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Abstract

Chest pain is an important presenting symptom. However, few cases of chest pain are diagnosed as

acute coronary syndrome (ACS) in the acute setting. This results in frequent inappropriate

discharge and major delay in treatment for patients with underlying ACS. The conventional

methods of assessing ACS, which include electrocardiography and serological markers of infarct,

can take time to manifest. Recent studies have investigated more sensitive and specific imaging

modalities that can be used. Diastolic dysfunction occurs early following coronary artery occlusion

and its detection is useful in confirming the diagnosis, risk stratification, and prognosis post-ACS.

Cardiac magnetic resonance provides a single imaging modality for comprehensive evaluation of

chest pain in the acute setting. In particular, cardiac magnetic resonance has many imaging

techniques that assess diastolic dysfunction post-coronary artery occlusion. Techniques such as

measurement of left atrial size, mitral inflow, and mitral annular and pulmonary vein flow velocities

with phase-contrast imaging enable general assessment of ventricular diastolic function. More

novel imaging techniques, such as T2-weighted imaging for oedema, T1 mapping, and myocardial

tagging, allow early determination of regional diastolic dysfunction and oedema. These findings may

correspond to specific infarcted arteries that may be used to tailor eventual percutaneous

coronary artery intervention.
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Introduction

Chest pain is the most important presenting
symptom of coronary artery disease (CAD).
However, only 15%–20% of patients with
chest pain are diagnosed with acute coron-
ary syndrome (ACS) based on an electro-
cardiogram (ECG) and cardiac enzyme (CE)
levels at presentation.1 This lack of diagno-
sis is predominantly due to the delay in
pathophysiological manifestation of ACS,
from arterial occlusion to overt ECG and/or
a rise in CE. The consequences are manifold
and up to 10% of patients with eventual
myocardial infarction (MI) are misdiag-
nosed and inappropriately sent home.2

This also results in a major delay in
treatment and inadequate risk stratification
of patients, eventually resulting in progres-
sion to MI and/or complications arising
from MI.

Therefore, there is an urgent need for a
simple, but efficacious, investigative modality
that enables rapid assessment, diagnosis, and
risk stratification of ACS in patients present-
ing to the emergency department with chest
pain. In the last 20 years, there has been an
evolutionary shift in research and funding
away from conventional investigations, such
as ECG and CE measurement, towards
cardiovascular imaging tools, such as echo-
cardiography.More recently, computed tom-
ography (CT)- and magnetic resonance
imaging (MRI)-based investigative modal-
ities have been used to diagnose ACS.3

ACS

ACS refers to a variety of clinical presenta-
tions ranging from unstable angina to MI.
These presentations result from underlying
myocardial ischaemia subsequent to acute

thrombosis induced by a ruptured coronary
artery plaque.4–7 The main impediment to
rapid and accurate assessment, diagnosis,
and risk stratification of ACS is the apparent
lag between coronary artery occlusion and
manifestation of symptoms. This is compli-
cated by the heterogeneous nature of the
clinical presentation itself.

Within 10 to 20 seconds following cor-
onary artery occlusion, the myocardial
relaxation time begins to shorten, resulting
in diastolic dysfunction and a rise in left
ventricular (LV) end-diastolic pressure.
Wall motion abnormalities then occur 15
to 30 seconds later, followed by a fall in LV
ejection fraction. Subsequently, electrical
signs and ischaemic symptoms may begin
to manifest (Figure 1).3,8 However, these
manifested symptoms are also dependent on
the patients’ age, sex, and any underlying
comorbidities, such diabetes mellitus, which
may delay and/or attenuate the symptoms.

The earliest detectable abnormality in
ACS is either a reduction or cessation of
coronary blood flow and altered myocardial
perfusion. This has been the subject of many
studies on the use of rest and/or stress
myocardial perfusion imaging using single-
photon emission CT, positron emission
tomography, and cardiac magnetic
resonance (CMR).9–14 These imaging mod-
alities provide a high negative predictive
value in patients with suspected ACS.
Unfortunately, CT-based imaging
techniques involve the use of radionuclide
perfusion agents and the cost of setting up
an acute perfusion imaging service in the
emergency department is prohibitive.
There is also a lack of sufficient diagnostic
and prognostic data for greater use of CMR
perfusion imaging in the emergency
setting.3–5
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Diastolic dysfunction

Ventricular relaxation during diastole is an
active process that is related to calcium
uptake from contracted myocytes. Normal
relaxation allows the left ventricle to fill
at rest and during exercise without an
increase in end-diastolic pressure. Diastolic
dysfunction occurs when there is ischaemia-
induced abnormality in LV relaxation and
compliance.15

Assessment of diastolic dysfunction post-
ACS is important because it is correlated
with infarct size, confers a higher risk of
mortality, and is associated with a poorer
prognosis, independent of LV systolic
function.16–19 Furthermore, in the acute
setting, diastolic dysfunction portends a
higher likelihood of progression to MI in
the absence of any electrocardiographic or
serological evidence of coronary artery
occlusion, which occurs later in the temporal
cascade of events.14–16

The typical assessment modality for dia-
stolic dysfunction is echocardiography.
Echocardiography is usually performed
prior to discharge to identify patients at
higher risk of complications, and thus a

poorer prognosis, to enable optimization of
treatment. Therefore, although echocardi-
ography is relatively inexpensive and easy to
use, its use in the acute setting of assessment
of ACS is limited. The main limitations to
echocardiography are anatomical, reduced
endocardial definition, inter-observer vari-
ability, and lack of tissue characterization.

An advantage of CMR is that it can
potentially provide relevant incremental
information during the acute assessment
stage. CMR provides the possibility of
accurately diagnosing ACS, eliminating
potential differentials, and risk-stratifying
patients with a single investigative modality.
This in turn affects management and reduces
time wastage, unwarranted referrals, and
inappropriate discharge.

CMR imaging

In the emergency department, the difficulty in
managing patients with chest pain is accurate
early diagnosis and early, efficacious institu-
tion of treatment. CMR imaging offers high
spatial resolution, enabling a detailed volume
and functional assessment. Early diastolic
dysfunction, which indicates the presence of

Figure 1. Cascade of events following coronary artery occlusion (adapted from Gani F et al., 2007)
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significant CAD, can then be coupled with
late gadolinium enhancement imaging for
excellent tissue characterization, and permits
exceptional prognostic capacity. CMR tech-
niques are able to provide a more accurate
diagnosis of ACS compared with standard
clinical assessment. Furthermore, the use of
new imaging techniques, such as T2-weighted
sequences for detection of oedema and T1
mapping, can be extended to patients with an
intermediate to high risk for ACS.14,20,21

Assessment of diastolic function

Initial rest cine MRI uses steady-state free
precession (SSFP) sequences to acquire a
series of consecutive, breath-hold, long- and
short-axis slices. These are used for assess-
ment of ventricular wall motion, ventricular
volume, ejection fraction, myocardial mass,
and anatomy of extracardiac structures.

Left atrial size

The left atrium (LA) is directly affected by
LV filling pressure and is a reliable indicator
of the duration and severity of diastolic
dysfunction.22 Chronic elevation in LV
filling pressure results in LA dilatation and
this is associated with an increased risk of

death post-ACS.23–25 ACS may also affect
atrial function by direct ischaemic injury.26

In the clinical setting, although LA volume
is a better prognostic indicator, LA diameter
and area are simpler to acquire, and thus
easily measured.27

The LA is visualized in the horizontal
long-axis view (four-chamber view), at max-
imal size during end-systole, and just prior
to opening of the mitral valve. Planimetry is
performed by manually tracing the LA
endocardial wall at end-systole of a cine
sequence (SSFP) (Figure 2). The SSFP
technique is used because it enables excellent
contrast and good image quality.27 The LA
is dilated when the planimetry area is greater
than 24 cm2.27,28

Transmitral flow

Transmitral (TM) flow represents an imme-
diate indicator of the filling gradient
between the LA and LV. TM flow is
normally assessed via transthoracic echo-
cardiography (TTE), which records the
filling pattern from which the degree of
diastolic dysfunction is inferred. CMR uses
through-plane, phase-contrast, velocity-
encoded imaging to determine TM
velocities.

Figure 2. Planimetry is performed by manually tracing the LA endocardial wall at end-systole of a cine

sequence (left image: end-systole, right image: end-diastole)
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Phase-contrast imaging is a validated
technique for evaluating velocity, the vel-
ocity gradient, volume, and the pattern of
blood flow.29,30 Although CMR-based
phase-contrast imaging underestimates
peak mitral E (early diastolic) and A (atrial
contraction) velocities compared with TTE,
the linear correlation between the two
modalities is excellent.31–33

To acquire cross-sectional TM flow, an
imaging plane is planned parallel to the
mitral annular plane at the level of the mitral
leaflet tips from the LV outflow tract, ver-
tical long-axis, or horizontal long-axis views
(Figure 3). Phase-contrast, velocity-encoded
data sets are then acquired with the velocity
sensitivity set at 150 cm/s. A region of
interest is manually drawn on one frame to
encircle the cross-section of mitral valve
(MV) leaflets as previously described.34,35

This is then propagated using a semi-auto-
mated contouring mode with manual

override, yielding maximum velocity versus
time graphs (Figure 3).

Pulmonary vein flow

Pulmonary venous (PV) flow wave form
analysis is an important tool for evaluating
LV diastolic function. The PV flow wave
form is affected by LV filling and compli-
ance, LA preload, and contractility.36 The
main utility of measuring the PV wave form
is that it is useful in differentiating between
normal and pseudo-normal TM flow
patterns.37,38

Although there is no dedicated processing
tool for PV flow, its wave form when
compared with the TM flow pattern and
LA area ensures optimal assessment of dia-
stolic dysfunction in the acute setting.
Furthermore, assessment of PV flow in
CMR is almost guaranteed when compared
with TTE assessment of PV flow. Assessment

Figure 3. Cross-sectional MV inflow requires positioning of the sample plane along the tips of the MV in at

least two orthogonal planes
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of PV flow by TTE is only achievable in
approximately 60% of cases because of ana-
tomical and physical restrictions in attaining
optimal views. Moreover, there is good cor-
relation between TTE and CMR techniques
for assessment of PV flow.34,37

Cross-sectional PV flow is acquired by
placing an imaging plane 0.5 to 1 cm distal
to the ostium, and perpendicular to the level
of the right superior PV.39,40 A region of
interest is then manually drawn on one frame
to encircle the lumen of the PV and it is then
propagated using a semi-automated

contouring mode with manual override.
This then yields the familiar velocity curve
over time (Figure 4). Diastolic dysfunction
can then be classified into four grades based
on the E/A and S/D wave forms (Figure 5).

Myocardial tissue phase-contrast imaging

Tissue phase-contrast imaging is the CMR
equivalent of TTE-based tissue Doppler
imaging (TDI).41,42 Mitral annular velocity
measurement by tissue phase-contrast ima-
ging represents the rate of change in the LV

Figure 4. Cross-sectional PV flow acquisition sequences and luminal region of interest, and resultant

velocity versus time graph
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long-axis dimension and impaired relax-
ation results in a reduced early mitral annu-
lar velocity (e0). The ratio of early TM flow
velocity (E) to early diastolic mitral annular
velocity (E/e0) accurately predicts elevated
LV filling pressure.42,43 An E/e0 ratio of> 15
has been shown to be a strong predictor of
decreased survival after acute ACS.44 CMR-
derived E/e0 is also well correlated with TDI
and pulmonary capillary wedge pressure
measurements.39,45

To acquire mitral annular velocity, an
imaging plane is planned perpendicular to
the LV base from the vertical long-axis and
horizontal long-axis views. Phase-contrast,
velocity-encoded data sets are then acquired
with the velocity sensitivity set at 30 cm/s. A
region of interest is manually drawn on one
frame to encircle the inferior septal basal
region, which is then propagated, yielding
maximum velocity versus time graphs
(Figure 6).45

Myocardial tagging

Myocardial tagging involves placement of a
grid of radiofrequency tags on the myocar-
dium, which then distorts with myocardial
movement during systole and diastole.46,47

The deformation and displacement of these
radiofrequency tags allows comprehensive
analysis of diastolic strain and strain rate
with good temporal and spatial reso-
lution.48–50 The LV strain rate and torsion
recovery rate directly reflect diastolic dys-
function. More importantly, myocardial
tagging enables accurate assessment of
regional diastolic dysfunction and has
shown delayed infarction, hibernating myo-
cardium, and transmural ischaemia.51

Late gadolinium enhancement imaging is
acquired via inversion-recovery segmented
gradient echo T1-weighted sequences. Three
sequential short-axis slices (basal, mid, and
distal) are then obtained with six segments
per slice corresponding to the coronary
territory. Sequential grid-tagged images
with identical slice positions are obtained
using a two-dimensional turbo field-echo
sequence with rest grid pulse for myocardial
strain analyses, as previously described
(Figure 7).49,52

Harmonic phase analysis is used by
placing a mesh around the epicardial and
endocardial contours of the LV short-axis
slices in each phase of the cardiac cycle
(Figure 8). Lagrangian circumferential
shortening strain is then computed, yielding

Figure 5. Classification of diastolic dysfunction grades (I–IV) E - early diastolic flow, A - atrial or late diastolic

flow, DT- deceleration time, S - systolic flow, D - diastolic flow, Ar- atrial reversal flow.
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time-strain curves (Figure 9). Peak diastolic
strain (%) and strain rate (1/s) are then used
for assessment of diastolic LV deformation.

Future direction and prospects
for clinical studies

The use of phase-contrast imaging for flow
assessment, myocardial tissue phase-

contrast imaging, and myocardial tagging
is gaining greater recognition and proving to
be helpful for assessing of diastolic dysfunc-
tion by CMR. Moreover, detection of dia-
stolic dysfunction in the setting of acute
chest pain in patients with a moderate to
high risk of CAD should indicate the need
for further imaging sequences to adequately
rule out CAD.

Figure 6. Cross-sectional mitral annular velocity measurement requires positioning of the sample plane

perpendicular to the LV base in at least two orthogonal planes

Figure 7. Sequential grid-tagged images showing LV deformation during systole and diastole
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Other novel imaging sequences include
T2-weighted imaging for oedema or haem-
orrhage and T1 relaxation times with mod-
ified look-locker imaging. T2-weighted
imaging using T2-short Tau inversion recov-
ery (T2-STIR) is able to detect small changes
in tissue composition of unbound intracel-
lular water following an acute ischaemic
event.53,54 These changes can be detected as
early as 20 minutes following ischaemic

injury and enable differentiation between
acute and chronic myocardial infarcts com-
pared with delayed gadolinium enhance-
ment.55 T1 mapping allows accurate and
reliable voxel-by-voxel mapping of infarcted
myocardium. This obviates the need for
delayed gadolinium enhancement and
enables CMR use in patients who are
otherwise contraindicated to gadolinium
infusion.56,57 These two novel imaging

Figure 8. A mesh is placed around the epicardial and endocardial contours of the LV short-axis slices in each

phase of the cardiac cycle
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sequences, when paired with regional dia-
stolic dysfunction assessment by myocardial
tagging, may allow segment-by-segment
evaluation of ischaemia in ACS and guide
eventual percutaneous coronary
intervention.

Patients presenting with ACS can
undergo volume and functional assessment,
T2-STIR for imaging of oedema, measure-
ment of TM flow velocity for universal
diastolic function, myocardial tagging for
regional systolic and diastolic dysfunction,
confirmatory first-pass myocardial perfu-
sion assessment, and delayed gadolinium
enhancement. These imaging modalities
provide sufficient diagnostic and prognostic
information for adequately assessing a
patient presenting to the emergency depart-
ment with chest pain and suspected of
having ACS. These modalities take the
same time that it takes to send and receive
the results of any routine CE profile that is
sent from the same department. Positive
findings in any or a combination of these
imaging modalities result in immediate
referral for coronary intervention it is
indicated. A negative finding results in
immediate discharge from the emergency
department, thereby reducing wastage and
delay.

The main limitation to routine use of
CMR imaging in ACS is the cost in terms of
hardware and human resources.
Additionally, newer imaging protocols may
lengthen the scan time beyond what is accept-
able for revascularization targets, and thus
rule out the relevance of CMR in the emer-
gency setting. Therefore, further research is
required to establish the cost-effectiveness of
CMR use in routine clinical practice.

Conclusion

Current clinical tools for comprehensive
assessment of patients presenting to the
emergency department with chest pain are
useful, but not optimal. CMR imaging has
the ability to accurately and reliably diag-
nose, risk stratify, and prognosticate ACS,
especially with its multimodal ability to
assess diastolic dysfunction. Despite the
manifold benefits of CMR, its wider use in
routine clinical assessment is limited, and
more studies are required for assessing its
cost-effectiveness.
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Figure 9. Lagrangian circumferential shortening strain is computed, yielding time-strain curves
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