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Integrins, a family of adhesion molecules generally exist on the cell surface, are essential
for regulating cell growth and its function. As a bi-directional signaling molecule, they
mediate cell-cell and cell-extracellular matrix interaction. The recognitions of their key roles
in many human pathologies, including autoimmunity, thrombosis and neoplasia, have
revealed their great potential as a therapeutic target. This paper focuses on the activation
of integrins, the role of integrins in tumorigenesis and progression, and advances of
integrin-dependent tumor therapeutics in recent years. It is expected that understanding
function and signaling transmission will fully exploit potentialities of integrin as a novel
target for tumors.
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INTRODUCTION

Integrins are a type I transmembrane protein and the main ligands for cell adhesion. There are
altogether 18 a and 8 b subunits known in mammals, generating 24 kinds of heterodimers (1). Each
subunit has a large ectodomain, a single transmembrane domain (TMD) and a comparatively short
cytoplasmic tail. The transmembrane region is the key link of information transmission and
interaction between TMD and cytoplasmic tail, regulating the affinity between integrins and their
ligands. Though they vary in size, the classic a subunit is made up of around 1,000 amino acids,
compared with 750 for the b subunit (2).

As unique adhesion molecules, integrin can signal in both directions across the plasma
membrane. Intracellular activators like talins trigger the conformational changes of integrins and
recruit multivalent protein complexes (“clusting”) that bind directly or indirectly to the integrin
cytoplasmic tail (3–5). These combinations represent a complex, highly dynamic system that relates
to ligand-binding affinity, which is responsible for regulating various aspects of cellular fate like cell
migration and extracellular matrix (ECM) assembly and remodeling (6). Events introduced above
are called “inside-out” signaling. Integrins also enable human cells to respond to changes in the
extracellular environment through outside-in signaling. Outside information communicates to cells
via intracellular means, bringing about changes in cell polarity, cytoskeletal structure, gene
expression, cell survival and proliferation (7).

Integrin heterodimers are often classified by the special sequences they can recognize. Those
sequences are generally known as RGD or LDV tripeptides, or some complex peptide like GFOGER.
Researchers conventionally classified integrins into 4 types: RGD receptors, collagen receptors,
laminin receptors and leukocyte-specific receptors (8). For example, Integrin avb3 binds to a
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spectrum of ECM molecules using the RGD triple-peptide motif
(9), which includes von Willebrand factor, fibronectin,
fibrinogen, proteolyzed forms of collagen and laminin, and
vitronectin. Other integrins, like a5b1, can only selectively
bind to fibronectin (10).

The binding of integrins and ligands are not only located in the
classical extracellular matrix (ECM). Integrin interacts with various
proteins on the surfaces of cells, even on fungal cells and viruses.
Those proteins include hormones, growth factors, and polyphenols
(11). Notably, many growth factors bind to the ECM, and the spatial
arrangement of integrin and growth factor binding sites in the ECM
enables simultaneous engagement of their cognate receptors on the
plasma membrane (12). Integrin involves in proliferative signaling,
tumor invasion and metastasis, evasion of apoptosis, and
stimulation of angiogenesis. This was achieved by cooperating
with growth factor receptors like epidermal growth factor receptor
(EGFR), ErbB-2 to amplify downstream pathways such as PI3K,
AKT, MAPK and the Rho family small GTPases (13). Tejeshwar
et al. found that EGFR regulates integrin tension and the spatial
organization of focal adhesions, and that the mechanical tension
threshold for outside-in integrin activation is tunable by EGFR (14).
There are also plenty of non-ECM molecules that interact with
integrins, making integrins essential mediators of cell biology.
ACTIVATION AND SIGNAL
TRANSMISSION OF INTEGRIN

Each integrin exists either in the "bent" state of low-affinity or in
an extended high-affinity conformation (15–17). The transition
from a "bent" to an extended conformation is called "activation,"
which is reversible and rapid. This process involves two key
mechanisms: the extension of the head and the separation of the
legs, which are triggered by "inside-out" or "outside-in" signals
(18, 19). However, recent work clearly illustrated that integrins
are vertically positioned on the cell membrane and exist in three
main conformations: bent-closed (inactive), extended-closed
(active, low affinity) and extended-open (active, high affinity)
conformations (20). (Figure 1) There are two common models
for activation of integrins: the ‘‘switchblade’’ and the ‘‘deadbolt’’
models, which describe a transition state from the curved one to
the extended conformation (21–23). (Figure 2)

As we know, one of the fully studied integrin pathways is the
focal adhesion kinase (FAK) signaling pathway. Upon binding to
its specific ligand, it leads to maximal FAK activation. The FAK-
Src complex has multiple downstream effectors (24). FAK-Src
complex promotes the activity of a GTPase which belongs to the
Ras superfamily, which is generally known as Rac1 (Ras-related
C3 botulinum toxin substrate 1). Rac1 activation is involved in
spreading and in the early stages of migration (25). At later stages
of cell spreading or for instance, by constitutive activation of
avb3 via ligand binding, RhoA activity leads to the formation of
stressfibers and promotes migration (26). In addition,
phosphorylation of FAK leads to the Ras-mediated activation
of the MAP-kinase pathway (MAPK/ERK pathway), which is
associated with proliferation and tumorigenic behavior. Through
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this pathway, several transcription factors such as the oncogene
C-myc and C-jun are activated via phosphorylation. Therefore,
the activation of the MAPK pathway leads to the transcription of
genes that are important for cell proliferation and cell
cycle progression. This pathway can be activated by cell
adhesion (e.g., binding of a5b1 to fibronectin) or growth
factors (such as epidermal growth factor (EGF) (27, 28).
Moreover, phosphorylated FAK connects with PI3K, which
leads to the activation of AKT via PDK1 (29). The AKT
signaling pathway can also lead to the phosphorylation of YAP
which acts as an apoptotic suppressor (30). The activation of
YAP represents a cross-talk with a newer signaling pathway
known as Hippo pathway. This pathway controls organ size by
regulating cell proliferation and apoptosis (31).

Dynamic remodeling of adhesions is an important mechanism
employed by cells to regulate integrin–ECM interactions and
cellular signaling. This is done through rapid endocytic and
exocytic trafficking of integrin receptors during cell migration,
invasion and cytokinesis. Integrin traffic is relevant in several
pathological processes, especially in cancer. Importantly,
conceptual progress in the field has identified well-known
cancer oncogenes and mutations as being crucial regulators of
integrin traffic. To support their proliferation rate, cancer cells
exploit active integrin-mediated ECM endocytosis to directly
acquire nutrients from the extracellular environment (32).

Integrin activation is a process of conformational changes which
allows integrins to bind their ligands. This process is well modulated
through the interaction between the integrin a/b cytoplasmic tails
(CTs) and their binding partners. Many researchers believe that the
change of cytoplasmic tail is the main cause of conformational
change (33). Evidence suggests that talins and kindlins are the
proteins that bind to cytoplasmic domain and mediate this process
(34). In "inside-out" signaling, intracellular activators such as talins
or kindlins, binding to the CTs of b subunit leads to the separation
of the a and b tails and induces conformational changes in the
ectodomain, thereby increasing its affinity for ligands, also known as
the "activation" of integrin (35, 36). Conformational changes and
clustering of a single integrin can affect affinity to its ligands (15).
The affinity of integrin can also be regulated by ligand in vitro to
induce conformational changes in the extracellular domain of
integrin. Studies suggest that intracellular tensile forces can also
lead to integrin activation that is ultrasensitive to lower levels of
forces compared with cytoskeletal adaptor binding alone (37). In
general, the bi-directional signaling reactions are regulated by the
dynamic interaction of integrins and proteins on both sides of
the membrane.

Talin is one of the most well-known integrin activators that
mediates integrin adherence to the extracellular matrix. Talins
activate integrins by binding to the CTs of b-integrin via its
typical 4.1-protein/ezrin/radixin/moesin (FERM) domain. The
membrane-proximal NPxY of b-tail has been identified as the
talin-binding site, and the membrane-distal NPxY specifically
interacts with kindlins. By binding integrins to actin, talin
increases the affinity to the corresponding ligands (integrin
activation) as well as recruits a large number of proteins to form
the core of the integrin adhesion complex, which in turn activates
February 2022 | Volume 12 | Article 812480
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adhesion plaque kinases (FAK) and Src family kinases (SFKs)
(Figure 1). For example, loss of talin-1 leads to diminished in
vivo metastasis of prostate cancer cells via FAK–Src complexes and
AKT kinase signaling (38). Downregulation of talin-1 has also been
shown to promote hepatocellular carcinoma progression (39). In
platelets, talin-1 is the principal direct effector of Rap1 GT Pases that
regulates platelet integrin activation in hemostasis (40). Researchers
now have established a pipeline approach to evaluate the effect of
talin-1 mutations. Through a series of computational methods,
biochemical and cell biological analysis, results suggested cancer-
related point mutations in talin-1 can affect cell behaviour and so
may contribute to cancer progression (41).

Another family of FERM-containing proteins is kindlins, which
are a recently discovered integrin interaction partners that play a
synergistic role in talin activation of integrin. Although the
molecular details of talin-mediated integrin activation are known,
the mechanism of kindlin involvement in this process remains
elusive. In the knockout and overexpression experiments, kindlin-1,
Frontiers in Oncology | www.frontiersin.org 3
kindlin-2, and kindlin-3 could regulate specific integrin activation,
but only in accordance with the interaction between talin-1 and the
cytoplasmic tail of integrin. Activation of integrin aIIbb3 was
enhanced by co-expression of kindlin-1 or kindlin-2 and
decreased by knocking out endogenous Si-RNA of kindlin-2. The
ligand binding to integrin aIIbb3 is activated due to an
overexpressed N-terminal head domain of talin (42–44). Ussar S,
et al. found that deletion of kindlin-1 in intestinal epithelial cells or
colon cancer cell lines reduced talin-dependent integrin b1
activation or directly reduced integrin-mediated cell adhesion
(45). Interrupting kindlins’ dimer formation impairs kindlin-
mediated integrin activation (46). Zainab H. used all-atomic
microsecond-scale molecular dynamics simulations of integrin
aIIbb3 TM/CT structure in an explicit lipid-water environment
and then found that kindlin-2 cooperates with talin-1 to facilitate
integrin aIIbb3 activation by enhancing talin-1 interaction with the
membrane proximal (MP) region of b3-integrin (47). Both
talins and kindlins are essential for integrin conformational
FIGURE 1 | Signal transduction of the integrin family. From an inactive conformation to a low affinity, intermediate state that may arise from talin and/or kindlin
binding. And in the active state, integrin subunits were separated, forming a 45 degree angle. Integrins are connected to the actin cytoskeleton and can initiate
cytoskeletal remodeling (Left). Integrin-controlled cell migration is largely mediated by signaling pathways involving members of the focal adhesion kinase (FAK)-SRC
family kinase. Integrins are ligated and initiate multiple downstream effectors.
February 2022 | Volume 12 | Article 812480
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activation, to which they seem to contribute differently by allowing
the vinculin-mediated perception of mechanical forces (talins) and
triggering biochemical signaling pathways (kindlins) (48), e.g.
through paxillin and focal adhesion kinase (FAK) (49–51).
Though they cooperatively support integrin activation, the
functional significance of post-translational modifications of
kindlins controlling integrin signaling has been gradually
recognized (52).

When it comes to integrin activation, some accelerants such as
paxillin (51, 53), ADAP (54) and migfillin (55) must be mentioned.
There are also some inhibitors, such as ICAP-1 (56), filamin (57, 58)
and sharpin (59), allowing for forfine-tuning of the integrin
activation process. Findings showed that sharpin may complex
with both kindlin-1 and the integrin-b1 cytoplasmic tail to restrict
the talin head domain binding, thus inhibiting b1-integrin
activation. Besides, integrins also interact with many cytoplasmic
proteins, such as Filamina, Dok1 and 14-3-3 proteins, etc. (60).
EFFECTS OF INTEGRINS ON
SELF-RENEWAL AND PROLIFERATION
OF TUMOR STEM CELLS

In cancer, the strict control of proliferation is lost due to extrinsic
factors such as the presence of mitogenic compounds (growth
factors, cytokines or exogenous substances) or intrinsic factors
Frontiers in Oncology | www.frontiersin.org 4
such as activation of oncogenes, converting cancer cells in a self-
sufficient entity. In this context, integrins play a crucial
role by directly promoting proliferation or by indirectly
interacting with growth factor receptors. Interactions between
growth factor receptors and integrins in cancer are involved
in proliferation. Three types of interactions can be distinguished
(1): direct interaction (2), modulation of expression levels and (3)
reciprocal activation (61). Integrin signaling has been shown
to drive many stem cell functions. Plaks et al. found that
specialized extracellular matrix niches and integrin signaling
support the function of normal stem cells and their tumor
derivatives (62). It has been found that integrin b1 mediates
the adhesion of basal keratinocytes to the basement membrane in
epithelium and controls the stem cell renewal by regulating
the polarity axis of asymmetric cell and cell cycle progression
(63). The highly expressed laminin binding to integrin a6b1
of tumor stem cells not only promotes adhesion to the surface of
the endothelial basement membrane near the lumen, but also
transmits self-renewal signals through FAK (64). Integrin aVb5
could play as a functional cancer stem cell marker essential
for glioblastoma maintenance and ZIKV infection, providing
potential brain tumor therapy (65). A recent study found arsenic
and BaP co-exposure human bronchial epithelial cells have a high
expression of integrin a4, leading to activation of the Hedgehog
pathway and PI3K/Akt pathway, enhancing arsenic and BaP co-
exposure-induced cancer stem cell (CSC)-like property and
tumorigenesis (66).
FIGURE 2 | Models of integrin conformational activation. Take integrin aVb3 for example, there are two common models for activation of integrins, the ‘‘switchblade’’
and the ‘‘deadbolt’’ models, to describe a transition state from the low affinity state (left) and high affinity state (right). (This picture modified from Bidone
TC. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophys J. 2019 Mar 19;116 (6):1000-1010. doi: 10.1016/j.bpj.2019.02.011. Epub 2019
Feb 22.).
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ROLE OF INTEGRINS IN ADHESION AND
TUMOR INVASION

Extensive evidence shows that the expression of integrin is
significantly different in tumor cells compared to normal ones.
Integrin signaling in cancer cells is dysfunctional, which is of
significance to understand how tumor cells use integrin activity
to regulate invasion and movement and to study the regulatory
mechanism of integrin function.

It is well known that the transition from carcinoma in situ to
invasive cancer is driven by a series of adhesion changes. By
remodeling or dissolving E-cadherin-dependent junctions and
integrin-mediated adhesion, unparted cancer cells or groups of
cancer cells would separate from adjacent normal cells and the
basement membrane below. Through FAK and SFKs, integrins
directly phosphorylate E-cadherin-b-catenin complex to
remodeling E-cadherin-dependent junctions, promoting the
migration and invasion of cancer cells (67). Integrin-mediated
adhesion of fibronectin triggers a negative feedback signal that
blocks the formation of E-cadherin mediated cell-to-cell
adhesion (68). Putting integrin b1 into b1-deficient epithelial
cells resulted in loss of cell contact and dispersion of cells (69),
suggesting that integrin-extracellular matrix adhesion plays an
inhibitory role in the regulation of cell-cell junctions.
Therefore, the internal and external signals of integrins can
disrupt intercellular adhesion by increasing myosins ’
contractibility and E-cadherin junction stability through FAK
and SRC signals (70). Integrin and integrin-dependent
processes are implicated in almost every step of cancer
development, including tumor growth, invasion and perfusion
into the vascular system, survival of circulating tumor cells,
extravasation into secondary sites, and metastasis and
colonization of new tissues. Integrins expressed on the cell
surface is to adhere to the ECM. Ligation provides traction
that is essential tumor cell survival and invasion. A recent study
has indicated that hypoxia selectively enhances the expression
of integrin a5b1 receptor in breast cancer to promote
metastasis (71). The expression and potential roles of
thrombospondins (TSP-4) in the crosstalk between CAFs and
gallbladder cancer (GBC) cells has remained unclear. Research
showed that a complex TSP-4/integrin a2/HSF1/TGF-b
cascade mediates reciprocal interactions between GBC cells
and CAFs, providing a promising therapeutic target for
gallbladder cancer patients (72).

For most solid tumors, the basement membrane first needs to
be breached. This process is thought to require proteolysis, and
integrins play their roles by upregulating the expression of
matrix metalloproteinases (MMP) and promoting the
activation and function of proteinases at the extracellular
matrix. Integrins control cell migration and invasion by
influencing the activity and localization of matrix-degrading
proteases, such as urokinase-type plasminogen activator (uPA)
and MMP2 (73, 74) Invasive cancers penetrate the stroma
through a variety of different integrin-dependent mechanisms
and migrate to surrounding tissues in the form of a single cell or
groups of cells (75). Futhermore, tumor-associated fibroblasts
Frontiers in Oncology | www.frontiersin.org 5
(CAFs) can promote cancer progression through several
integrin-related mechanisms. Invasion is caused by deposition
or regulation of fiberectin arrangement or by direct physical
pulling of cancer cells from the primary tumor (76–79). In order
to metastasize smoothly, tumor cells must attach to vasculature
in distant organs and penetrate into perivascular tissues.
Thrombosis is thought to support cancer metastasis through
the recruitment of fibronectin to activate integrins. After
extravasation, the contact of integrin with the extracellular
matrix in perivascular tissue could determine whether the
inoculated tumor cell would continue to proliferate or become
dormant state (80–82). Integrin trafficking is also crucial for
collective cell migration or morphogenetic movements of cell
sheets. Rab-coupling protein (RCP)-dependent integrin
recycling pathway was employed by invasive cancer cells for
effective migration (83, 84).
EFFECTS OF MULTIPLE INTEGRIN
SIGNALS ON TUMOR
MICROENVIRONMENT

Generally, tissue has a strictly regulated, specific optimum
hardness (85), which is perceived by cells through integrins
and their cytoskeletons. Hence, integrins are important
mechanical receptors, and together with other adherent
proteins such as integrin-activated proteins, talin, nucin and
CRK-related substrates, convert mechanical signals into
biochemical signals (86, 87). Several studies have discussed
the role of integrin in angiogenesis, especially the integrin av.
Evidence suggests that integrin av promotes tumor angiogenesis,
depending on environments (88). Integrin a6b4 may also exert a
similar environment-dependent pro-angiogenesis effect (89). In
contrast, integrin a3b1 signaling in endothelial cells negatively
regulates tumor angiogenesis by decreasing VEGFR2 expression
(90). Signals from integrins also influence other behaviors in the
tumor microenvironment. Studies show that TNFa pro-
apoptotic signaling is regulated by the ECM and the integrin
that is engaged, and Integrin a6b1 is inhibitory for the pro-
apoptotic signal of TNF (91).

Integrins play bidirectional regulatory roles between cancer
cells and cancer-associated fibroblasts (CAFs). CAFs that express
IL-32 contain an RGD cell attachment sequence that binds to
integrin b3-positive cancer cells to promote breast cancer cell
invasion and metastasis (92). CAF-derived extracellular vesicles
that express annexin A6 plays a pivotal role in gastric cancer drug
resistance via activation of b1 integrin-FAK-YAP signaling (93).
Colorectal cancer cells express integrin avb6 activated CAFs
through TGF-b, which subsequently secrete stromal cell-
derived factor-1 (SDF-1) and promote colorectal cancer cell
metastasis (94). These research studies reveal that integrins act
as receptors that regulate the interactions between CAFs
and cancer cells in tumor progression and drug resistance.
Studies in the future may reveal more about the integrin
signaling mechanisms involved about remodeling the tumor
February 2022 | Volume 12 | Article 812480

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Integrin in Tumorigenesis
microenvironment during tumor development. Factors secreted
by cancer cells profoundly alter the biology and composition of
the stroma by inducing immune cells, triggering angiogenesis,
and inducing the activation of CAFs, which generates a lot of
tumor-promoting signals (76).
CLINICAL APPLICATION OF INTEGRIN

Integrins have been seen as potential therapeutic targets since they
were discovered to promote pathogenic processes. The inhibition of
integrins has led to several marketed drugs, and many others are
being investigated preclinically in both academic and industry
settings. Since 2015, there have been at least 130 clinical trials of
integrin-targeted therapies (95). Unfortunately, there are still a few
unsuccessful inhibitors (Table 1). Efalizumab, which targeted aL
integrins, was withdrawn from the market because of multiple cases
of progressive multifocal leukoencephalopathy (PML), said to be
involved with inhibition of a4-containing integrins and aLb2 (96).

Previous studies have found that a4 and b2 integrins are
receptors mediating the neutrophil adhesion to the endothelium.
Researchers evaluated the a4 and b2 integrins’ expression and
functions in human primary neutrophils obtained from patients
having chronic non-healing wounds and undergoing a prolonged
hyperbaric oxygen therapy (150 kPa per 90 minutes). Cell
adhesion function of both neutrophilic integrins a4b1 and b2
was significantly reduced, which could be of great importance for
the design of novel therapeutic protocols focused on anti-
inflammatory agents (97). Integrin aVb3 is highly expressed on
activated endothelial cells of tumor neovasculature and thus is key
to tumor angiogenesis. RGD-binding integrins, mainly the av
integrin subfamily and important to the whole integrin family, are
introduced about their expression in different human cancers and
their pre-clinical antagonists. (Table 2) New molecules that target
av-containing integrins are now entering clinical trials for fibrotic
diseases, including idiopathic pulmonary fibrosis (IPF) and
nonalcoholic steatohepatitis (NASH), which have high and
increasingly unmet medical need (95, 98, 99).

Integrins can also be used in diagnostic imaging. Integrin-
inhibiting peptide Apticitide (TC-99M-P280), a gpIIbIIIa
imaging technique for the diagnosis of acute deep venious
Frontiers in Oncology | www.frontiersin.org 6
thrombosis, is now available. [99mTc]3PRGD2 imaging is
valuable for the diagnosis and staging of esophageal cancer. It
may be less sensitive than [18F]FDG imaging for detecting
metastatic lesions in small lymph nodes. The T/B value was
correlated with the expression of integrin aVb3 (100). Integrin
aVb3 in imaging is in the PH2 trial phase. It is reported that
other imaging agents are in the early stage of development (101,
102). As a PET tracer 18F-Alfatide II has been recently proven to
possess good diagnostic value in distinguishing between breast
cancer and benign breast lesions (103). Neil et. al found that Ga-
68-Trivehexin is a promising probe for imaging of aVb6-
integrin expression in human cancers because of its high
expression density at the boundary of tumor and healthy tissue
(104). Recent studies also show that it may be possible to develop
next-generation nanomedicine based on the combined
derivatives of resveratrol and tetrac targeting the Integrin
avb3 (105).
CONCLUSION

Integrins have attracted much attention in recent years and are
closely related to the development of cancers. We discussed
much about the significance of integrin in cell migration and cell
adhesion, which are important processes in tumor growth.
Integrin-mediated cancer signals are also initiated by several
integrin-binding proteins, which include talins, kindlins, MMPs,
osteopontin, actinin and so on. Integrins interact with the actin
cytoskeleton through these signaling molecules. And because of
the polymerization and contraction generated by actin, the main
signaling occurs while integrin activates. However, when integrin
is misregulated, various mechanisms unfreeze the regulation of
integrin signaling in cancer, enabling tumor cells to proliferate
unrestrictedly and invade some tissue boundaries, allowing them
to survive in microenvironments. The diversity of integrin and
their roles in many diseases indicate the great potential of this
superfamily as a drug target. Nowadays, designing drugs specific
to integrin activation is possible as the structure of integrin has
been recognized. By studying the mechanism of integrin and its
related signaling pathways, we consider by regulating the
expression of integrin or blocking the downstream signaling
TABLE 1 | Integrin-targeting drugs once came out.

Inhibitor Name Target Mechanism Application In Market

Lifitegrast aLb2 prevents
lymphocyte adhesion

Dry eye disease 2016

Vedolizumab a4b7 inhibits binding
to MADCAM1

Ulcerative colitis
and Crohn’s disease

2014

Natalizumab Pan-a4 inhibits ligand
binding to a4b7 and a4b1

Multiple sclerosis
and Crohn’s disease

2004

Efalizumab aL preventing
lymphocyte activation and migration

Plaque psoriasis 2003
(withdrawn

2009)
Tirofiban aIIbb3 inhibits binding to fibrinogen Coronary syndrome

and CVD
1998

Eptifibatide aIIbb3 inhibits binding to fibrinogen Coronary syndrome
and CVD

1998
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pathways of integrin to make its function. Although integrins
have been discovered for more than 100 years, only a few of their
inhibitors have been used in clinical applications, and no specific
therapeutic inhibitors have been developed for cancer. Therefore,
selectively blocking this acquired migration and invasion ability
by targeting key metastatic molecules or regulatory proteins like
integrin would be an attractive therapeutic strategy.
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