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Abstract

Background: Predictive alerts for impending hypoglycemic events enable persons with type 1 diabetes to take preventive
actions and avoid serious consequences.

Objective: This study aimed to develop a prediction model for hypoglycemic events with a low false alert rate, high sensitivity
and specificity, and good generalizability to new patients and time periods.

Methods: Performance improvement by focusing on sustained hypoglycemic events, defined as glucose values less than 70
mg/dL for at least 15 minutes, was explored. Two different modeling approaches were considered: (1) a classification-based
method to directly predict sustained hypoglycemic events, and (2) a regression-based prediction of glucose at multiple time points
in the prediction horizon and subsequent inference of sustained hypoglycemia. To address the generalizability and robustness of
the model, two different validation mechanisms were considered: (1) patient-based validation (model performance was evaluated
on new patients), and (2) time-based validation (model performance was evaluated on new time periods).

Results: This study utilized data from 110 patients over 30-90 days comprising 1.6 million continuous glucose monitoring
values under normal living conditions. The model accurately predicted sustained events with >97% sensitivity and specificity
for both 30- and 60-minute prediction horizons. The false alert rate was kept to <25%. The results were consistent across patient-
and time-based validation strategies.

Conclusions: Providing alerts focused on sustained events instead of all hypoglycemic events reduces the false alert rate and
improves sensitivity and specificity. It also results in models that have better generalizability to new patients and time periods.

(JMIR Diabetes 2021;6(2):e26909) doi: 10.2196/26909
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Introduction

Glucose measurements are critical for effective diabetes
management. Real-time continuous glucose monitoring (CGM)

devices allow for frequent, automated glucose readings from
interstitial fluid in the subcutaneous tissue space. CGM has been
shown to improve glycemic control and reduce glycemic
excursions—decreasing both hypoglycemia and hyperglycemia
[1]. An important feature of CGM devices is their ability to
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provide real-time auditory alerts for trending glucose excursions
above or below customized threshold levels. The CGM data
can also be used to develop models to predict future
hypoglycemia [1,2].

Since the first attempt at predicting future glucose values based
on CGM data in 1999 [3], numerous studies have been
performed to provide alerts for hypoglycemia based on
predictive models. Some of the initial works relied on classical
time-series based forecasting methods such as autoregressive
integrated moving average (ARIMA)–ARIMAX [4-9] and
state-space models [10-19]. Later, different machine learning
methods were explored to predict future glucose values [20-25].
More recently, deep learning techniques have been proposed
toward solving the problem [26-33]. Some works have also
explored incorporating contextual data such as meal information,
insulin levels, heart rate, and physical activity as features in the
predictive model [34-40]. However, currently integrated
information on the data sources is not readily available for
real-time predictions.

Predictive hypoglycemia alerts have the potential to be
extremely helpful in reducing hypoglycemia risk; however,
false alerts have been a major hindrance to the acceptance of
predictive hypoglycemia alerts among users [41-43]. In our
earlier work, we developed a machine learning–based
hypoglycemia predictive model with a sensitivity and specificity
of >95%, comparable with the best predictive models in the
literature [44]. Typically, the number of hypoglycemic events
is very small compared with that of nonhypoglycemic events.
For example, only 2.13% (35,075/1,644,875) of readings in the
data set used in this study were in the hypoglycemic range (ie,
<70 mg/dL). The high-class imbalance resulted in a false alert
rate (FAR) of around 85% (40,502/47,683), even with an
impressive specificity of 95%. Improvement in specificity in
such highly imbalanced class cases will reduce the FAR and
therefore improve user experience and trust in the alerts,
facilitating persuasive adoption of alerts.

Previous studies have found that hypoglycemia prediction model
performance is reduced when applied to new patients and
different time periods [45]. Improvement in model
generalizability to new patients and time periods will facilitate
ease of deployment and retention of performance
postdeployment.

Thus, despite the many advances made in terms of hypoglycemia
prediction models, the shortcoming of a high FAR makes the
alerts ill-suited for real-world application [42,46,47]. These
results indicate a need for the development of approaches to
reduce the FAR, maintain high sensitivity, and improve the
generalizability of the prediction model.

Methods

Data Description
The CGM data sets were obtained from 110 pediatric patients
with type 1 diabetes over 30 to 90 days. The data comprised
over 1.6 million CGM values under normal living conditions.
Dexcom G6 CGM devices were used to collect the CGM
readings. The cohort-level profile of patients in this study can
be found in Table 1. Summary statistics of a patient
hypoglycemia profile and a patient pump profile are presented
in Multimedia Appendices 1 and 2, respectively. Of note, data
were obtained from a mix of patients using multiple daily
injections, sensor-augmented pump therapy without automated
basal rate modulation, and sensor-augmented pump therapy
with a predictive low-glucose suspend feature (ie, t:slim X2
insulin pump with Basal-IQ technology; Tandem Diabetes Care,
Inc [48]). The t:slim X2 insulin pump uses a simple linear
regression algorithm to predict glucose levels 30 minutes ahead
and suspend basal insulin in the pump if glucose values are
predicted to drop below 80 mg/dL in the next 30 minutes or if
a CGM value falls below 70 mg/dL. Insulin delivery can remain
suspended for a minimum of 5 minutes to a maximum of 2 hours
and will then resume as soon as glucose values begin to rise.

Table 1. Demographic and diabetes profile of patients enrolled in the study.

MaximumMinimumMean (SD)Characteristic

Baseline demographics

21112.67 (4.84)Age (years)

12.505.007.70 (1.63)Glycated hemoglobin A1c (%)

19.180.254.93 (4.09)Duration of diabetes (years)

Continuous glucose monitoring metrics

23.730.106.20 (5.98)Number of hypoglycemic values per day per patient

12.200.502.13 (2.10)Percentage of hypoglycemic values below 70 mg/dL

Hypoglycemic Events
A glucose threshold of 70 mg/dL is used to identify the
hypoglycemic range [49,50]. Of the 1.6 million CGM readings
in the study data, approximately 35,000 values representing
6010 events were in the hypoglycemic range. The period of
time between a first CGM reading below the threshold and the

point where the CGM value rises to ≥70 mg/dL is considered
a single “hypoglycemic event.”

Table 2 shows the frequency distribution of the duration of the
hypoglycemic events. The hypoglycemic events in this analysis
were further classified as transient (lasting less than 15 minutes;
77.24% [4642/6010] of the hypoglycemic events) or sustained
(lasting 15 minutes or longer; 22.76% [1368/6010] of the events)
based on the recommendations in previous studies [51,52].
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Nonhypoglycemic events are CGM observations of ≥70 mg/dL.
Detailed information regarding the distribution of hypoglycemic

events and a breakdown of sustained events by day and night
are presented in Multimedia Appendices 3-5.

Table 2. Frequency distribution of the duration of hypoglycemic events (n=6010).

Duration of consecutive CGM values falling below 70 mg/dL (minutes)Hypo-
glycemic
events

>4545403530252015105

794 (13.21)209 (3.48)283 (4.71)391 (6.51)562 (9.35)676 (11.25)842 (14.01)885 (14.73)796 (13.24)572 (9.51)Frequency, n
(%)

Evaluation Metrics
We define the following metrics for evaluating model
performance: sensitivity, specificity, and FAR.

Sensitivity measures the proportion of true positives that are
correctly identified. It is also known as the true-positive rate.

where TP are the true positives and FN are the false negatives.

Specificity measures the proportion of true negatives that are
correctly identified. It is also known as the true-negative rate.

where TN are the true negatives and FP are the false positives.

FAR was defined based on the definition provided by
Mosquera-Lopez et al [53] and measures the proportion of alerts
that are not truly indicative of predicted hypoglycemic events.

Machine Learning Methodologies

Random Forest
Random forest (RF) is a nonparametric approach that builds on
an ensemble prediction of a “forest” of regression trees grown
via bootstrap sampling. Model predictions are obtained from
the mean of the predictions of the individual trees. RF performs
well when dealing with nonlinear relationships among variables
and makes no assumptions about data distributions. Owing to
these characteristics, utilizing RF-based machine learning
modeling resulted in good performance in our previous work
[44] compared with other machine learning methods for
hypoglycemia prediction. In this study, an RF-based model was
used to classify events as sustained hypoglycemic events
(positive class) or transient and nonhypoglycemic events
(negative class).

Quantile Regression Forest
For the multistep prediction approach, future CGM values were
predicted using quantile regression forests (QRFs). The concept
of quantile regression was introduced by Koenker and Hallock
[54] and is advantageous when quantile functions are of interest.
Quantile functions provide information about the spread of the

response variable beyond the conditional mean by estimating
the full conditional distribution. This is particularly useful for
predicting values other than the mean (eg, median or 90th
quantile). QRFs are a generalization of RFs and provides an
accurate way of estimating the conditional quantiles [55]. Since
it is more important to accurately predict CGM values near the
hypoglycemic range rather than within the euglycemic or
hyperglycemic range, QRFs were used to predict future CGM
values using the regression approach.

QRFs were used as a multistep forecasting method to predict
the glucose values for every 5-minute interval in the prediction
horizon (PH). This resulted in 6 predictions for the 30-minute
PH and 12 predictions for the 60-minute PH. Based on these
predictions, a sustained hypoglycemic event was detected if 3
or more consecutive predicted CGM values were <70 mg/dL.

Validation Mechanism
An appropriate validation mechanism is critical to assess the
performance of a machine learning model [56,57]. This
validation strategy helps to ascertain the generalizability of the
model and ensures that the model performs well in real-world
scenarios. This can be performed by sampling a subset of the
data for model development and sampling a different sample
of data for model validation [58]. Two validation
strategies—patient-based and time-based—were used to evaluate
model performance.

Patient-Based Approach
In this approach, the prediction model was developed on a subset
of patients and validated on a different set of patients. Of the
110 patients, 70 patients (approximately 65% of the data) were
randomly selected for training and the remaining 40 patients
were used for performance evaluation. The final model
performance reported is the mean of 5 replications of this
procedure of 65%/35% split of training and validation data.

Time-Based Approach
In this approach, for each of the 110 patients, the first 70% of
the data was used for model training and the last 30% of the
data was used for validation. The average performance using
validation data on all 110 patients was reported.

Features Extracted for the Prediction
A rich combination of demographic, dynamic, snowball,
interaction, and contextual features were extracted from the
data. An optimal set of features for hypoglycemia prediction
was identified in our previous work [44] and these features were
used for the model development in this study (Multimedia

JMIR Diabetes 2021 | vol. 6 | iss. 2 | e26909 | p. 3https://diabetes.jmir.org/2021/2/e26909
(page number not for citation purposes)

Dave et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Appendix 6). Records associated with missing data were
eliminated from the analysis; that is, if a feature was dependent
on a missing CGM value, that record—as well as all dependent
time-lagged records—were eliminated from the analysis.

Results

Model Performance
Table 3 summarizes the performance of the model based on
patient-based and time-based validation strategies. The total
number of false alerts when considering transient and
nonhypoglycemic events as false alerts and when considering
nonhypoglycemic events as false alerts are provided along with
sensitivity and specificity metrics.

In the patient-based validation approach, for both 30-minute
and 60-minute PHs, the QRF method provided a significant
advantage over the RF method with high sensitivity, high
specificity, and low FAR. The patient-based validation approach
indicated that the sustained hypoglycemic model developed
using QRFs is generic and can be applied to new patients
without performance degradation.

In a time-based validation setting, the RF method performed
well for both 30-minute and 60-minute predictions with high
sensitivity, high specificity, and low FAR, but the QRF method
still outperformed it. The time-based validation methodology
indicated that both models retain performance when applied to
new time periods and in postdeployment.

Table 3. Comparison of model performance based on sensitivity, specificity, and false alerts with patient-based and time-based validation for 30-minute
and 60-minute prediction horizons (PHs).

Time-based validationPatient-based validationMetrics

60-minute PH30-minute PH60-minute PH30-minute PH

Method 2:
QRF

Method 1:
RF

Method 2:
QRF

Method 1:
RF

Method 2:
QRF

Method 1:
RF

Method 2:

QRFb
Method 1:

RFa

97.9195.3498.9496.1797.61 (0.41)49.27
(3.03)

99.09 (0.16)39.11 (2.25)Sensitivity, % (SD)

98.2097.9598.2998.398.09 (0.11)98.63
(0.12)

98.19 (0.10)98.65 (0.09)Specificity, % (SD)

False alerts, n (SD)

84657346821164769672 (431)7043 (317)9339 (459)6936 (356)Considering transient and
nonhypoglycemic events
as false

47994334453133245677 (201)4109 (156)5368 (162)3907 (200)Considering only nonhy-
poglycemic events as
false

23.7926.4123.8622.7926.36 (2.57)26.44
(2.37)

26.50 (2.41)26.32 (2.56)False alert rate, % (SD)

aRF: random forest.
bQRF: quantile regression forest.

Comparison of Sustained Versus All Hypoglycemic
Events Prediction Models
Table 4 provides a comparison of model performance between
sustained hypoglycemia and all-hypoglycemia prediction
models. Even though the all-hypoglycemia model had high
sensitivity, a specificity of 93% on a large number of
nonhypoglycemic events resulted in an FAR of 85%. Focusing
the alerts on sustained hypoglycemic events resulted in an

increase in specificity to 98% and reduced the FAR to
approximately 20% to 30%. Also, the performance of the all
hypoglycemic events prediction model was adversely affected
when evaluated on new patients and new time periods (drop in
sensitivity of 5%). On the other hand, prediction models based
on sustained hypoglycemic events retained their performance
for new patients and new time periods, indicating better
generalizability of the sustained hypoglycemic events model.
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Table 4. Comparison of model performance based on sensitivity, specificity, and false alert rate with different characterizations of hypoglycemic events
and different validation strategies (patient-based and time-based) for giving predictive alerts.

60-minute prediction horizon30-minute prediction horizonModel

False alert rate (%)Specificity (%)Sensitivity (%)False alert rate (%)Specificity (%)Sensitivity (%)

77.2089.8291.0184.9493.5093.61All hypoglycemic events predic-
tion (5-fold validation)

79.8187.2973.8785.1692.6687.10All hypoglycemic events predic-
tion (new time periods)

71.5087.0673.7975.2092.4787.60All hypoglycemic events predic-
tion (new patients)

30.1997.5898.1330.0097.7999.08Sustained hypoglycemic events

prediction (QRFa—new patients)

22.4498.4997.7222.3698.5798.54Sustained hypoglycemic events
prediction (QRF—new time peri-
ods)

aQRF: quantile regression forest.

A graphical comparison between the classifiers at different
threshold values using receiver operating characteristic (ROC)
curves can be found in Multimedia Appendix 7. The ROC plots
show that the QRF model outperformed the RF models over
the entire range of sensitivity and specificity levels. Table 5

shows the QRF model's performance metrics at different
threshold levels. The table also presents the average time
required to predict a hypoglycemic event at different threshold
levels.

Table 5. Performance of the quantile regression forest model at different thresholds and the average time to predict a hypoglycemic event.

60-minute prediction horizon30-minute prediction horizonMetric

Threshold 3Threshold 2Threshold 1Threshold 3Threshold 2Threshold 1

98.9998.2997.7299.5199.2798.54Sensitivity (%)

95.5397.0698.4996.6897.5698.57Specificity (%)

21,29714,027721516,04911,9606932False alerts (n)

16,7759956397412,00781493736False alerts with transient events as positives (n)

46.9637.1922.4443.3435.3622.36False alert rate (%)

48.3535.0825.2426.5122.9518.78Average time to predict an event (minutes)

Discussion

Principal Findings
We present a robust prediction model for providing high-quality
alerts for sustained hypoglycemic risk in patients with type 1
diabetes. The final model (QRF model) was demonstrated to
be robust to different validation approaches that best represent
real-world application scenarios (new patients and new time
periods). The primary research contributions of this work are
(1) the development of a prediction model that focused on
sustained hypoglycemic events and resulted in high sensitivity,
high specificity, and a low FAR; and (2) improved
generalizability of the model to new patients and new time
periods. The model makes use of only CGM data in the past 4
hours and contextual information about the current hour of the
day and day of the week to make predictions. A methodology
contribution is the use of glucose predictions at multiple time
points to facilitate inference of sustained hypoglycemia. The
model was built using data collected from 110 patients over a
range of 30 to 90 days under normal living conditions, ensuring
validity of the results. The QRF model proposed in this work

had sensitivity and specificity >97% for both 30- and 60-minute
PHs. The FAR was also kept low at 22% and 29% for 30-minute
and 60-minute PHs, respectively, which will lead to improved
user trust in and adoption of CGM-based alerts.

Comparison with the Literature
A comparative analysis of different hypoglycemia prediction
methodologies can be found in the literature [11,20,59,60]. A
straightforward comparison between different hypoglycemia
prediction studies is complicated due to differences in CGM
sensors used, sampling intervals, and data collection
(synthetically generated, controlled study, free-living
conditions). In addition, different studies have used different
definitions of hypoglycemia, which makes their findings difficult
to compare [21,61-63]. When using a regression approach, the
majority of the works present an overall root-mean-square error
(RMSE) value, but accuracy pertaining to the observations in
the hypoglycemic range might be more relevant. Thus, providing
an overall RMSE for the entire data set could misrepresent the
model's performance. On the classification side, sensitivity and
specificity provide accurate information on the TPs and FPs,
respectively. However, due to high-class imbalance, even a
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moderately high specificity can lead to a high FAR. It becomes
important to consider the FAR, in addition to sensitivity and
specificity, in such class-imbalanced applications.

In machine learning, a standard approach to validate prediction
models is to split the data into a training set (to train the model)
and a validation set (to evaluate model performance) [64]. This
random partitioning of the data into training and validation
subsets and repeating the process across multiple folds is called
cross-validation. Studies across the literature have used different
validation strategies such as random sampling [20,65-67],
time-based splitting [4,5,67-69], patient-specific splitting
[6,32,53,70,71], or a combination of these methods to estimate
predictive model performance. Simple random sampling–based
cross-validation [72,73] may not fully address the
generalizability aspect of the model to new patients and new
time periods. Some studies [6] using a patient-based validation
strategy used a part of their test data for tuning model
parameters, which affected the validity of the performance
estimation. The model presented in this paper had high
performance in both patient- and time-based validation methods.

Mosquera-Lopez et al [28] used a patient-specific validation
approach in which patient data in the test set were exclusive
from the training data. Performance was reported on metrics
such as sensitivity, RMSE, and FARs. However, leveraging
some of the preprocessing and postprediction error-correction
steps to improve performance made it difficult to achieve similar
results in a real-world setting. Also, the test performance was
evaluated on a small sample size of 10 patients (in a 4-week
study). This might affect the generalizability of the presented
results.

Dave et al [44] recently showed good results with respect to
sensitivity and specificity using a random sampling–based
validation approach and a threshold of 70 mg/dL for
hypoglycemia. However, it was observed that performance of
this model was reduced when applied to new patients and new
time periods (Table 3). In addition, even with sensitivity and
specificity of >95%, the model resulted in an FAR of 80% due
to a large number of nonhypoglycemic events relative to the
number of hypoglycemic events. From a user experience
perspective, this will lead to false alert fatigue. The model
presented in this paper reduced the FAR to 22%.

Having an accurate and actionable hypoglycemia prediction
model with low FARs is essential to the durability of CGM in
diabetes management. Furthermore, a patient-facing
hypoglycemia prediction algorithm may give patients the
confidence to aim for in-range glucose values without fear of
hypoglycemia, potentially leading to lower glycated hemoglobin
A1c (HbA1c) values and increased time in range. Of note, 22.3%
of patients analyzed were using sensor-augmented pump therapy
with a predictive low-glucose suspend feature (ie, Basal-IQ
technology). Patients using this system are still at risk for
hypoglycemia because of insulin on board, exercise, overdosing

on carbohydrates, and/or hyperglycemia, so a notification for
predicted hypoglycemia using advanced machine learning
models with good performance could still be clinically useful.

Limitations
A limitation of our approach is that transient hypoglycemic
events were ignored in generating alerts. Ignoring the transient
events helped the machine learning model better learn the more
stable patterns of sustained events. Even though the alerts were
focused on detecting sustained events, 61% of the transient
events were still classified as FPs. This resulted in just 39% of
the transient events (representing 13% of the total hypoglycemic
events) not being detected. This trade-off was justified because
transient events are not as serious as sustained hypoglycemic
events. Transient events may occur because of random variations
in glycemic levels (ie, noise) or temporal lag in the effect of an
intervention taken by the patient (eg, consuming fast-acting
carbohydrates). In either case, ignoring transient events will
help in learning the stable patterns of sustained hypoglycemia.
The improved FAR, sensitivity, specificity, and generalizability
of the sustained hypoglycemia model presented in this paper
justify this trade-off.

This study was based on patients with pediatric type 1 diabetes
in the age range of 0 to 20 years using Dexcom G6 CGM
devices. As such, the results are directly applicable to this
population. The model may need to be recalibrated to other
CGM devices such as the Guardian (Medtronic) or FreeStyle
Libre (Abbott Laboratories Co.); however, the performance
measures should be generalizable to other platforms provided
the accuracy and frequency of incoming glucose readings remain
the same. Similarly, while no specific activity profile of pediatric
patients was explicitly used in the model development, the
model may need to be calibrated to an adult cohort by retraining
on adult CGM data [74-76]. Pediatric patients were selected as
the focus of the study because of our collaboration in the United
States Food and Drug Administration (FDA)–funded Southwest
National Pediatric Device Innovation Consortium [77].
Additionally, there is a need for a paradigm shift in diabetes
management in pediatrics to avoid risk of hypoglycemia to
ameliorate parental and patient fear and move toward optimizing
time in range and lowering HbA1c.

Conclusions
Providing predictive alerts for hypoglycemia focused on
sustained events instead of all hypoglycemic events reduces
FARs and improves sensitivity and specificity. It also results
in models that have better generalizability to new patients and
time periods. This has important implications for sustaining
CGM use and optimizing glycemic control with fewer
hypoglycemic events, improved confidence, and potentially
lower HbA1c. To that end, the predictive model presented in
this paper will be implemented in a smartphone app in an
upcoming clinical pilot study at Texas Children’s Hospital.
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