation as they accu-
mulate ions from the surrounding intestinal fluids [62]. Further, hydroxyapatite precursor
phases can be accumulated in cell membrane-bound vesicles and released at mineralization
sites [6]. As a result, tissue-specific cell colonization is an additional design cue to mimic
natural tissue in engineered constructs. Its respective challenge is posed not only by cell
adhesion to the surface or in the construct but also to trigger osteoblast lineage in osteoblast
precursor cells or stem cells. Biomineralization and osteogenic differentiation were found to
be highly dependent on matrix stiffness [63]. 2D surfaces of different controllable substrate
stiffness showed the best results for medium stiffness (50–100 kPa), as mineralization was
completed after three weeks. Osteoblast differentiation was directly related to the formed
mineral layer and only indirectly regulated by matrix stiffness [63]. The release of ions
from the material, which is sensed by cells, can also lead to differentiation responses. One
example for such materials is 45S5 Bioglass embedded in silk fibroin/gelatine scaffolds [64].
The bioglass composition comprises SiO2, CaO, Na2O and P2O5, and the ion release profile
triggers osteogenic cell differentiation [65]. For this functionalization, it is important to
control the osmotic balance of the media for cell survival.

Moreover, not only mechanical but also physico-chemical properties of the scaffold
can lead to desired cell differentiation. The design of such cues can be related to binding
sites for cells, growth factors or minerals. Besides cell-specific binding motifs [66], the
integrin binding peptide motif arginyl glycyl aspartic acid (RGD) [67] is universally applied.
The incorporation of this motif can be a challenge when it is not intrinsically provided
by the biomaterial. This can be solved upon genetic engineering of proteins used in the
material or chemical coupling of the motif to the material [68]. Related to the natural
tissue, growth factors such as the most important one, the Transforming Growth Factor
beta (TGF-beta), as well as bone morphogenetic proteins are agreed to have a beneficial
impact on the success of hard tissue engineering scaffolds [69]. The factors can be delivered
via the construct and trigger stem cells towards osteo-differentiation [70]. As a challenge,
their concentration must be maintained [69] at levels confirmed to be active (nM) during
cell cultivation by specific binding, otherwise, scaffolds become depleted fast by diffusion.
Binding sites for ions were discussed above to be provided by non-collagenous proteins
with located charges. Mimics of these proteins can be designed and incorporated into
the scaffold. However, the preparation of hybrid proteins from silk and non-collagenous
proteins can be challenging to gain functional mineral binding sites [71,72].

Taking all these complex requirements into regard, scaffolds must comply not only
with mechanical but also physico-chemical and biological demands to build a successful
hard tissue engineering construct. One crucial role plays the material choice. The named
requirements can be met, for example, with synthetic or natural materials [14]. However,
synthetic materials pose the risk of toxic degradation products during tissue regeneration,
and their biocompatibility is limited [73]. Naturally derived materials avoid these obstacles.
Further, they naturally can provide biological and/or mineral binding sites. However,
disease transmission from donor animal sources and material heterogeneity must be
avoided. Collagen and gelatin are common materials due to their native occurrence in
bone and the presence of biomineralization nucleation sites. Moreover, bone takes a long
time to develop, and the collagen will often degrade before it can be remodeled. Among
artificial natural biomaterials, silk appears to be an attractive material, as it provides non-
toxicity and biodegradability. Further, silk proteins can be produced biotechnologically,
modified and processed into a variety of morphologies [73]. The upcoming sections will
shed light on how silk materials can be used, for example, as matrix materials for bone
tissue engineering.
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4. Silk
4.1. Naturally Derived Silk

Silks are a class of protein fibers spun by arthropods such as fleas, mites, spiders and
silkworms, amongst others. They are based on fibrous proteins containing highly repetitive
amino acid sequences stored in the animal as liquid and transformed into fibers once shear
stress is applied during spinning [74].

Fibers produced by the silkworm Bombyx mori consist of two silk fibroins (SF) and
glue-like (non-silk) proteins named sericins. The fibroin heavy chain consists of a highly
repetitive (12 times) glycine and alanine-rich region and two hydrophilic N- and C-terminal
domains. The fibroin light chain is an arginine- and lysine-rich non-repetitive protein [75].
Upon secretion, both fibroins and a third small glycoprotein, p25, assemble into twin
filaments that represent the inner part of the core-shell structure typical for B. mori silk.
Sericins coat and stick these fibroin filaments together. The structure is completed by an
additional coating with various proteins for the protection of the cocoon [76].

The most commonly studied spider silk is dragline silk made of proteins secreted
from the major ampullate gland, and it consists of multiple proteins, called spidroins. The
overall layout and amino acid composition of these major ampullate spidroins (MaSps) are
similar to the architecture of the fibroin heavy chain. The primary structure (i.e., amino
acid composition) of the core domains, however, is quite different. One spidroin filament is
coated with a thin shell containing other silk proteins, lipids and glycoproteins constituting
a core-shell-structure [77]. While most silk fibers have a high toughness compared to man-
made fibers, spider silk outperforms the others concerning its mechanical properties [75].

Natural spider silk fibers, mostly from female adult Nephila spiders, have been used
as suture threads or processed into scaffolds for neuron guidance, skin repair and bladder
reconstruction [78]. While most spiders exhibit cannibalistic behavior, silkworms can
easily be farmed to harvest their silk in large quantities [79]. Consequently, silk from the
domesticated silkworm B. mori has been extensively characterized and is the main silk
material used in biomedical applications, for example, as sutures and in tissue engineering
and regenerative medicine approaches [38]. To extract fibroin from the harvested cocoons, a
thermochemical treatment is applied, called degumming. This step is particularly important
since it also removes the sericin component from the fibroin fibers, which has been shown
to be problematic by causing immune reactions [80].

4.2. Bioengineered Silk

Advanced tissue engineering approaches cannot only take the physical properties of
the fabricated scaffold into account. Apart from biocompatibility, the degradation rate of
specific scaffolds is highly important. In the best case, the degradation should be identical
to the rate at which new tissue is formed by the cells. When working with B. mori silk fibroin
materials, the degradation behavior can be tuned by the choice of fabrication strategy, for
example, the use of different solvents during processing, or by the incorporation of enzyme-
sensitive peptides or degradation-promoting supplements [81]. To mimic the complexity
of natural tissue, engineering approaches are destined to use multiple materials, fabricated
in various morphology, together with cells and biologicals to carry out specific functions.
Genetic engineering is further used to extend the availability and functionality of different
silks for tissue engineering applications. Nagano et al. added a poly(glutamic acid) domain
to the repetitive amino acid sequence of B. mori fibroin to incorporate calcium-binding sites
for mineralization [82]. In another study, Saotome et al. improved revascularization by
introducing the vascular endothelial growth factor and the RGD-cell adhesion motif into
the silk fibroin heavy chain of transgenic B. mori silkworms [83].

The majority of recombinant spider silk proteins for biomedical applications is pro-
duced in the heterologous expression system Escherichia coli. Therefore, the natural silk
sequence is determined first and then engineered to be produced in the host organism.
After transformation and production, protein purification yields recombinant spider silk
proteins [78]. Most recombinant sequences are based on proteins of the major ampullate
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silks from either Nephila clavipes or Araneus diadematus spiders [84]. For example, a chimeric
protein was genetically engineered containing a consensus sequence from N. clavipes’
dragline silk fused to the carboxyl-terminal domain of the dentin matrix protein 1 [85]. In
another work, Gomes et al. created a fusion protein by combining a consensus sequence
from N. clavipes’ dragline silk with the complete sequence of bone sialoprotein for im-
proved cell attachment and deposition of calcium phosphate [71]. Cellular adhesion and
proliferation were enhanced on materials made of an A. diadematus derived recombinant
spider silk protein fused with the cell adhesion motif RGD [68]. Alternatively, mineral- and
collagen-binding motifs were introduced to this protein for materials applications at the
tendon-bone interface [72].

4.3. Silk-Based Morphologies

Naturally derived or bioengineered silk proteins can be processed into various mor-
phologies. B. mori fibroin films are obtained by dissolving the proteins in aqueous lithium
bromide solutions and dialysis against water, followed by film casting. To obtain insoluble
films, they can be treated with a mixture of water and methanol [86,87]. Similarly, recombi-
nant spider silk proteins are processed into films by dissolving them in the organic solvent
hexafluoroisopropanol (HFIP), followed by casting and post-treatment with isopropanol or
methanol [88,89].

To imitate the natural fibrous ECM more closely for tissue engineering applications,
non-woven mats containing fibroin or spider silk fibers have been produced using elec-
trospinning. The technique constantly evolved to gain more control over the process and
outcome. Traditionally, B. mori fibroin is dissolved in organic solvents like HFIP, hexaflu-
oroacetone (HFA) or formic acid and spun by applying voltages between 2 kV to 30 kV.
Non-woven mats containing fibers with diameters in the low nanometer range up to one
micrometer were generated with this set-up [90,91]. In a recent work by Keirouz et al. [92],
composite fibers were spun using nozzle-free electrospinning. DeSimone et al. [93] de-
veloped an all aqueous electrospinning process for recombinant spider silk proteins. The
elimination of harsh processing conditions led to the conformational stability of biological
components throughout spinning and posttreatment, promising the inclusion of sen-
sitive biological components for tissue engineering applications [93]. Upon blending
poly(caprolactone) (PCL) with poly(glycerol sebacate) and silk fibroin, also the hydrophilic-
ity of the non-woven mats could be increased, which is beneficial for tissue engineering
applications [94].

Nano- and microparticles are used in tissue engineering within three-dimensional scaf-
folds, e.g., to introduce biologically or chemically active factors in constructs or to increase
the mechanical stability. Silk particles can be produced by salting-out with potassium
phosphate. Tuning protein concentration and mixing intensity, particles in the size range
between 150 nm and 10 µm can be fabricated [95,96]. Fibroin particles with a diameter
of around 6 µm can also be produced by chopping and wet-milling B. mori fibers, while
even smaller particles, down to 200 nm, were produced using ethanol precipitation and
freezing [97,98]. Through well-suited loading and release properties for various substances,
silk particles can be applied as drug carriers. For example, a human recombinant bone
morphogenic protein has been successfully encapsulated in silk fibroin particles allow-
ing sustained delivery thereof in bone tissue engineering approaches [69]. Furthermore,
the recombinant nature of spider silk proteins allowed genetic modification for covalent,
triggerable substance delivery systems [99].

For top-down tissue engineering approaches, porous three-dimensional structures
offer adherence points and mechanical stability for cells, and pores facilitate nutrient,
oxygen and waste transport. Foaming of silk fibroin solutions with varying nitrous oxide
pressure and protein concentration led to scaffolds with pore sizes in the range between
100 and 400 µm [100]. Pore sizes below 100 µm were generated by increasing the protein
concentration from 5 wt.% up to 12 wt.%, followed by freeze-drying and immersion in
methanol [101]. Recombinant spider silk proteins have been processed into scaffolds with
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pores sizes of around 100 µm by dissolving the protein in HFIP and using different sized
salt crystals as porogens [102].

Hydrogels are hydrophilic polymer networks, physically or chemically cross-linked,
that can absorb water up to thousands of times their dry weight [103]. Recombinant spider
silk proteins form hydrogels through chain entanglement, which can be printed using
dispense plotting at room temperature while supporting encapsulated cells [104]. Due to
unfavorable physical properties, like low viscosity, hydrogels made of B. mori silk fibroin
are less suitable for bioprinting applications without additives. Here, strategies to blend the
material with other (bio)polymers to enhance printability have been applied. For example,
Chameettachal et al. successfully bioprinted fibroin-gelatin-blends using dispense plotting
at room temperature [105].

5. Silk-Based Hard Tissue Engineering

The following chapter summarizes recent approaches in silk-based hard tissue engi-
neering, and in Table 1, various examples are listed. Upon providing multiple examples
for hard tissue engineering approaches based on silk, the adaptability and compatibility of
silk materials are shown.

Table 1. Overview of silk-based hard tissue engineering approaches.

Mineralization Silk Source Filler
Materials/Additives

Morphology/Fabrication
Technique Cell Types Biocompatibility

Study
Target
Tissue

non-
mineralized

Bombyx mori silk
fibroin [106] glycerol, PEG 2D film casting human dermal

fibroblasts in vitro bone

– Bombyx mori silk
fibroin [107] – 3D porous

scaffold/lyophilization

human adipose
mesenchymal stem

cells

in vitro and
in vivo in rat

calvarial bone
model

bone

– Bombyx mori silk
fibroin [108]

bacterial
nanocellulose;

photo-crosslinker

3D hydrogels/3D
printing

mouse lung
fibroblasts in vitro bone

– Bombyx mori silk
fibroin [109] collagen I

3D scaffold with
aligned or knitted

fibers/lyophilization

rabbit bone marrow
stem cells

in vitro and
in vivo in rotator
cuff rabbit model

tendon-
to-bone

transition

biomineralized recombinant
spider silk [72] – 2D film casting mouse

pre-osteoblasts in vitro
tendon-
to-bone

transition

–
Cupiennius salei

spider silk
fibers [110]

– 2.5D fibers/naturally
harvested – – bone

pre-
mineralized

materials

Bombyx mori silk
fibroin [111] alumina nanoparticles 3D porous

scaffold/lyophilization

rabbit
adipose-derived

stem cells
in vitro bone

–
Bombyx mori silk

fibroin, soy
protein [112]

graphene oxide,
β-tricalcium
phosphate

3D porous
scaffold/lyophilization

rat bone marrow
stem cells in vitro bone

– Bombyx mori silk
fibroin [113]

graphene oxide,
nano-hydroxyapatite

3D porous
scaffold/lyophilization

bone marrow stem
cells, human

umbilical vein
endothelial cells

(HUVECs)

in vitro bone, vas-
culature

– Bombyx mori silk
fibroin [114]

doped β-tricalcium
phosphate,
crosslinker

3D porous
scaffold/lyophilization

human osteoblasts,
human articular

chondrocytes
in vitro bone,

cartilage

– Bombyx mori silk
fibroin [115] – 3D porous sponges/salt

leaching

stem cells from
human exfoliated
deciduous teeth

in vitro teeth

5.1. Bone Tissue Engineering

Among the recent approaches in hard tissue engineering for various tissue types
(bone, tendon, cartilage), three types of scaffold materials are used. On the one hand,
there are studies based on non-mineralized scaffolds, which were examined concerning
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their biocompatibility and properties for bone repair without pre-mineralization. Others
were mineralized upon incubation with cells or mineralization agents. In the third set-
up, inorganic components such as bioceramics or minerals were directly added to the
fabrication process to yield composite scaffolds. The following section is describing these
three types in more detail, as well as the morphology of the underlying silk scaffolds.

5.1.1. Non-Mineralized Scaffolds

Scaffolds can be fabricated in different dimensions, from 1D fibers, to 2D films to 3D
printed scaffolds. Different processing methods have been used to influence the mechanical
properties of the silk scaffolds to be more bone-like and to adopt its performance in cell
culture. Silk fibroin films as 2D structures were blended with glycerol and poly(ethylene
glycol) (PEG) to improve ductility and porosity, beneficial for cell adhesion. Different
film properties were obtained upon adjusting the casting temperature. For example, the
ultimate tensile strength was increased when films were cast at 60 ◦C in comparison to
4 ◦C, indicating higher crystallinity in the films. Moreover, pore sizes decreased in the
same manner when film casting was conducted at elevated temperatures. Further, double
blends with PEG and glycerol showed the best results, as both additives might interact,
yielding stable constructs [106].

Hard tissue repair has high demands regarding the form of the construct, as defect
sites are individual and often complex and, therefore, 3D structures such as foams, sponges,
injectable or printable hydrogels are of most interest. Silk scaffolds with no chemical
crosslinker were fabricated using a solvent exchange method. Silk fibroin as well as
spider silk proteins were dissolved in formic acid or HFIP and blended with sodium
chloride crystals as porogens to control pore sizes between 200–300 µm. The obtained
structures showed high content of β-sheet structures resulting in stable constructs [116].
3D spongy silk/sericin scaffolds were fabricated using freeze-drying in order to investigate
the influence of sericin addition to the material. Structural, biological and immunological
properties were investigated with different weight ratios of sericin (0–4.7 wt.%). Further,
scaffolds were chemically crosslinked using glutaraldehyde vapor. Structural transition
towards β-sheets was induced upon immersion in ethanol. These highly porous structures
with more than 90% porosity showed a decrease in pore size in the presence of increasing
amounts of sericin. Similar trends were observed for mechanical properties, which were
significantly higher upon increasing sericin content. As a result, cell culture studies with
human osteoblast MG63 cells revealed no enhanced cytotoxic effect of the sericin present in
the scaffolds. Further, macrophage adhesion was not highly pronounced, and inflammatory
marker genes were not upregulated with increasing sericin content [117]. Another scaffold
was fabricated using lyophilization to investigate the effect of pre-seeding of human
adipose-derived mesenchymal stem cells for bone regeneration in vitro and in vivo [107].
Harsh crosslinking agents could be avoided, and constructs were solely post-treated
in ethanol. In cell studies, cytocompatibility was confirmed, and a mineralized matrix
formation was found after two weeks as a sign of osteogenic differentiation [107]. Rat
calvaria models served to evaluate the in vivo performance of cell-seeded scaffolds in
comparison to that of non-seeded silk scaffolds. Micro-CT showed no significant impact
on the amount of regenerated bone after 12 weeks [107]. However, looking deeper into the
composition of the newly formed tissue, new bone with a higher amount of collagen and
vasculature was formed in pre-seeded scaffolds [107].

When using hydrogels for hard tissue engineering, mechanical properties must be
investigated and adapted. Different crosslinking methods were used in the following
three approaches: Long et al. [118] mixed silk fibroin and elastin to assemble hybrid
hydrogels using a physical heat crosslinking method for higher β-sheet content in the
silk material and chemical crosslinking with glutaraldehyde between silk and elastin. In
this case, silk was used due to its easy processing into different morphologies and elastin
to add biochemical cues to the material. Hydrogels exhibited 4–70 kPa in compressive
modulus and shear compressive moduli up to 40 kPa. A proliferation assay using L929
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lung fibroblasts showed no negative effects of the chemical crosslinking. Wu et al. [119]
also combined two crosslinking methods for silk fibroin hydrogels, but in this case, ethanol
for physical and γ-ray for chemical crosslinking of the solutions were applied. Crosslinking
through irradiation occurred with the assumed mechanism of radical formation as a result
of high energy transfer to silk fibroin molecules. Such treated hydrogels could cover
several orders of magnitude in elastic moduli from the Pa range up to hard hydrogels in
the MPa range upon different irradiation times (Figure 4). Reflecting the possible variation
of mechanical properties, irradiation did also alter pore structure, resulting in denser
gels with smaller pores upon increasing crosslinking. Interestingly, biodegradation in the
presence of protease XIV was not influenced upon irradiation but upon ethanol physical
crosslinking, as the latter is related to silk crystallinity. Cell toxicity of rat bone marrow
mesenchymal stem cells was studied using supernatants from scaffolds, as irradiation
might cause toxic radicals in solution, but no significant changes compared to the control
group were observed.
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in live/dead staining after print-induced shearing. Besides few dead cells in one sample, 
cells survived the process. Cell viability was confirmed using the metabolic PrestoBlue 
assay. However, it was found that at higher amounts of silk fibroin, less signal could be 
detected, although viable cells were found. This led to the assumption that the dye, but 
also nutrients and waste products can only hardly travel through the construct upon in-
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Figure 4. (A) Photographs of Bombyx mori silk fibroin hydrogels with a controlled degree of crosslinking using γ-radiation
(yellow) and ethanol treatment (blue) to cover six orders of magnitude of material stiffness. Crosslinking mechanism upon
(B) γ-radiation, triggering radical water splitting and the evolution of free radicals, leading to combinational events between
polymer chains and (C) ethanol treatment, inducing hydrogen bonding and intermolecular interaction. Reprinted and
adopted with permission from ref. [119]. Copyright 2020 American Chemical Society.

Laomeephol et al. [120] used a phospholipid (1,2-dimyristoyl-sn-glycero-3-phospho-
(1′-rac-glycerol) sodium salt) as a gelling additive to accelerate hydrogel formation of silk
fibroin solutions. Changing the concentration of the lipid resulted in different gelation rates,
and, thereby, gelation could be controlled. The mechanism is based on the amphiphilic
nature of the lipid, which forms electrostatic and hydrophobic interactions with silk fibroin.
Cytocompatibility was confirmed using ISO 109931:2009 cell tests and cell lines such as
L929 lung fibroblast and NIH/3T3 fibroblasts [120]. While proliferation was found in the
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gels using these cell lines, cancer-derived cells such as SaOS-2 did not proliferate after
21 days and stayed in round shape. In this case, the described constructs seemed to be
rather unfavorable substrates while showing inhibition of growth of cancer-derived cell
lines [120].

To use silk hydrogels in 3D printing applications, one blend was examined using silk
fibroin and alginate [121]. Since bioinks further contain cells for 3D printing applications,
they must be cytocompatible and printable to enable cell survival and, in the best case,
proliferation. As shear forces are acting on the material during printing, cells have to be
protected from damaging shear stress. In this study, 1 wt.% sodium alginate with 2 wt.%
silk fibroin underwent rapid gelation upon addition of calcium chloride, which crosslinks
alginate [121]. The addition of 1 wt.% rather than 0.5 wt.% alginate resulted in higher
strand fidelity during printing. Encapsulated osteosarcoma cells were loaded into the
hydrogel blends and manually printed from syringes, which represents a first printability
evaluation of a material. Extruded strands were cultured, and cell viability was evaluated
in live/dead staining after print-induced shearing. Besides few dead cells in one sample,
cells survived the process. Cell viability was confirmed using the metabolic PrestoBlue
assay. However, it was found that at higher amounts of silk fibroin, less signal could be
detected, although viable cells were found. This led to the assumption that the dye, but also
nutrients and waste products can only hardly travel through the construct upon increasing
silk fibroin content.

For the adjustment of mechanical properties and printability, filler materials such
as nanocellulose can be added to silk fibroin hydrogels [108]. Bacterial nanocellulose
was added, yielding composite hydrogels for 3D printing. Photo-crosslinking using
tris(bipyridine)ruthenium(II) chloride as crosslinker generated scaffolds, which differed
in their characteristics depending on the morphology of the nanocellulose used either as
a solution, fibers or whiskers. Structural information was related to β-sheet content and
silk fibroin nanocellulose interaction, which is defined by inter-domain distance in the silk
fibroin determined using small-angle neutron scattering techniques. Scanning electron
microscopy images (SEM) showed that cellulose as an additive influenced pore sizes, yield-
ing especially dense structures in the presence of whiskers. Best rheological, tensile and
compression behavior was found in the presence of fiber fillers. Printability evaluated by
strand-width after printing was similarly high for fiber and whisker additives. However,
as a small drawback, these two morphologies were not reported to be cell friendly whilst
causing cytotoxicity upon oxidative stress or inflammatory response. Culturing L929 lung
fibroblasts on hydrogels, all blends showed proliferation and high viability tested after 1, 3
and 5 days.

In another approach, tyrosinase-crosslinked silk fibroin/gelatine hydrogel blends
were cell loaded and 3D printed to gain functional constructs [122]. Silk was functionalized
with gelatine and calcium chloride for sustained release of calcium ions from the scaffold,
similar to the extracellular release of calcium by osteoclasts during bone modeling (Figure 5).
Several aims were followed in this study: First, the material was optimized for 3D printing
concerning long-term stability for cell culture, and, therefore, rheological properties were
adjusted. It was found that at low shear rates, blend hydrogels showed shear thickening
behavior, presumably related to crystallization or entanglement between both components.
At higher shear rates, a sudden transition to shear thinning behavior was assumed as a
result of compound release. Further, the addition of calcium chloride increased the viscosity
in such hydrogel blends up to 100-fold due to faster gelation times and ionic interactions
with silk fibroin. Second, the osteogenic profile of the constructs was investigated upon
release of calcium ions. Ion release was found for 3 weeks, but the release was not complete
at that time point.
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Figure 5. (A) CAD sketch of a Bombyx mori silk fibroin/gelatine construct and (B) its 3D dispense
plotted result. (C) Release profile of calcium ions from Bombyx mori silk fibroin/gelatine hydrogels,
loaded with calcium chloride. (D) Light microscopy images of unloaded (i–iii) and loaded (iv–vi)
silk/gelatine hydrogels with human mesenchymal stem cells post-printing (i,iv), after 14 (ii,v) and
21 days (iii,vi). Unloaded scaffolds showed cells present in both the construct and in pores, whereas,
in the loaded construct, cells remained in the strands. SF = silk fibroin, G = gelatine. Reprinted and
adopted with permission from ref. [122]. Copyright 2019 American Chemical Society.

Third, the signaling pathway, which regulates osteogenic differentiation in human
bone marrow derived progenitor cells, was analyzed with regard to the influence of
calcium ions. The gene expression profile of parts of the canonical Wnt pathway with
specific expression of β-catenin, BMP2 and BMP4 was investigated, and their concentration
was highest on day 21. It can be therefore assumed that BMP plays an important role in
osteogenic differentiation of human bone marrow derived progenitor cells.

The recombinant spider silk protein eADF4(C16), which is based on the consensus
sequence of one component of the A. diadematus dragline silk [123], was found to form
hydrogels in a controlled manner forming a physical fibrillar network [124,125], enabling
its processing via 3D printing for tissue engineering [126]. Further, this recombinant spider
silk protein could be modified to comprise the well-known RGD cell-binding motif [126].
Modifications of the processing technique, such as creating blends [127,128], incorporation
of silica particles [129] or the release of biologicals from hydrogels [130], were investigated
and successfully yielded stable gels.

Silk fibroin hybrid materials with two different silk morphologies were studied, for
example, by Ding et al. [131] β-sheet rich silk fibroin nanofibers were encapsulated in
an amorphous silk matrix. Upon electric field exposition of 50 V for 30 min, nanofibers
traveled through the amorphous matrix and aligned. Scaffolds were crosslinked using
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horseradish peroxidase and yielded anisotropic scaffolds with up to 120 kPa in stiffness. In
in vitro studies, bone marrow mesenchymal stem cells showed osteogenic behavior, and
an ectopic in vivo bone model was used to investigate osteogenic properties in rate femurs.
Between week 8 to 12, newly formed bone was found in the case of the stiffest hydrogel
samples, whereas the aligned fiber structure also led to alignment in the new tissue. The
fabrication method with two silk fibroin morphologies and electric field alignment was then
used by the same group to fabricate gradient hydrogels [132]. In further detail, horseradish
crosslinking times and resulting gradient mechanical properties were investigated. The
distribution of β-sheet rich silk fibroin nanofibers in the scaffolds also led not only to
changed material stiffness but also to gradient pore structures resembling that of native
tissue. In cell culture studies, the construct’s properties translated into tissue-specific
differentiation of bone marrow mesenchymal stem cells, whereas the soft part induced
chondro-related genes, gradually triggering bone formation towards the stiffer end of the
scaffold, which was also confirmed in in vivo studies.

In another double silk approach, Liu et al. [133] used silk fibroin solutions, which
were first autoclaved to induce nanoparticle formation (in the range of 50–300 nm), then
embedded in silk fibroin solutions, followed by freeze-drying to form 3D sponges. To
stabilize structures in an aqueous environment, low-molecular weight PEG solutions were
used to induce β-sheet formation. Nanoparticles could be extracted, yielding cavities
and pores in the scaffold. This generated pore structure introduced permeability and
flexibility compared to silk sponges without particle loading. After methanol annealing,
better cell adhesion, distribution and growth on scaffolds were observed. In general,
particle-loaded constructs, especially with bioceramics, have the potential to support bone
tissue engineering due to their pre-mineralization, which is discussed in detail in the
section below.

5.1.2. Microcarriers for Bone Tissue Engineering

Microcarriers based on silk fibroin and gelatine were fabricated in a top-down ap-
proach for bone tissue engineering as injectable units or building blocks for scaffolds
(Figure 6) [134]. With a microfluidic asymmetric flow-focusing device, carriers of about
100–350 µm were produced depending on the flow rate ratio of the aqueous and separation
oil phase also containing methanol. The material blend was tested as 2D films and 3D
microcarriers in rat mesenchymal stem cell culture. With increasing proportion of gelation
from 25 to 50 to 75 wt.%, increasing cell adhesion was found. This trend was similarly
confirmed for the carrier’s mechanical properties, as both higher blend situations were
in the range of 183 kPa and 139 kPa, respectively, values which are also described for the
osteoid region, where pre-osteoblast differentiation takes place.

5.1.3. Biomineralized Scaffolds Using Specific Mineralization Tags

As a template for biomineralization, natural spider silk fibers were collected from
adult females of Cupiennius salei. Biomineralization of dragline silk fibers took place upon
subsequent incubation in calcium hydroxide containing solution, followed by incubation
in diluted phosphoric acid. The procedure was also used the other way round as reversed
biomineralization, and further, both solutions were incubated on the fibers simultaneously
(Figure 7). Biomimetic hybrid materials were yielded with controlled hydroxyapatite
deposition, forming a homogenous coating on the fibers. The best mineralization re-
sults were obtained upon initial incubation in calcium-containing solutions, as silk fibers
were assumed to interact with the cations and induce higher mineralization with less
calcium-deficient hydroxyapatite. Mechanical characterization of the mineralized fibers
showed similar strength, toughness and Young’s Modulus in comparison to the natural
supercontracted fibers [110].
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staining (dead cells in red, living cells in green) and (D) after 28 days. Purple coloring indicates
alkaline phosphatase activity of differentiated osteoblasts. Reprinted and adopted with permission
from ref. [134]. Copyright 2020 Elsevier.

Smaller fibers in the sub-micron range were produced using electrospinning of B. mori
silk fibroin out of formic acid and HFIP mixtures into an ethanol bath for instant crosslink-
ing by β-sheet formation. Freeze-drying of the multilayer yielded a 3D fibrous scaffold,
and biomineralization was induced upon incubation in two-fold Simulated Body Fluid
for up to 28 days. Imaging of the interconnected pores and the increase in fiber diameter
allowed an estimation of the ongoing mineral deposition. The effect of the mineralized
layers was investigated in vitro using bone marrow mesenchymal stem cells (BMSC) and
in vivo in rat cranial defect models. More migrated cells next to the newly formed bone
and capillaries confirmed bone regeneration ability of these biomimetic scaffolds [135].
Strong, ductile and lightweight materials were gained upon self-assembly of silk fibroin
nanofibers from an aqueous solution. In further processing steps, biomineralization was
initiated out of calcium chloride and sodium dihydrogen phosphate solutions before chitin
nanofibers were introduced in a hierarchical assembly. Mechanical characterization of the
scaffolds revealed a very lightweight material like aerogels but with high compressive
strength of up to more than 400 MPa [136].

Further, biomineralization was directed through silk components. Therefore, silk ex-
tracted sericin was added to dense collagen hydrogels. Due to the sericin’s negative charge
resulting from amino acid residues such as aspartic and glutamic acid, hydroxyapatite
formation could be induced. This acellular mineralization process in Simulated Body Fluid
yielded minerals after 3 days, with an ongoing process until 14 days resulting in 90 wt.%
mineral phase. SEM, energy-dispersive X-ray spectroscopy and X-ray diffraction studies
showed distinct spherulite particles. Mesenchymal stem cells were seeded on mineralized
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sericin-containing collagen hydrogels, and an osteogenic upregulation was observed in
metabolic activity [137].
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However, biotechnology allows for tailoring recombinant peptides and proteins, and
silk proteins were combined with explicit peptide tags on the DNA level to trigger miner-
alization processes. Engineered sequences from N. clavipes dragline silk MaSp1 were C-
or/and N-terminally hybridized with the hydroxyapatite binding peptide VTKHLNQISQSY,
which was identified via phage display. Films processed out of these proteins were im-
mersed in calcium chloride and sodium phosphate solutions. Mineral formation, as well as
human mesenchymal stem cell differentiation, were especially enhanced in the case of dou-
ble functionalized constructs [60]. The same silk consensus sequence was functionalized
with a bone sialoprotein motif to introduce non-collagenous moieties. In this case, silk films
were mineralized in female mice in vivo. At first, a mild inflammatory response could be
observed using flow cytometry and also histology, but after 6 weeks, inflammation markers
decreased. Finally, no capsule formation was observed [71].

In another approach, recombinant spider silk fusion proteins were engineered with
different mineralization and collagen-binding motifs from non-collagenous proteins in
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bone. Proteins with N- and C-terminal peptide tags were compared concerning their
mineralization ability in Simulated Body Fluid and their interaction with MC3T3 E1 mouse
pre-osteoblasts. The variants showed mineralization tendency to a different extent but con-
firmed the formation of calcium and phosphate-containing species. Studying cell adhesion
on materials of the protein variants separately, no significant favor of one variant over the
other could be observed. However, when processing two materials into a gradient, cell
adhesion towards the collagen-binding motif was clearly favored over the mineralization
variant and could be maintained for 21 days. Therefore, these materials are also suitable
candidates for applications at the tendon-bone-interface [72].

5.1.4. Biomineralization of Scaffolds Using Pre-Mineralization

In one example, 1–10 wt.% alumina nanoparticles were added to 4 wt.% silk solutions,
and this emulsion was then lyophilized [111]. Additional mineralization was achieved
upon incubation of the scaffolds in Simulated Body Fluid [61] for 28 days, forming an
apatite layer in all constructs. The cell attachment of rabbit adipose-derived stem cells
was not significantly changed with varying alumina content as this material was already
reported to be bioinert, leading to the assumption that mechanical and structural cues were
affected by the particles. Osteogenic upregulation in an initial stage was found starting at
day 7 using alkaline phosphatase activity and Alizarin red staining of the cultures.

Another lyophilized scaffold comprised silk fibroin titanium dioxide and fluoridated
titanium dioxide nanoparticles [138]. Particles acted as bioceramic reinforcement for com-
pressive load. As the compressive modulus is often related to particle content, calculations
and experimental data were collected. Both approaches were in good agreement with
each other and showed open honeycomb structures in the constructs with a compressive
modulus of up to 1.297 ± 0.175 MPa in the presence of 20 wt.% TiO2.

Magnesium oxide nanoparticle-containing scaffolds at 15/20/25 wt.% were fabricated
upon electrospinning of silk fibroin and PCL at a 4:1 w/w ratio [139]. Increasing amounts
of nanoparticles lead to higher fiber diameters, respectively 651 nm/1055 nm/1251 nm,
with visibly entrapped particles. At higher amounts of inorganic fillers, water contact
angles decreased (below 30◦), turning the materials more hydrophilic and favorable for
cells. In comparison, no significant differences between particle-loaded fiber meshes were
found concerning cytotoxicity for MC3T3 E1 mouse pre-osteoblast cells. The cumulative
release of Mg2+ from the meshes reached a plateau after about 15 days. The ion release
is often related to osteogenic differentiation and was confirmed with extracts from fiber
mats after 21 days using both Alizarin Red and alkaline phosphatase staining. In vivo
studies in rat calvarial defects revealed a significant enhancement of bone regeneration
using nanofibrous membranes loaded with magnesium oxide particles in the twelfth week
post-surgery.

As actuation and dynamic cultures are improving bone regeneration, magnetic parti-
cles were incorporated inside silk fibroin scaffolds [140]. Scaffolds were soaked in biomin-
eralization solutions, and Ca/P containing species were obtained. Vibrating Sample Mag-
netometry was used to characterize magnetic properties, especially for further evaluation
of proliferation of MC3T3 E1 cells upon stimulation using a magnetic field. In general, cells
grew randomly in the absence and clustered in the presence of a magnetic influence.

Graphene oxide has also been added to silk fibroin solutions, followed by lyophiliza-
tion. In one study, 3D porous silk fibroin/graphene oxide constructs were freeze-dried
from solution, and the graphene oxide induced wrinkled surface nanotopographies [141].
Further, its incorporation into scaffolds decreased the diameter of the interconnected pores
from 25–60 nm to 10–30 nm. The compressive modulus was independent of the graphene
oxide concentration and ranged between 1.5–2 MPa for 3–10 wt.%. Water uptake is a
critical factor for cell compatibility and was found to be related to graphene oxide content.
Further, water uptake was also crucial for in vitro biomineralization in Simulated Body
Fluid. Although mineralization commenced from day 7 to 14, the crystal morphology in the
pores changed towards larger and smoother crystals. In a second approach, the synergistic
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or individual effect of graphene oxide with β-tricalcium phosphate in a lyophilized silk
fibroin/soy protein blend scaffold was studied concerning osteoconductivity [112]. Both
particle types influenced mechanical properties in the range of 1 MPa. In vitro biomin-
eralization was induced in Simulated Body Fluid for 14 days, and rather small crystals
were found covering the whole construct’s surface. Both scaffolds with particles exhibited
more minerals than protein blend scaffolds on their own, however, nanocrystal deposition
was increased in the presence of graphene oxide only. Alkaline phosphatase activity of rat
bone marrow mesenchymal stem cells was highest at day 5, whereas RUNX2 expression
as osteogenesis-related gene marker increased until day 14. Osteocalcin expression, as a
marker of late osteoblastic differentiation, also increased up to day 14, indicating that the
material was suitable for long-term bone regeneration processes. A third filler material was
achieved using silk fibroin freeze-dried scaffolds and particles made of nanohydroxyapatite
and graphene oxide [113]. Scaffolds with both particle types showed oriented pore struc-
ture, similar to lamellae or channels, which was not observed in the other studies. Channel
structures were fabricated using a directional temperature field freezing technology, where
only one side of the scaffold was exposed to a cold surface and gradually frozen until the
fixed structure was freeze-dried. Both oriented and unoriented double-filled materials were
fabricated (Figure 8). Mechanical properties were in the kPa range and, therefore, lower
than in the two aforementioned studies. Regarding biomineralization, enzyme-directed
mineralization was analyzed using alkaline phosphatase activity from bone marrow mes-
enchymal stem cells. Interestingly, the highest cell viability, and proliferation was found in
the case of oriented double-loaded constructs, whereas unoriented constructs showed even
lower signals than silk fibroin scaffolds with nanohydroxyapatite only. Besides osteogenic
differentiation, the ability was studied to provide structures for vascularization. Human
umbilical vein endothelial cells (HUVECs) seeded on the 3D scaffolds migrated preferen-
tially into the aligned channel-like structures as they might sense orientation similar to
blood vessels.

For all studies, no phase separation between fillers and silk was observed, indicating
good compatibility between the material types. Only at very high filler content, particle
aggregates were observed.

5.2. Teeth and Mandible Tissue Engineering

State of the art for the regeneration of hard tissue in the mouth is placing implants
at the defect location, which need to integrate well at the implantation site. However,
it is important to remain the tooth socket for implants, which is rather relating to bone
regeneration than teeth themselves. First approaches into this field of application were
realized using B. mori silk fibroin based scaffolds, prepared via freeze-drying and studied
to preserve the jaw ridge [142]: An appropriate rate of material resorption was found for
silk fibroin scaffolds with pore sizes around 200 nm and nano-hydroxyapatite reinforce-
ments, which were additionally mineralized in vitro. These scaffolds showed osteogenic
differentiation in pre-osteoblast MC3T3 E1 cells after 21 days. Further, the interaction with
human bone marrow stromal cells showed good biocompatibility [142].

Another study focused on culturing stem cells from human exfoliated deciduous teeth
on silkworm sponges prepared from cocoon cuts. Cell proliferation could be confirmed,
but scaffolds for endodontic repair, which can simulate dynamic dental pulp repair, are
still at the beginning to commence the field [115].
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5.3. Tissue Engineering of Bone Neighbouring Hard Tissues

Osteochondral defects can be caused by trauma, tumor resection or osteoporosis and
can lead to bone loss, osteoarthritis and even full tissue dysfunction when not treated.
Scaffolds used for osteochondral defects often show hierarchical arrangement of chondral
and bone bilayers. One example of scaffolds are blends of bacterial cellulose with silk
fibroin in an interpenetrating hydrogel to create artificial cartilage [143]. Bacterial cellulose
spongy cubes were prepared, squeezed to dry, and silk solutions were soaked in. MC3T3
cell cultures showed the best proliferation on plain silk fibroin, followed by the blended
scaffold and finally the cellulose sponge.

Ribeiro et al. [114] crosslinked silk fibroin with horseradish peroxidase as subchrondro-
layer and a tricalcium phosphate bone-like layer in a bilayered structure. The scaffolds
showed homogenous porosity with macro- and micropore sizes (500 and 10 µm) for the
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regions with denser structures when mineralized with tricalcium phosphate. Human
osteoblasts from femoral bone tissue and human articular chondrocytes were seeded on
the scaffolds, and tissue distinct expression patterns were found on the bilayered regions
in case of the flexible subchondral and supportive bone region.

In a trilayered scaffold, a cartilage layer, a calcified transition layer and a bony layer
were generated upon the addition of nanohydroxyapatite and paraffin-spheres [144]. First,
hydroxyapatite in silk solution with paraffin was cast and frozen. Then, on top of the
construct, the silk solution was applied and exposed to a cold cylinder using a temperature
gradient-guided thermal-induced phase separation technique. After leaching of the paraffin
spheres, a lamellar structure in the chondral part, round cavities in the bony part, and an
intermediate layer were formed (Figure 9). Adipose-derived stromal cells were seeded
on the scaffolds, and both sides had cell favorable structures with lamellae, round pores
or cavities. Upon induction of differentiation using respective chondral and bone factors,
glycosaminoglycans and collagen type II were found in oriented structures indicating
chondrogenic differentiation. In the same manner, bone-related matrix content was found,
such as calcium and collagen type I in bone pore structures.

Having confirmed to be able to control differentiation towards the desired tissues
based on structural cues, these scaffolds were then applied for rabbit bone repair in the
knee, with and without pre-cell seeding [145]. Defect evaluation took place 4, 8 and 12
weeks after implantation. At all points of evaluation, surface roughness and integrity, bone
smoothness and genetic upregulation were higher when cells were already present in the
scaffold. However, neither bone strength nor quality was affected thereby.

Neighboring tissues towards bone such as tendon or cartilage can also exhibit miner-
alized regions in a gradual manner. This gradual change in composition and mechanical
properties hinders crack propagation and allows a uniform transmission of loads. Qian
et al. [109] fabricated structures from collagen type I and silk fibroin with increasingly
aligned structures, generated using unidirectional freezing for application at the tendon-to-
bone interface. Aligned collagen structures with knitted silk fibers exhibited the highest
order. Implantation into rats showed that rather unoriented structures were favored for
bone repair, whereas aligned structures triggered tendon regeneration. Therefore, the
optimum structural combination still has to be found, as complex processes are interacting
at the joint between two tissues.

Bradner et al. [146] fabricated microfibers out of silk fibroin hydrogels with additional
functionalization using bovine serumalbumin and a bio-silica precursor peptide. Biomin-
eralization is required at the tendon-to-bone insertion to transmit loads on mineralized
fibrils. Silk at 5 wt.% and BSA at 0.2 wt.% resembled the natural ratio of collagen-to-elastin
in the tendon. Fibers were extruded and enzymatically crosslinked using horseradish
peroxidase, followed by thermal post-treatment. Fibers were braided or twisted by hand.
Fiber toughness was increased up to 125.4 ± 3.50 Jm−2 upon the addition of BSA. An
explanation for this behavior could be the presence of additional sacrificial bonds, which
break before the structure collapses. Pre-and post-strained silk-BSA samples showed a
hierarchy-enabling microstructural rearrangement.
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Figure 9. (A) Illustration of a trilayer (e.g., chondral, interphase and bony layer) scaffold preparation
process using Bombyx mori silk. (B) Micro-CT (µCT) and scanning electron microscopy (SEM) images
of the individual layers in the scaffold: (i) µCT of the full construct, (ii) µCT of the chondral layer
(top), (iii) interphase, (iv) bony layer (bottom), and (v) SEM of a longitudinal section of the full
construct (red lines indicate interphases), (vi) of a longitudinal section of the chondral layer (red
arrows indicate orientation), (vii) of cross-sections of the chondral layer, (viii) of cross-sections
of the bony layer (red circle indicate a macropore and black arrows connections between pores).
(C) Confocal microscopy images of trilayer scaffolds of rabbit adipose-derived stroma cells after 3 d in
(i) longitudinal section and (ii) profile view with magnifications of (iii) the chondral layer and (iv) the
bony layer. Blue staining indicates cell nuclei (DAPI), green and red staining cell membranes (DiO,
DiI) confirming the interphase as an isolation layer. White solid arrows indicate stained cell nuclei,
white dashed arrows indicate unspecific staining, white stars indicate the cell-free intermediate layer.
SF = silk fibroin, nHA = hydroxyapatite nanoparticles. Reprinted and adopted with permission from
ref. [144]. Copyright 2014 American Chemical Society.
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6. Outlook

Major biomaterials in the current global orthopedic market are collagen, hydrox-
yapatite, calcium phosphates, calcium sulfate and hyaluronic acids [147]. While there
are no silk-based products in the field of hard tissue engineering available up until now,
recent strategies have shown the eligibility of such materials for hard tissue engineer-
ing. Tailor-made solutions for patients will enable personalized medicine, and therein
individual requirements for defect solutions can be met. However, top-down strategies
rely on construct fabrication, and various complex prerequisites need to be approached
concerning the choice of material. Biodegradability is thereby of high importance with
respect to non-toxic metabolites and material break down along with tissue regeneration.
Hence, biomaterials such as silk-based ones are increasingly in the focus of interest for
tissue engineering approaches as they are biocompatible, non-toxic and do not evoke a
strong immune reaction by the recipient. Additionally, recombinant silks can be genetically
fine-tuned and produced biotechnologically in a large scale. The processing of raw silk
proteins into a wide range of morphologies such as particles, fibers, foams and hydrogels
allows the coverage of scaffold complexity on various hierarchical levels. In hard tissue
engineering, construct design relies to a high degree on the fulfillment of biological and
mechanical prerequisites, some of which are based on proper mineralization. Biomimetic
mineralization of silk scaffolds can be conveyed upon the introduction of binding sites
to accumulate ions from the surrounding media. To our knowledge, currently no clinical
studies containing silk-based materials are under way for hard tissue engineering. The
available tools to modify and process these materials, as well as the presented promising
research results, however, are key further developments. For example, silk screws (B. mori)
applied as orthopedic fixtures, already successful in animal testing, show high potential for
clinical trials [148,149]. Especially with the rise of additive manufacturing techniques and
the need, as well as the possibility, for personalized scaffolds within hard tissue engineering,
silk-based materials might soon take the next step towards an application.
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