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Simple Summary: In this study, we have trained deep learning models using transfer learning and
weakly-supervised learning for the classification of breast invasive ductal carcinoma (IDC) in whole
slide images (WSIs). We evaluated the models on four test sets: one biopsy (n = 522) and three
surgical (n = 1129) achieving AUCs in the range 0.95 to 0.99. We have also compared the trained
models to existing pre-trained models on different organs for adenocarcinoma classification and they
have achieved lower AUC performances in the range 0.66 to 0.89 despite adenocarcinoma exhibiting
some structural similarity to IDC. Therefore, performing fine-tuning on the breast IDC training set
was beneficial for improving performance. The results demonstrate the potential use of such models
to aid pathologists in clinical practice.

Abstract: Invasive ductal carcinoma (IDC) is the most common form of breast cancer. For the non-
operative diagnosis of breast carcinoma, core needle biopsy has been widely used in recent years
for the evaluation of histopathological features, as it can provide a definitive diagnosis between
IDC and benign lesion (e.g., fibroadenoma), and it is cost effective. Due to its widespread use, it
could potentially benefit from the use of AI-based tools to aid pathologists in their pathological
diagnosis workflows. In this paper, we trained invasive ductal carcinoma (IDC) whole slide image
(WSI) classification models using transfer learning and weakly-supervised learning. We evaluated
the models on a core needle biopsy (n = 522) test set as well as three surgical test sets (n = 1129)
obtaining ROC AUCs in the range of 0.95–0.98. The promising results demonstrate the potential of
applying such models as diagnostic aid tools for pathologists in clinical practice.

Keywords: breast; invasive ductal carcinoma; deep learning; weakly-supervised learning; transfer
learning; whole slide image

1. Introduction

Breast cancer is one of the leading causes of global cancer incidence [1]. In 2020, there
were 2,261,419 new cases (11.7% of all cancer cases) and 684,996 deaths (6.9% of all cancer
related deaths) due to breast cancer. Among women, breast cancer accounts for one in
four cancer cases and for one in six cancer deaths in the vast majority of countries (159 of
185 countries) [1].

Invasive ductal carcinoma (IDC) (or invasive carcinoma of no special type: ductal
NST) is a heterogeneous group of tumors that fail to exhibit sufficient characteristics to
achieve classification as a specific histopathological type. Microscopically, there are a
wide variety of histopathological characteristics in IDCs. IDC grows in diffuse-sheets,
well-defined nests, cords, or as individual (single) cells. Tubular differentiation tends to be
well developed, barely detectable, or altogether absent.

Core needle biopsy is frequently used for the management of non-palpable mam-
mogram abnormalities, as it is cost effective and provides an alternative to short-interval
follow-up mammography. It is also generally favored over fine-needle aspiration biopsy
(FNAB) for the non-operative diagnosis of breast carcinoma, and it could replace open
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breast biopsy provided that the quality assurance is acceptable [2,3]. Core needle biopsy al-
lows the evaluation of histopathological features, making it possible to provide a definitive
diagnosis of IDC and benign lesions (e.g., fibroadenoma) in over 90% of cases [4]. All these
factors highlight the benefit of establishing a histopathological screening system based on
core needle biopsy specimens for breast IDC patients. Glass slides of biopsy specimens
can be digitised as whole slide images (WSIs) and could benefit from the application of
computational histopathology algorithms to aid pathologists as part of a screening system.

Deep learning has found a wide array of applications in computational histopathology
in the past few years. The applications from cancer cells classification and segmentation
and patient outcome predictions for a variety of organs and diseases [5–18]. Machine
learning has been previously applied to various applications of breast histopathology
classification [19–24].

In this paper, we trained a WSI breast IDC classification model using transfer learning
from ImageNet and weakly-supervised learning. We have also evaluated on the test sets,
without fine-tuning, models that had been previously trained on other organs for the
classification of carcinomas.

2. Methods
2.1. Clinical Cases and Pathological Records

This is a retrospective study. A total of 2183 H and E (hematoxylin and eosin) stained
histopathological specimens of human breast IDC and benign lesions—1154 core needle
biopsy and 1028 surgical—were collected from the surgical pathology files of three hospitals:
International University of Health and Welfare, Mita Hospital (Tokyo) and Kamachi Group
Hospitals (consist of Shinkomonji and Shinkuki hospitals) (Fukuoka) after histopathological
review of those specimens by surgical pathologists. The test cases were selected randomly,
so the obtained ratios reflected a real clinical scenario as much as possible. All WSIs were
scanned at a magnification of x20 using the same Leica Aperio AT2 scanner and were saved
SVS file format with JPEG2000.

In addition, we collected 100 WSIs from The Cancer Genome Atlas (TCGA); however,
only four benign cases were available.

2.2. Dataset

The pathologists excluded cases that were inappropriate or of poor scanned quality
prior to this study. The diagnosis of each WSI was verified by at least two pathologists.
Table 1 breaks down the distribution of dataset into training, validation, and test sets.
Hospitals that provided histopathological cases were anonymised (e.g., Hospital 1–2).
The training set was solely composed of WSIs of core needle biopsy specimens. The test
sets were composed of WSIs of core needle biopsy or surgical specimens. The patients’
pathological records were used to extract the WSIs’ pathological diagnoses and to assign
WSI labels. Out of the 191 WSIs with IDC, 96 WSIs were loosely annotated by pathologists.
There were about seven annotations per WSI on average. We did not annotate on the
carcinoma in situ areas, and some parts of the adjacent stromal area were included in the
annotations in order to provide contextual information.

The rest of IDC and benign WSIs were not annotated and the training algorithm
only used the WSI labels. Each WSI diagnosis was observed by at least two pathologists,
with the final checking and verification performed by a senior pathologist. The senior
pathologist only reviewed discordant cases between the two initial pathologists.

2.3. Deep Learning Models

We trained all the models using the partial fine-tuning approach [25]. This method
consists of using the weights of an existing pre-trained model and only fine-tuning the
affine parameters of the batch normalisation layers and the final classification layer. We
have used the EfficientNetB1 architecture [26], as well as B3, with modified input sizes of
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224 × 224 px and 512 × 512 px, starting with pre-trained weights from ImageNet. The total
number of trainable parameters for EfficientNetB1 was only 63,329.

Table 1. Distribution of WSIs in the different sets.

Set Source IDC Benign Total

Test

Hospital 1 (biopsy) 289 233 522
Hospital 1 (surgical) 305 240 545
Hospital 2 (surgical) 247 237 484
TCGA (surgical) 96 4 100

Training Hospital 1 (biopsy) 82 343 425
Hospital 2 (biopsy) 107 40 147

Validation Hospital 1 (biopsy) 30 30 60

The training method that we have used in this study is exactly the same as reported
in a previous study [27] with the main difference being the use of a partial fine-tuning
method. For completeness, we repeat the method here.

To apply the model on the WSIs for training and inference, we performed slide tiling
by extracting fixed-sized tiles from tissue regions. We detected the tissue regions by
performing a thresholding on a grayscale version of the WSI using Otsu’s method [28],
which allows the elimination of most of the white background. During inference, we
performed the slide tiling in a sliding window fashion on the tissue regions, using a fixed-
size stride that was half the size of the tile. During training, we initially performed random
balanced sampling of tiles from the tissue regions, where we maintained an equal balance
of positive and negative labelled tiles in the training batch. To do so, we placed the WSIs
in a shuffled queue with oversampling of the positive labels to ensure that all the WSIs
were seen at least once during each epoch, and we looped over the labels in succession
(i.e., we alternated between picking a WSI with a positive label and a negative label).
Once a WSI was selected, we randomly sampled batch size

2 tiles from each WSI to form a
balanced batch. We then switched into hard mining of tiles. To perform the hard mining,
we alternated between training and inference. During inference, the CNN was applied
in a sliding window fashion on all of the tissue regions in the WSI, and we then selected
the k tiles with the highest probability of being positive. If the tile is from a negative WSI,
this step effectively selects the false positives. The selected tiles were placed in a training
subset, and once the subset size reached N tiles, a training pass was triggered. We used
k = 4, N = 256, and a batch size of 32.

A subset of WSIs with IDC were loosely annotated (n = 96) while the rest had WSI-
level labels only (n = 95). From the loosely annotated WSIs, we only sampled tiles from the
annotated tissue regions. Otherwise, we freely sampled tiles from the entire tissue region.

The models were trained on WSIs at ×10 and ×20 magnifications. We used two input
tile sizes: 512 × 512 px and 224 × 224 px. The strides were half the tile sizes. The WSI
prediction was obtained by taking the maximum probability from all of the tiles.

We trained the models with the Adam optimisation algorithm [29] with the following
parameters: beta1 = 0.9, beta2 = 0.999. We used a learning rate of 0.001. We applied a
learning rate decay of 0.95 every 2 epochs. We used the binary cross entropy loss. We used
early stopping by tracking the performance of the model on a validation set, and training
was stopped automatically when there was no further improvement on the validation loss
for 10 epochs. The model with the lowest validation loss was chosen as the final model.

2.4. Software and Statistical Analysis

The deep learning models were implemented and trained using TensorFlow [30].
AUCs were calculated in python using the scikit-learn package [31] and plotted using
matplotlib [32]. The 95% CIs of the AUCs were estimated using the bootstrap method [33]
with 1000 iterations.
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3. Results
A Deep Learning Model for WSI Breast IDC Classification

The purpose of this study was to train a deep learning model to classify breast IDC in
WSIs. We had a total of 1154 biopsy WSIs of which we used 632 for training and 522 for
testing. In addition, we used 1129 surgical WSIs obtained from three sources as part of
supplementary test sets. We used a transfer learning (TL) approach based on partial fine-
tuning [25] to train the models. Figure 1 shows an overview of our training method. We
then evaluated the trained models on four tests sets: one biopsy test set and three surgical
test sets. We refer to the trained models as TL <magnification> <tile size> <model size>,
based on the different configurations.

Figure 1. Overview. (a) shows and representative examples of WSIs with a zoom in on the tissue structure. Training
consisted of two stages: random sampling and hard mining. In the first stage (b) we randomly sampled tiles from the
positive and negative WSIs, restricting the sampling from WSIs that had annotations if they were positive. In the second
stage (c) We iteratively alternated between inference and training, relying only on the WSI label. During inference, the
model weights were frozen, and it was applied in a sliding window fashion on each WSI. The top k tiles with the highest
probabilities were then selected from each WSI. During training the selected tiles were then used to train the model.
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As we had at our disposal six models [18,27,34–37] that had been trained specifically
on specimens from different organs (stomach, colon, lung, and pancreas), we evaluated
those models without fine-tuning on the test sets to investigate whether morphological
cancer similarities transfer across organs without additional training.

Table 1 breaks down the distribution of the WSIs in each test set. For each test set,
we computed the ROC AUC and log loss, and we have summarised the results in Table 2
and Figures 2 and 3. Figures 4–7 show representative heatmap prediction outputs for true
positive, false positive, and false negative. Table 3 shows a confusion matrix breakdown
by subtype for the false positives and true negatives using a probability threshold of 0.5.
All 10 false positive WSIs were fibroadenomas. Figure 8 shows an overview of representa-
tive fibroadenoma histopathology of 10 cases (WSIs) that were falsely predicted as IDC.
There were representative histopathologic changes (e.g., proliferative epithelial changes,
fibrocystic epithelial canges, and stromal changes) [38] in falsely predicted fibroadenomas
(Figure 8); the proliferative findings could be the potential cause of the false positive.

Figure 2. ROC curves for the various existing models as well as models trained via transfer learning (TL) on core needle
biopsy test set from Hospital 1. The trained models were TL x10 512 B1 and TL x20 512 B1.
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Figure 3. ROC curves on surgical test sets of the TL x10 512 B1 model.

Table 2. ROC and log loss results of the models on the biopsy and surgical test sets. The trained model names are referred
to as TL <magnification> <tile size> <model size>.

Dataset Model ROC AUC Log loss

Hospital 1 (biopsy)

Stomach ADC x10 512 [18] 0.853 [0.818, 0.884] 1.090 [0.955, 1.257]
Colon ADC x10 512 [18] 0.691 [0.645, 0.735] 1.101 [0.966, 1.257]
Lung carcinoma x10 224 [35] 0.664 [0.617, 0.710] 2.542 [2.184, 2.932]
Pancreas ADC x10 224 [36] 0.800 [0.761, 0.835] 0.734 [0.661, 0.816]
Stomach poorly-ADC x20 224 [37] 0.894 [0.867, 0.920] 0.548 [0.508, 0.587]
Stomach signet ring x10 224 [34] 0.817 [0.790, 0.857] 0.895 [0.801, 0.976]

TL x10 512 B1 0.980 [0.969, 0.991] 0.269 [0.201, 0.335]
TL x10 224 B1 0.971 [0.957, 0.984] 0.258 [0.199, 0.317]
TL x10 512 B3 0.979 [0.967, 0.989] 0.366 [0.284, 0.462]
TL x20 512 B1 0.962 [0.945, 0.975] 0.285 [0.240, 0.346]

Hospital 1 (surgical) TL x10 512 B1 0.958 [0.941, 0.973] 0.377 [0.308, 0.445]
TL x10 224 B1 0.907 [0.881, 0.929] 0.725 [0.635, 0.828]

Hospital 2 (surgical) TL x10 512 B1 0.994 [0.987, 0.998] 0.180 [0.139, 0.230]
TL x10 224 B1 0.970 [0.956, 0.982] 0.399 [0.335, 0.476]

TCGA (surgical) TL x10 512 B1 1.000 [1.000, 1.000] 0.274 [0.108, 0.332]
TL x10 224 B1 0.997 [0.983, 1.000] 0.377 [0.245, 0.578]
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Table 3. A breakdown of the subtypes of the false positives and true negatives in the biopsy test set
using the TL model x10 using a classification threshold of 0.5.

Subtype of Benign Number of WSIs %

False-positives (10 WSIs) Fibroadenoma 10 100.0

True-negatives (223 WSIs) Fibroadenoma 121 54.3
Mastopathy 67 30.0
Normal 24 10.8
Fibrosis 6 2.7
Ductal hyperplasia 2 0.9
Granulation tissue 2 0.9
Fat necrosis 1 0.4

Figure 4. A representative true positive invasive ductal carcinoma (IDC) of breast from core needle biopsy test set. Heatmap
images show true positive predictions of IDC cells (b) and they correspond, respectively, to H and E histopathology (a) using
transfer learning from ImageNet model (magnification ×10). Not only abundant IDC cells invading areas (c) but also a few
IDC cells (e,f), heatmap images show appropriately true positive predictions (d,g).
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Figure 5. A representative example of invasive ductal carcinoma (IDC) false positive prediction output on a case from core
needle biopsy test set. Histopathologically (a), this case is a benign lesion (fibroadenoma). Heatmap images (b,d,f) exhibited
false positive prediction of IDC using transfer learning from ImageNet model (magnification ×10). The ductular structures
in fibroadenoma with a pericanalicular pattern (c–f) would be the primary cause of false positive due to its morphological
analogous to ductular structures in IDC.



Cancers 2021, 13, 5368 9 of 14

Figure 6. A representative false negative prediction output on a case from core needle biopsy test set. According to the
histopathological report, this case (a,c) is an invasive ductal carcinoma (IDC). However, there are no true positive predictions
of IDC cells on heatmap image (b).

Figure 7. Cont.
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Figure 7. Representative true positive, false positive, and false negative prediction outputs on surgically resected specimens
for invasive ductal carcinomas (IDCs) and fibroadenoma. Histopathologically, (a) has IDC; (c) is fibroadenoma; and
(e) has IDC (scirrhous type); (b) shows true positive probability heatmap using transfer learning from ImageNet model
(magnification ×10) for IDC invading area which was corresponded to surgical pathologists marked area with blue-ink-dots
(and yellow-triangles) (a); (d) exhibited false positive prediction of IDC in fibroadenoma. There are no true positive
predictions of IDC cells on heatmap image (f) in scirrhous carcinoma of IDC (e).

Figure 8. Cont.



Cancers 2021, 13, 5368 11 of 14

Figure 8. Representative tissue areas (Cases 1–10), without heatmap overlay, that were falsely
predicted as IDC. There were 10 cases of false positive prediction outputs from the core needle biopsy
test set. The false positive predictions are most likely due to the enlarged spindle shaped stromal
cell nuclei with pleomorphism and tubules composed of cuboidal or low columnar cells with round
uniform nuclei resting on a myoepithelial cell layer. This is morphologically analogous to invading
single cells, ductular structures, and cancer stroma in IDC.

4. Discussion

In this study, we trained deep learning models for the classification of breast IDC in
surgical and biopsy WSIs. We used weakly-supervised and transfer learning. We used the
partial fine-tuning approach, which is fast to train. The best model achieved AUCs in the
range of 0.96–0.98.

Overall, the EfficientNetB1 model trained at magnification ×10 achieved slightly
better results than ×20 on the biopsy test set. In addition, using a larger tile size of
512 × 512 px achieved slightly better results than 224 × 244 px. Despite IDC morphology
having some similarities with adenocarcinoma (ADC) [39], the application of models that
classify ADC on other organs did not fully generalise to IDC. They have achieved lower
AUC performances in the range 0.66 to 0.89. The stomach ADC had the highest AUC
0.85–0.89 when applied to breast IDC WSIs. While the results on the TCGA test set are
high, it does not provide a proper evaluation in terms of potential false positives as there
were only four benign cases.

All of the false positive cases in the biopsy test set were fibroadenomas (see Table 3).
Fibroadenomas exhibit a wide range of morphology [38], and it could be that the variety
was not fully represented in the training set, which only had 91 cases of fibroadenomas
compared to the 131 in the test set. The false positive predictions with fibroadenomas are
most likely due to the enlarged spindle shaped stromal cell nuclei with pleomorphism and
tubules composed of cuboidal or low columnar cells with round uniform nuclei resting
on a myoepithelial cell layer. This is morphologically analogous to invading single cells,
ductular structures, and cancer stroma in IDC (see Figure 8).
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One source of difficulty in creating a balanced set of the fibroadenomas varieties is
that the diagnostic reports did not include a detailed description of fibroadenoma histology,
making a simple random partition the only option. In addition, the test set had a larger
proportion of fibroadenomas compared to other benign subtypes. Therefore, in future
work, it would be important to investigate the histopathological typing of fibroadenomas
in order to develop better deep learning models.

While in this study we relied on performing classification from WSI histopathology, in
some cases, pathologists make use of immunohistochemistry markers to further confirm a
diagnosis and guide treatment decisions. In particular, markers that allow for myoepithelial
differentiation are useful for distinguishing between IDC and benign proliferations such
as fibroadenoma [40]. This is because IDCs lack the myoepithelial cells that normally
surround benign breast glands.

According to the guideline by General Rule Committee of the Japanese Breast Cancer
Society [41], the pathological diagnosis of IDC is sufficient for core needle biopsy. Therefore,
the application of a deep learning model, once properly validated, in a clinical setting
would help pathologists in their diagnostic workflows potentially serving as a second
reader during the screening process. It could also be used to sort cases in order of priority
for review by the pathologists. On the other hand, surgical specimens tend to require
further subtyping of IDC, so future work could look into developing models specifically
for IDC subtype classification for surgical specimens.

5. Conclusions

In this study, we have trained deep learning models at two magnifications, ×10 and
×20, using transfer learning and weakly supervised learning for the classification of breast
IDC in WSIs. We evaluated the models on four test sets (one biopsy and three surgical)
achieving AUCs in the range 0.95 to 0.99. We have also compared the trained models to
existing pre-trained models on different organs for adenocarcinoma classification and they
have achieved lower AUC performances in the range 0.66 to 0.89 despite adenocarcinoma
exhibiting some structural similarity to IDC. Therefore, performing fine-tuning on the
breast IDC training set was beneficial for improving performance.
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