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ABSTRACT

Childhood experiences play a profound role in conferring risk and resilience for brain and behavioral develop-
ment. However, how different facets of the environment shape neurodevelopment remains largely unknown.
Here we sought to decompose heterogeneous relationships between environmental factors and brain structure in
989 school-aged children from the Adolescent Brain Cognitive Development Study. We applied a cross-modal
integration and clustering approach called ‘Similarity Network Fusion’, which combined two brain morpho-
metrics (i.e., cortical thickness and myelin-surrogate markers), and key environmental factors (i.e., trauma
exposure, neighborhood safety, school environment, and family environment) to identify homogeneous subtypes.
Depending on the subtyping resolution, results identified two or five subgroups, each characterized by distinct
brain structure-environment profiles. Notably, more supportive caregiving and school environments were
associated with greater myelination, whereas less supportive caregiving, higher family conflict and psychopa-
thology, and higher perceived neighborhood safety were observed with greater cortical thickness. These subtypes
were highly reproducible and predicted externalizing symptoms and overall mental health problems. Our
findings support the theory that distinct environmental exposures are differentially associated with alterations in
structural neurodevelopment. Delineating more precise associations between risk factors, protective factors, and
brain development may inform approaches to enhance risk identification and optimize interventions targeting
specific experiences.

1. Introduction

2019; Bath et al., 2016; Bordner et al., 2011; Johnson and Kaffman,
2018), and a growing literature has identified alterations in structural

Experiences during childhood play a crucial role in shaping the
developing brain, behavior, and risk for psychopathology (Chen and
Baram, 2016; Gee, 2016; McLaughlin et al., 2017; Nelson and
Gabard-Durnam, 2020; Opendak et al., 2017; Tottenham, 2012). A
nuanced understanding of how early experiences alter structural brain
development is critical to elucidating the mechanisms by which child-
hood adversity confers risk for psychopathology, and protective envi-
ronmental factors buffer that risk. Early adverse experiences have been
shown to disrupt neurodevelopment on a cellular level (Abbink et al.,

brain features such as gray matter volume (De Bellis et al., 1999; Hair
et al., 2015; Hanson et al., 2012; Hodel et al., 2015; Kribakaran et al.,
2020; Mackes et al., 2020; McEwen, 2016; Noble et al., 2015; Sheridan
et al., 2012; Teicher et al., 2016; Tottenham et al., 2010), cortical
thickness (Gold et al., 2016; Kelly et al.,, 2013; Lim et al., 2018;
McLaughlin et al., 2014; Monninger et al., 2019), white matter tract
integrity (Bick et al., 2015; Hanson et al., 2013; Ho et al., 2017; Howell
et al., 2013; Kircanski et al., 2019), and myelination (Bath et al., 2016;
Bordner et al., 2011; Juraska and Kopcik, 1988; Makinodan et al., 2012)
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following adversity.

Much of the existing knowledge about environmental influences on
brain development has stemmed from research focusing on a single type
of experience (e.g., physical abuse, neglect, exposure to violence) or
aggregating across different types of exposures to adversity (De Bellis
et al., 1999; Mehta et al., 2009; Tomoda et al., 2009, 2012). While such
evidence has been foundational in establishing the deleterious effects of
early adversity, there is vast heterogeneity in both the nature of
adversity exposure and in outcomes (Cohodes et al., 2020). The frequent
co-occurrence of adverse experiences (Green et al., 2010) and additional
complexity of family, neighborhood, and school environments present
further challenges to precisely linking environmental factors with vari-
ation in brain structure.

Dimensional approaches have increasingly focused on key aspects of
early adversity (Cicchetti and Toth, 1995; Cohodes et al., 2020; Everaerd
et al., 2016; McCoy, 2013; McLaughlin et al., 2014; Pynoos et al., 1999),
including the type of adversity experienced (Dennison et al., 2019;
Machlin et al., 2019; McLaughlin et al., 2014; Miller et al., 2018;
Sheridan et al., 2017). Previous work directly comparing distinct types
of exposures (e.g., physical abuse, sexual abuse, physical neglect,
emotional neglect) has demonstrated differential impacts on brain
structure (Cassiers et al., 2018; Edmiston et al., 2011; Heim et al., 2013;
Tomoda et al., 2009, 2012; van Harmelen et al., 2010). Examining
findings across studies of specific types of adversity has also suggested
unique associations with brain structure. For example, distinct regional
patterns of cortical thinning have been observed among children
exposed to severe neglect in institutional care (Hodel et al., 2015;
McLaughlin et al., 2014) versus children exposed to abuse (Busso et al.,
2017; Gold et al., 2016; Lim et al., 2018).

While much of the literature on environmental influences has
focused on adversity, a growing body of research has examined
normative variation in environmental factors. The relationships be-
tween children and primary caregivers are thought to be particularly
influential in shaping neurodevelopment (Tottenham, 2018; Gee, 2016),
with longitudinal evidence that positive and negative parenting be-
haviors are associated with differential change in brain development in
adolescents (Whittle et al., 2014, 2016). Positive, more sensitive
parenting has been found to predict greater cortical thinning in the
orbitofrontal cortex, and in the anterior cingulate in males (Whittle
et al., 2014), as well as greater volume in the posterior insular cortex
(Matsudaira et al., 2016) and across the whole brain (Kok et al., 2015,
2018). Negative, more aggressive parenting has been shown to predict
greater thickening of the superior frontal gyrus and lateral parietal lobe
in males (Whittle et al., 2016), and has been associated with larger
anterior cingulate and orbitofrontal cortex volumes (Whittle et al.,
2009). While null effects of caregiving on cortical thickness have also
been reported (Avants et al., 2015; Leblanc et al., 2017), accumulating
evidence highlights the importance of the caregiver/child relationship
and demonstrates that both positive and negative caregiving experi-
ences impact structural brain development (Deane et al., 2020). Factors
such as greater neighborhood disadvantage (Whittle et al., 2017) and
positive school environments (Piccolo et al., 2019) have also been
independently associated with increases in cortical thickness during
development. However, less is known about the ways in which neigh-
borhood and school contexts may interact with other environmental
factors to influence brain structure.

Variations in cortical thickness and volume have been widely studied
in the literature and may reflect processes such as synaptic pruning and
remodeling (Huttenlocher, 1979; Huttenlocher et al., 1982; Hutten-
locher and Dabholkar, 1997) or stress-induced neuronal atrophy
(Horchar and Wohleb, 2019; Wellman et al., 2020). Though less studied
in humans, myelination is thought to increase throughout development
(Lebel and Deoni, 2018) and is sensitive to adversity in rodent models
(Bordner et al., 2011; Carlyle et al., 2012; Makinodan et al., 2017).
However, no studies to our knowledge have investigated differential
effects of early environmental exposure type on cortical thickness and
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myelination. As both of these processes undergo marked maturational
changes during childhood (Dean et al., 2015; Lyall et al., 2015) and have
been implicated in various psychopathologies that often emerge during
development (Hanford et al., 2016; Norbom et al., 2019; Schmaal et al.,
2017; van Erp et al., 2018), understanding how cortical thickness and
myelination are shaped by specific aspects of early environments is an
important gap to address.

Given the complexity of associations between early experiences and
brain development, multivariate approaches capable of handling high-
dimensional data show promise for elucidating associations between
adversity and brain structure. One such data-driven approach is sub-
typing, which aims to identify subgroups of individuals with similar
neural and behavioral characteristics, and to examine differential out-
comes between these subgroups. This approach has been applied
effectively in studies examining subtypes of individuals with psychiatric
disorders (Fair et al., 2012; Hong et al., 2018, 2019; Sun et al., 2015),
but not yet within the context of the childhood environment and brain
development.

In the current study, we aimed to decompose heterogeneous re-
lationships between specific environmental exposures and brain struc-
ture during development. To address this goal, we leveraged a novel
multimodal data integration framework, similarity network fusion (SNF;
Wang et al., 2014), and applied it to openly shared, large-scale data
derived from the Adolescent Brain Cognitive Development (ABCD)
Study (Casey et al., 2018). Compared to traditional unimodal ap-
proaches, this framework allowed us to take into account environmental
factors and structural brain features simultaneously in clustering, thus
unveiling differential subtypes that are more readily interpretable in
both environmental and neurobiological domains. Following SNF, we
then tested the validity of those subtypes by predicting clinical symp-
toms (which were not used for subtyping) based on brain imaging fea-
tures of each subtype in a replication dataset. We hypothesized that
differential patterns of myelin and cortical thickness would be associ-
ated with discrete measures indexing the childhood environment,
resulting in subtypes representing co-occurrence of specific structural
variation and environmental exposures. By exploring more precise as-
sociations between environmental exposures and structural variation in
a large, population-based, demographically diverse sample, we aim to
enhance understanding of how environmental and brain structural
variation co-occur and relate to mental health during childhood.

2. Methods and materials
2.1. Subjects

Participants in our study were 989 school-aged youth (9-10 years
old), whose data were obtained from the Adolescent Brain Cognitive
Development Study®™ (ABCD Study®) (Casey et al., 2018). This ongoing
project aims to recruit over 11,000 children from 21 different sites based
on harmonized protocols (Casey et al., 2018) and follow them over ten
years to comprehensively characterize psychological and neurobiolog-
ical development from pre-adolescence to young adulthood. Parents
provided written informed consent, and children provided verbal assent
for study participation. Full details of ethics and oversight in the ABCD
Study have been previously published (Clark et al., 2018). We applied a
set of inclusion and exclusion criteria to select a subsample from this
broader pool of participants: i) included only participants with all data
of interest, including T1- and T2-weighted MRI scans indexing brain
structure, 8 phenotypic scores related to environmental conditions for
youth, and 3 scores indexing different facets of mental health (see
Environmental data and Clinical data), ii) if there were siblings, only the
oldest child in each family was included, and iii) excluded those par-
ticipants with diagnoses of autism spectrum disorder or epilepsy. Apart
from these criteria, participants affected by the error related to struc-
tural MRI data reported in Known Issues with Data Release 2.0 (https:
//nda.nih.gov/edit_collection.html?id=2573) were excluded. Finally,
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we excluded participants with a lower quality of MRI and preprocessing
results based on the ABCD Study’s FreeSurfer quality control conducted
by trained technicians to identify data showing evidence of excessive
motion, pial overestimation, white matter underestimation, in-
homogeneity, or artifacts (Hagler et al., 2019). Based on these criteria
and external quality control screening, there were 2,379 remaining
participants, collected across 13 sites and 2 different scanners. To reduce
the computational cost in processing such high-volume data, we
randomly selected 1,000 participants for inclusion in the present study.
We internally performed quality control procedures on these 1,000
participants’ data, which consisted of visual inspection of remaining
cases for the FreeSurfer processing derivatives (e.g., cortical surface) as
well as the z-scores of imaging features to identify outliers (see later
paragraphs for details of quality control processes). This internal quality
control procedure excluded 11 participants, resulting in a final n = 989.
The final sample was randomly split into 495 discovery and 494 repli-
cation cases. Among these, 230/213 participants (discov-
ery/replication) were drawn from the first release of the ABCD Study
(NIMH Data Archive Release 1.1, DOI: 10.15154/1412097) and
265/281 participants (discovery/replication) from the second release of
the ABCD Study (NIMH Data Archive Release 2.0, DOIL
10.15154/1503209). All details of this participant sampling process are
summarized in the Supplementary Material and Table 1. The discovery
and replication samples did not show differences in any demographic
data including age, sex, data collection site, race, ethnicity, parental
education, and household income. These profiles are reported in
Table 1. Further details about the brain imaging and behavioral data
collected in the ABCD Study can be found in the original data descriptor
papers (Barch et al., 2018; Casey et al., 2018).

2.2. Imaging data

Structural imaging data consisted of T1-weighted (T1w) and T2-
weighted (T2w) MRI, both acquired using a 3T Siemens Prisma scan-
ner. Specifically, the Tlw acquisition was based on a 3D inversion
prepared RF-spoiled gradient echo scan (TE =2.88 ms, TR = 2500 ms,
flip angle=8°, 1mm isotropic voxels, 2x parallel imaging) using

Table 1
Demographic characteristics of included participants.
Discovery (n = 495) Replication (n = 494) p value
Age (months; 119.44+7.3 119.4+7.0 p=0.86
mean =+ SD)*
Sex (male/ 258/237 254/240 p=0.82
female)”
Site n (1%-13% 32/48/28/50/12/31/ 34/28/30/55/16/30/ p=0.79
sites in order) 39/16/35/31/92/23/ 46/12/34/36/93/24/
58 56
Race™® 349W, 69B, 9A, 200, 353W, 58B, 8A, 150, p=0.79
45M, 3NA 56 M, 4NA
Ethnicity™? 96H, 393 nH, 6NA 104H, 387 nH, 3NA p=0.86
Education level of ~ 58E/M/H, 310B, 127G 64E/M/H, 302B, 128G p=0.80
parent”®
Household 110L, 150 M, 203H, 1121, 145M, 210H p=0.90
income®™’ 32NA

2 Group comparison was based on independent samples t-test.

b Group comparisons were based on Chi-square test (all frequencies >5) or
Fisher’s exact test (any frequency <5) of the contingency table.

¢ W (White), B (Black), A (Asian), O (Other race), M (Mixed race), NA (Not
answered or refused to answer); Details about race can be found here: https
://nda.nih.gov/data_structure.html?short name=pdemoO2.

dy (Hispanic), nH (non-Hispanic), NA (Not answered or refused to answer).

¢ E/M/H (Elementary/middle/high school), B (Bachelors), G (Graduate
[Masters/PhD/Specialized degree such as MD]; Education information was
based on the parent who completed the survey.

f L(Low): <$50,000; M(Middle): $50,000 < income<$100,000; H(High):
>$100,000; NA (Not answered or refused to answer). Household income was
based on the sum of the past 12 months of gross pay for both parents.
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prospective motion correction (Tisdall et al., 2012; White et al., 2010).
The T2w acquisition was carried out based on a 3D T2w variable flip
angle fast spin echo sequence (TE=565ms, TR=3200ms, 1mm
isotropic voxels, 2x parallel imaging), also with prospective motion
correction.

2.3. Environmental data

Environmental factors were selected to characterize youth environ-
ment with regard to trauma exposure, caregiver behaviors, family
functioning, neighborhood safety, and school environment. Six of these
factors were assessed using measures from the ABCD Culture and
Environment Sum Scores: neighborhood safety (mean score of the ABCD
Parent Neighborhood Safety/Crime Survey Modified from PhenX),
school environment (‘school environment’ subscale from the ABCD
School Risk and Protective Factors Survey), parental support (mean
score of first five items from the ABCD Children’s Report of Parental
Behavioral Inventory), caregiver support (mean score of second five
items from the ABCD Children’s Report of Parental Behavioral In-
ventory), parental monitoring (mean score of the ABCD Parental
Monitoring Survey), and family conflict (‘family conflict’ subscale from
the ABCD Youth Family Environment Scale-Family Conflict Subscale
Modified from PhenX) (Hoffman et al., 2019). Trauma exposure was
assessed by computing a summed score across the 17 categories queried
in the Traumatic Events measure of the ABCD Parent Diagnostic Inter-
view for DSM-5 [Kiddie Schedule for Affective Disorders and Schizo-
phrenia (KSADS) (Kaufman et al., 1997)]. This section of the
semi-structured interview assesses trauma history by probing for expo-
sure to physical and sexual abuse, domestic violence, community
violence, natural disasters, accidents, and the sudden unexpected death
of a loved one. The response format was binary (0=No, 1=Yes). Family
history of mental health problems was assessed via the sum of en-
dorsements for substance use, criminal activities, and mental health
concerns across all immediate family members (mother, father, full
siblings) queried in the ABCD Family History Assessment. Further de-
tails on the exposures queried and all environmental measures can be
found in the Supplementary Material.

2.4. Clinical data

Three measures of psychiatric symptoms (T-scores indexing symp-
toms of internalizing problems, externalizing problems, and total
problems) were selected from the parent-reported Child Behavior
Checklist (CBCL; Achenbach and Rescorla, 2020) to evaluate clinical
profiles of the identified subtypes. The total problems score represents
the sum of internalizing, externalizing, thought, and social problems.
Given prior evidence of differential associations between neural and
environmental factors (e.g., early adversity, caregiving) with internal-
izing versus externalizing symptoms (McLaughlin et al., 2016; Whittle
etal., 2020), we also examined internalizing and externalizing problems
separately.

2.5. Image preprocessing and feature extraction

The acquired individual Tlw and T2w MRI data underwent an
established processing pipeline from the Human Connectome Project
(HCP; Glasser et al., 2013). This contains multiple optimized pre-
processing steps for cortical surface extraction and volume/surface
alignment processes, details of which can be found in the original
pipeline paper (Glasser et al., 2013). Briefly, this pipeline consists of
three main stages: i) the ‘PreFreeSurfer’ stage to produce an undistorted
native structural volume space for each participant, align the T1w and
T2w images, perform a bias-field correction, and register the partici-
pant’s native structural volume space to MNI space, ii) the ‘FreeSurfer’
stage (using the version 5.3 FreeSurfer software) to segment the volume
into predefined structures, reconstruct white and pial cortical surfaces,
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and perform FreeSurfer’s standard folding-based surface registration to
their surface atlas, and finally iii) the ‘PostFreeSurfer’ stage to produce
all necessary NIFTI volumes and GIFTI surface files, along with applying
the surface registration and creating the final brain mask.

To probe heterogeneous relationships between environmental con-
ditions and brain development, we analyzed two widely employed
structural MRI features, namely cortical thickness and T1w/T2w ratio
indexing myelination. Cortical thickness has been associated with mul-
tiple cellular features that are closely related to neurodevelopment
including neuropil volume (Schiiz and Palm, 1989), neuronal density
(Collins et al., 2010; la Fougere et al., 2011), arborization (Scholtens
et al., 2014), and intracortical connectivity (Wagstyl and Lerch, 2018).
Myelination is an additional biological process that occurs throughout
development, and supports neuronal adaptation during co-occurring
processes such as synaptogenesis and pruning (Silbereis et al., 2016).
In our study, cortical thickness was indexed by a measure automatically
extracted in the second ‘FreeSurfer’ stage of the above HCP pipeline,
measured as the distance of corresponding vertices between the white
and pial boundary. The myelin-surrogate marker was constructed in the
third ‘PostFreeSurfer’ stage by dividing T1w intensity by T2w intensity
(thus, a T1w/T2w ratio) at each cortical point (vertex) across the whole
brain (Glasser and Van Essen, 2011). Notably, while the original cortical
surfaces that the HCP pipeline generated had 32,000 vertices per
hemisphere, we opted to downsample this surface mesh to 10,242
vertices at each hemisphere in order to reduce the computational cost in
the following subtype analyses.

Once the feature preprocessing was complete, we visually inspected
the reconstructed surfaces and cortical masks across individual brains
for quality control. We also performed quantitative outlier detection
based on vertex-wise z-score maps of both cortical thickness and myelin.
Participants were excluded if >20% of the vertices in both features had

1000 iterations of Discovery (n=495)
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z-scores greater than 3.09 (a threshold corresponding to the p-value
0.001). This provided a final sample for discovery (n=495) and repli-
cation (n =494) data in the current study.

2.6. Feature preprocessing

The above feature extraction resulted in two sets of 20,484 feature
values (from the cortical thickness and myelin maps) as well as 8
phenotypic and 3 clinical scores for each individual. To control for
possible confounds (i.e., age, sex, data collection site), we performed i) a
statistical correction for age and sex effects on imaging features (Hong
et al., 2018) and ii) ComBat harmonization (i.e., Combining Batch ef-
fects, a Bayesian approach based on a linear model to estimate and
remove site batch effects; Fortin et al., 2017), for both imaging and
phenotypic scores. We then normalized each feature using z-scoring.

2.7. Subtyping based on similarity network fusion (Fig. 1)

Subtyping was performed using similarity network fusion (SNF), an
algorithm originally developed to integrate multimodal data in the ge-
netics field (e.g., microRNA expression and DNA methylation; Wang
et al., 2014). This approach has recently been applied to neuroimaging
studies to objectively subtype brain structures across transdiagnostic
samples (Stefanik et al., 2018). SNF was performed on the measures of
brain structure and environmental factors; the measures of clinical
symptoms were not included in any step of SNF. Subtyping using SNF
consisted of the following four steps:

(i) Calculation of unimodal affinity matrices: We first computed
three between-subjects distance matrices for cortical thickness,
T1w/T2w ratio maps, and the environmental phenotypic scores

~ bootstrappin
Ry ppIng

(90% of sample) ~ Replication (n=494)

Between-subject similarity network
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Age,
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Fig. 1. General method for subtyping based on Similarity Network Fusion (SNF). Two brain structural features and eight environmental factors were used to create a
between-subjects similarity network at each modality. The resulting similarity graphs were then entered into SNF which performs iterative non-linear fusion pro-
cesses to combine them, resulting in a single ‘fused similarity network’. Spectral clustering was then applied to find homogeneous subgroups. To find the most
reproducible clustering results, we bootstrapped 90% of the samples and repeated the above SNF subtyping. This procedure was iterated 1000 times, and the subtype
results were aggregated to construct a consensus clustering matrix. The final clustering result was obtained based on spectral clustering of the consensus matrix. The
optimal clustering solution was determined by an established consensus index (Monti et al., 2003). To assess the significance of identified subtypes, two prediction
analyses were conducted of subtype membership classification and clinical symptoms. These analyses aimed to demonstrate both generalizability and utility in

predicting clinical symptoms using independent samples.
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separately. The distance matrix was calculated consistently
across the features based on the ‘cosine similarity’ kernel, which
was then used to generate between-subjects affinity matrices
(each cell representing the similarity of distance profiles between
two given participants) using a scaled exponential similarity
kernel. The mathematical details of this kernel can be found in
the original algorithm paper (Wang et al., 2014).

(ii) Fusion of multimodal affinity matrices: The resulting three
between-subjects affinity matrices (each from cortical thickness,
myelin, and environmental phenotypic scores) were then input to
SNF to generate a single fused affinity matrix. Three parameters
were employed in SNF (i.e., k: number of nearest neighbors used
to fuse the affinity matrices [how many local neighbors used to
calculate the between-subjects similarity in SNF], T: number of
iterations in SNF algorithms, and p: hyperparameters related to
the scaling process of each feature). We selected those parameters
as the original paper recommended (k=30, T=20, p=0.5)
(Wang et al., 2014). As detailed further below, these parameters
resulted in the most reproducible subtype findings between the
discovery and replication datasets.

(iii) Spectral clustering to identify subtypes: The generated single
fused affinity matrix was input to a spectral clustering algorithm
to identify homogeneous subtypes. Following the same procedure
as the original work on similarity network fusion (Wang et al.,
2014), we employed the traditional spectral method which
effectively combines MinCut and equipartitioning to minimize
the objective function based on a normalized Laplacian matrix
(Ng et al., 2002). Of note, to obtain more reproducible and
outlier-robust subtype findings, we performed the above SNF
process 1000 times iteratively, based on the bootstrapped sam-
ples (90% of cases resampled without replacement) and con-
structed a consensus matrix, varying the clustering number (C)
from 2 to 20. Each individual cell of this consensus matrix rep-
resents how consistently a given pair of participants was grouped
together among 1000 iterations at a given clustering number
(2-20).

(iv) Clustering solution evaluation: We used a previously established
approach, ‘cumulative consensus distribution’, to determine the
clustering solution. Detailed information regarding the mathe-
matical principle and motivation can be found in the original
paper (Monti et al., 2003). Briefly, systematically evaluating C
from 2 to 20, this approach evaluated up to which value C
increased the degree of consensus for the clustering solution,
compared to the previous C (ie, C-1). Using this criterion, we
selected the C with the highest subtyping stability across differ-
ently sampled cases.

Importantly, the entire subtyping process (i-iv) was performed two
separate times for the discovery and replication datasets to indepen-
dently assess the reproducibility of findings.

2.8. Subtype profiling

The identified subtypes were then evaluated in terms of brain and
environmental features. For quantitative evaluation, we performed
analysis of covariance (ANCOVA) on cortical thickness, myelin maps,
and environmental phenotypic scores for main group effects (i.e., sub-
types) while statistically correcting for age, sex, and data collection site.
The family-wise error due to multiple comparisons for phenotypic scores
was controlled by the false discovery rate (FDR; Benjamini and Hoch-
berg, 1995). In order to examine region-specific subtype differences
across the brain, we then conducted separate analyses in which the
global mean was controlled for as a nuisance variable. Specifically, for
models examining region-specific subtype differences in cortical thick-
ness, we included the mean of global cortical thickness as a nuisance
covariate, and for models examining region-specific subtype differences
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in myelination, we included the mean of global T1w/T2w ratio as a
nuisance covariate. To focus on only reproducible findings, we mapped
significant clusters from ANCOVA that overlapped between the discov-
ery and replication datasets. For these overlapping regions, we evalu-
ated their spatial patterns and profiles of cortical thickness and
T1w/T2w ratio across subtypes. The family-wise error due to massive
univariate vertex-wise multiple comparisons was controlled by random
field theory (RFT; Worsley et al, 1999) at 0.05 (cluster-defining
threshold = 0.025). Beyond the regional effects, we also performed
ANCOVA on the whole-brain mean values, as they reflect global effects
from more diffuse biological substrates.

2.9. Prediction analysis

To validate our subtype results, we carried out two prediction ana-
lyses: i) subtype classification and ii) prediction of clinical symptoms for
each subtype. To ensure the generalizability of our findings, the training
of each analysis was conducted based on the discovery dataset, whereas
the test was based on the independent replication dataset.

i) Classification of subtype membership. This analysis aimed to assess
how generalizable the brain and environmental phenotypic profiles
of identified subtypes were to unseen cases. To do this, we trained a
multiclass support vector machine algorithm by using the full im-
aging features (2 x 20,484 for cortical thickness and myelin maps)
and 8 environmental phenotypic scores of the 495 discovery cases as
predictors and their subtype information as a responder. The accu-
racy of the classification was measured by entering the same imaging
and phenotypic features of the 494 unseen replication cases into the
trained classifier and comparing the predicted subtype with that
which resulted from the SNF analysis based on the entire 989 cases.

ii) Prediction of clinical symptoms. Our second prediction analysis
sought to associate the brain imaging features with clinical symp-
toms (i.e., internalizing, externalizing, and total problems) for each
identified subtype. Specifically, we built a support vector regression
classifier for each subtype separately, training it based on brain im-
aging features and clinical scores in the discovery cases. For feature
selection, we performed a linear regression between each feature and
targeted clinical symptom scores and entered only those features
showing a significant correlation (|t|>2) into the classifier to reduce
the feature dimensionality and optimize the training quality. We
then tested this subtype-specific classifier using the independent
replication dataset, entering the same brain imaging features. After
predicting the targeted clinical symptoms across each subtype, we
merged the results to calculate overall prediction accuracy for all test
cases. Of note, these clinical variables were not used in the SNF
subtyping. The prediction accuracy was measured by a non-
parametric Spearman correlation between the original clinical
symptom scores and the predicted scores across internalizing
symptoms, externalizing symptoms, and total problems. To test the
utility of our subtyping approach, we also conducted the same pre-
diction of clinical symptom scores but without subtype information.
In other words, we trained the classifier using the 495 discovery
cases and tested it based on the 494 replication cases. This analysis
aimed to address whether identifying subgroups provides a more
homogeneous predictor-responder relationship, thereby improving
prediction accuracy.

2.10. Data and code availability

All data analyzed in this study are accessible through an official
request to the NIMH Data Archive (https://nda.nih.gov/abcd). An NDA
study detailing the list of participants, variables, and related information
for this study may also be accessed at the following DOI: 10.15154/15
20460. All other relevant materials including code used for data sam-
pling, SNF, and statistical analyses are also publicly available at htt
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3. Results
3.1. Subtyping based on SNF
Based on the area under the curve for a cumulative distribution

function (CDF) of consensus values (Supplementary Fig. 1B), we
focused on the subtyping results at clustering numbers C=2 and C =5,
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given that these Cs made the largest increases (ACDF>0) of consensus
degree in both the discovery and replication datasets. Indeed, for these
solutions, high stability of between-subject subgroups across boot-
strapped samples was observed in the consensus matrices (Supple-
mentary Fig. 1A), and the subtyping patterns were highly reproducible
in the replication data (Figs. 2 and 3). Notably, resulting subtypes in the
discovery dataset did not show any differences in age, sex, site, race,
ethnicity, parental education, or annual household income in both the
C =2 and C = 5 solutions (Table 2; see also Supplementary Table 2 for
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Fig. 2. 2-subtype solution — Discovery and Replication. The two-subtype solution is presented for both discovery (A) and replication (B) datasets. Profiles of cortical
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the replication dataset in which there were no differences for any vari-
ables except for household income). Additionally, there was consider-
able overlap between the clustering solutions in the 2- and 5-subtype
findings (Adjusted Rand Index =0.44 and 0.33 in the discovery and
replication dataset, respectively). Indeed, the 2- and 5-subtype solutions
were hierarchically organized such that the 5 subtypes were nested
within the 2 subtypes in replicable patterns between the discovery and
replication datasets (Supplementary Fig. 2). This finding suggests that
although subtyping results depended on the clustering solution k, the
subject composition was not completely intermixed but instead showed
hierarchical structure and increasing granularity at the higher
resolution.

3.1.1. Two-subtype solution

The number of participants classified into each of these two subtypes
was balanced (Subtype 1 n =258, Subtype 2 n = 237), suggesting that
their subtype-specific brain imaging and environmental phenotypic
profiles were equally well represented across the sample. The brain
imaging profiles revealed inverse patterns between cortical thickness
and myelin across the two subtypes (Fig. 2 ‘structural imaging profile’).
Indeed, relative to other subtypes, Subtype 1 displayed slightly lower
cortical thickness across the whole brain (z-score: -0.4 to -0.2), and
greater myelination (z-score: 0.20 to 0.35), particularly in the posterior
cortical areas (relative to Subtype 2). Subtype 2 displayed opposite

features of greater cortical thickness and lower myelination (relative to
Subtype 1). An ANCOVA analysis (in this case, equivalent to a two-
sample t-test, given there were two subtypes) confirmed these
subtype-specific characteristics at both the global and regional level
(Fig. 4A). Specifically, both cortical thickness and Tlw/T2w ratio
measures showed marked global differences in the whole-brain mean
(discovery/replication: decrease in Subtype 1 vs. increase in Subtype 2,
F1, 478 =430/660, p < 0.0001 for cortical thickness; increase in Subtype
1 vs. decrease in Subtype 2, F1, 478 = 52/10.2, p < 0.0002 for T1w/T2w
ratio). The subsequent ANCOVA targeting regional differences between
the subtypes (i.e., ANCOVA statistically correcting for whole-brain
mean) also showed such differential patterns, with two overlapping
clusters that were significant in both the discovery and replication data.
Indeed, the Tlw/T2w ratio showed overlapping clusters (i.e., repro-
ducible subtype differences) in the right paracentral lobule and left su-
perior frontal cortices (prrr<0.05). There were no regional differences
between the subtypes in cortical thickness.

Individuals in Subtype 1 versus Subtype 2 differed in the extent to
which their environments were characterized by parental support,
caregiver support, and neighborhood safety (ANCOVA: FDR < 0.05;
Fig. 2 ‘Environmental phenotype profile’), but there were no differences in
trauma exposure, family history of mental health problems, parental
monitoring, or school engagement. Specifically, individuals in Subtype
1, characterized by lower cortical thickness and greater myelination



S.-J. Hong et al. Developmental Cognitive Neuroscience 48 (2021) 100919
Table 2
Demographic profiles of 2- and 5-subtype solutions (Discovery).
2-subtype profiling Subtype 1 (n=258) Subtype 2 (n=237) p value
Age (months; mean + SD)" 119.7+7.3 119+7.3 p=0.27
Sex (male/female)” 136/122 122/115 p=0.75
Site n (1°-13" sites in order)” 14/23/13/23/5/15/19/10/15/19/ 53/11/38 18/25/15/27/7/16/20/6/20/12/ 39/12/20 p=0.60
Race”® 190W, 36B, 4A, 80, 20 M 159 W, 33B, 5A, 120, 25M, 3NA p=0.26
Ethnicity” 55H, 200 nH, 3NA 41H, 19 nH, 3NA p=0.26
Education level of 1>a_rer1t"'e 31E/M/H, 168B, 59G 27E/M/H, 142B, 68G p=0.33
Household income” f 58L, 80 M, 104H, 16NA 52L, 70 M, 99H, 16NA p=0.97
5-subtype profiling Subtype 1 (n=282) Subtype 2 (n=106) Subtype 3 (n=112) Subtype 4 (n=93) Subtype 5 (n=102) p value
Age (months; 119.4+7.4 119.9+7.5 119.8+7.6 118.8+6.9 118.9+7.1 p=0.71
mean + SD)"
Sex (male/female)” 39/43 51/55 64/48 51/42 53/49 p=0.60
Site n (1°-13" sites in 8/8/6/7/2/4/ 5/2/7/ 4/11/8/10/2/8/9/1/8/ 11/9/5/13/1/8/12/3/9/ 2/7/4/13/3/4/ 8/6/3/ 7/13/5/7/4/7/5/4/8/ p=0.75
order) ® 5/13/ 4/11 5/19/ 4/17 8/18/4/11 10/24/ 2/ 7 3/18/9/12
Race”® 60W, 12B, 3A,6 M, 1NA 81W, 15B, 1A, 50, 4M 72W, 15B, 2A, 70, 15M, 68W, 13B, 2A, 10, 9M 68W, 14B, 1A,70,11 M, p=0.39
INA INA
Ethnicity\"d 15H, 66 nH, 1INA 25H, 79 nH, 2NA 21H, 91nH 18H, 74 nH, 1INA 17H, 83 nH, 2NA p=0.77
Education level of 6E/M/H, 57B, 19G 16E/M/H, 64B, 26G 14E/M/H, 69B, 29G 11EMH/61B/21G 11EMH/59B/32G p=0.69
be
parent
Household income”" 221, 24 M, 29H, 7NA 251, 32 M, 43H, 6NA 211, 34 M. 47H, 10NA 181, 32 M, 37H, 6NA 241, 28 M, 47H, 3NA p=0.81

# Group comparison was based on independent samples t-test.

b Group comparisons were based on Chi-square test (if all frequencies >5) or Fisher’s exact test (if any frequency <5) of the contingency table.

¢ W (White), B (Black), A (Asian), O (Other race), M (Mixed race), NA (Not answered or refused to answer); Details about race can be found here: https://nda.nih.
gov/data_structure.html?short_name=pdem02.

iy (Hispanic), nH (non-Hispanic), NA (Not answered or refused to answer).

¢ E/M/H (Elementary/middle/high school), B (Bachelors), G (Graduate [Masters/PhD/Specialized degree such as MD]; Education information was based on the
parent who completed the survey.

f L(Low): <$50,000; M(Middle): $50,000 < income<$100,000; H(High): >$100,000; NA (Not answered or refused to answer). Household income was based on the
sum of the past 12 months of gross pay for both parents.
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and T1w/T2w ratio (right) for the two-subtype (A) and five-subtype (B) solutions (See ‘Subtype profiling’ in Methods and Materials for statistical details). The main
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reproducible main group effects. For each overlapping cluster, the distribution of brain imaging features across individuals is shown for the identified subtypes at
the right.
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relative to other subtypes, had higher support (e.g., positive evaluation
and affection) displayed by parents and caregivers and lower percep-
tions of neighborhood safety than individuals in Subtype 2. Subtypes 1
and 2 did not significantly differ in CBCL T-scores for internalizing
symptoms, externalizing symptoms, or total problems (uncorrected
p > 0.05).

3.1.2. Five-subtype solution

Similar to the two-subtype solution, the number of participants
classified in a given subtype was also relatively balanced across the
identified subtypes in the five-subtype solution (Subtype 1: 82, Subtype
2 n=106, Subtype 3 n=111, Subtype 4 n =93, Subtype 5 n=103).
However, there was greater variability across the brain imaging and
environmental phenotypic profiles, suggesting that a higher number of
subtyping solutions might present a more detailed picture of complex
relationships between environmental factors and brain structure
(Fig. 3). Specifically, Subtype 1 showed more highly myelinated whole-
brain patterns and greater cortical thickness in lateral temporo-occipital
regions relative to other subtypes. Subtype 5 presented largely opposite
patterns in both imaging features, demonstrating markedly lower
whole-brain myelin and mild cortical thinning in the right lateral frontal
area relative to other subtypes. Subtypes 2-4 showed gradual reductions
in myelination, which were intermediate between Subtype 1 (highest
levels of myelination) to Subtype 5 (lowest levels of myelination), as
measured by T1w/T2w z-scores across the whole brain (Fig. 3 ‘Structural
imaging profile’). The cortical thickness patterns also varied across the
subtypes, showing widespread reductions in cortical thickness in Sub-
type 2, relative to elevated cortical thickness in Subtype 3, and an in-
termediate level of cortical thickness in Subtype 4.

This qualitative subtype profiling was complemented by the
following statistical analysis (ANCOVA), where we demonstrated
reproducible group effects across identified subtypes. Compared to the
two-subtype solution, these higher-resolution subtyping results showed
more overlap in findings between the discovery and replication datasets.
First, the global mean in both cortical thickness and T1w/T2w ratio
measures demonstrated clear subtype-specific patterns that were highly
reproducible (discovery/replication: F4 474=430/186, p < 0.0001 for
cortical thickness; F4 474 =81.4/10.2, p < 0.0002 for T1w/T2w ratio).
Moreover, regional effects were also consistent across the two datasets
for both cortical thickness and T1w/T2w ratio (Fig. 4B). Subtype dif-
ferences in cortical thickness were localized to the superior frontal area,
whereas differences in myelin were primarily located in the default
mode and frontoparietal networks (prpr<0.05).

Environmental profiles also varied across the subtypes for parent and
caregiver support, family conflict, neighborhood safety, and school
environment (ANCOVA: FDR < 0.05) (Fig. 3 ‘Environmental phenotype
profile’). However, there were no differences in trauma exposure be-
tween the subtypes. Similar to observed patterns in the two-subtype
solution (see Fig. 2), Subtype 1 was characterized by higher myelina-
tion and higher parental and caregiver support relative to other sub-
types. Although the opposite association was seen in Subtype 4 (ie.,
lower myelination and higher parental and caregiver support; Fig. 3 for
discovery data), the degree of reduction in myelination was slight, and
this group also had more severe family conditions (e.g., family mental
health problems and criminal history) and lower parental monitoring
than Subtype 1. More importantly, the Subtype 4 patterns, especially for
parent and caregiver support, were not clearly observed in the replica-
tion dataset. Another notable association between environmental and
brain features was observed in Subtype 3. Specifically, this subgroup
was characterized by less favorable conditions in almost every domain
of environmental factors (i.e., lower parental and caregiver support,
lower parental monitoring, a more significant family history of mental
health problems, less favorable school environment, and higher family
conflict) and relative cortical thickening without alterations in myeli-
nation. Importantly, the majority of these findings in both the two- and
five-subtype solutions were reproduced in the independent replication

Developmental Cognitive Neuroscience 48 (2021) 100919

data, confirming their high generalizability.

Finally, we examined differences in clinical symptom scores between
subtypes using a general linear model, controlling for age and sex, and
correcting for site of acquisition (see Supplementary Fig. 3). Given the
number of pairwise tests conducted, we only report results that survived
FDR comparison. For internalizing symptoms, Subtype 3 was observed
to have higher scores than Subtype 1 (p=0.012). For externalizing
symptoms, Subtype 3 had higher scores than subtypes 1 (p < 0.0001), 4
(p=0.0027), and 5 (p = 0.007), and Subtype 2 had higher scores than
Subtype 1 (p = 0.0044). With regard to total problem scores, Subtype 3
again had higher scores than Subtype 1 (p=0.002), Subtype 4
(p=0.0114), and Subtype 5 (p = 0.0018). These patterns largely repli-
cated in the independent dataset, with Subtype 3 having higher scores
across internalizing symptoms, externalizing symptoms, and total
problems than other subtypes (p < 0.001).

Of note, SNF findings based on either brain imaging or phenotypic
scores alone did not yield comparable subtype profiles. When subtyping
based on only brain imaging data, the imaging features revealed similar
structural profiles across the identified subtypes compared to our main
findings (e.g., opposite cortical thickness and myelin patterns between
the two subtypes). However, there were no between-subtype differences
on environmental factors, and we were unable to predict clinical scores
based on subtypes derived from brain imaging data alone. When sub-
typing based on only environmental data, SNF detected statistically
more robust subtype-specific environmental profiles. However, brain
structural features did not differ across the subtypes. These findings
suggest that the SNF approach considering multimodal data effectively
extracted unique brain-environment relationships, which could not be
captured by unimodal approaches.

3.2. Subtype validation

To validate the significance of identified subtypes, we performed two
independent prediction analyses. The first analysis assessed how
generalizable the brain structural and environmental phenotypic pro-
files for each subtype were in unseen cases through subtype classifica-
tion. The second analysis validated the subtypes by using the brain
imaging features to predict clinical symptom scores in unseen cases.

3.2.1. Prediction of subtype membership classification (Fig. 5A)

For the two-subtype solution, the prediction result based on the
replication data showed correct subtype classification in 86% of the
cases (chance level estimated by a permutation test: 48%; p < 0.001),
suggesting that the brain structural and environmental profiles learned
from the discovery dataset for each subtype were highly generalizable.
Notably, mapping the weight of the features learned by a support vector
machine revealed that regions of the sensorimotor and default mode
networks had particularly high influence in distinguishing the two
subtypes. However, when assessing the feature contribution at each
subtype separately, there were no brain areas that consistently
contributed to prediction of clinical symptoms across the different
subtypes (Supplementary Figs. 6 and 7). Although classification ac-
curacy was lower, generalizable subtype-dependent data profiles were
also found in the five-subtype solution, which revealed successful clas-
sification in 63% of the cases (chance level =19%; p < 0.001). The
feature contribution map highlighted similar brain areas (i.e., sensori-
motor and default networks) as found in the two-subtype classification,
which suggests that these anatomical regions may be particularly sen-
sitive to the environment during childhood.

3.2.2. Prediction of clinical symptoms (Fig. 5B)

The prediction of clinical scores based on support vector regression
showed marginal but significant correlation between actual and pre-
dicted scores. Specifically, the classifier informed by the two-subtype
solution successfully predicted externalizing symptoms (Spearman cor-
relation: r=0.120, p=0.0037; survived FDR comparison) but not
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Fig. 5. Subtype classification and clinical symptom prediction. Results are shown for the prediction of subtype classification (A) and clinical symptoms (B). A) The
red dots in the violin plot represent classification accuracy in the 2- and 5-subtype solutions. To demonstrate their significance against a chance level, we performed
permutation tests 100 times, randomly shuffling the subtype membership in the training (discovery) dataset. B) The correlations between actual clinical scores
(upper: externalizing symptoms, lower: total mental health problems) and predicted scores are displayed in the scatter plot. In both (A) and (B), the feature con-
tributions were identified based on the weights provided from the classifiers and mapped on the whole brain and stratified using the Yeo-Krienen functional
community atlas (Yeo et al., 2011). Prediction accuracy for externalizing symptoms was informed by the 2-subtype solution; prediction accuracy for total mental
health problems was informed by the 5-subtype solution. Abbreviations: VIS = visual, SM = somatosensory, DA = dorsal attention, SAL = salience, LIM = limbic,

FP = frontoparietal, DMN = default mode network.

internalizing symptoms or total problems (r=-0.08/0.06, p=0.96/
0.086, respectively). The classifier informed by the five-subtype solution
successfully predicted total problem scores (r=0.119, p = 0.0041; sur-
vived FDR comparison), but not internalizing or externalizing symptoms
(r=0.07/0.08, p=0.054/0.03, respectively; did not survive FDR com-
parison). The features contributing to the significant prediction of
externalizing problems were mainly found in the primary sensory and
higher-order default mode systems. Notably, the feature map for the
prediction of total problems demonstrated similar contribution profiles,
implicating both lower-level somatosensory and higher-order default
mode areas. By contrast, when we performed this prediction across all
participants without subtype information, we failed to predict any
clinical symptom scores.

To assess the robustness of our results, we iteratively performed the
same prediction analysis 100 times across bootstrapped samples
(resampling 90% of cases without replacement). We found that indeed
the majority of prediction results centered around the original predic-
tion conducted on all participants, suggesting that this performance was
not driven by outliers. Another noteworthy finding in this bootstrap
analysis was that even for the non-significant prediction results (e.g.,
total problems in the two-subtype solution, externalizing symptoms in

10

the five-subtype solution), their distributions showed higher prediction
accuracy compared to that of the subtype-free approach (p <0.001;
Supplementary Fig. 2). These results collectively emphasize that given
a highly heterogeneous sample, identifying more homogeneous sub-
groups may be an optimal strategy before performing brain-phenotype
association analyses.

4. Discussion

In this study we dissected the complex relationships between the
childhood environment and brain structure using a fully unsupervised,
multimodal data integration and clustering approach in a large sample
of school-aged children from the ABCD Study. The method used here,
Similarity Network Fusion (SNF), combined two well-established
developmental MRI features, namely cortical thickness and myelin-
surrogate markers, and key environmental risk and protective factors
to identify distinct subtypes. This approach identified two viable solu-
tions, one with two subgroups and one with five (depending on the
clustering resolution), each showing divergent patterns of brain struc-
ture and environmental exposure. Across both solutions, patterns of
brain cortical thickness and myelination were highly replicable, with
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consistent global and regional differences in thickness and myelination
observed between subtypes. Patterns of co-occurrence between specific
environmental exposures and neural phenotypes varied across the sub-
types, revealing particularly strong associations between brain structure
and supportive caregiving and neighborhood safety. Importantly, by
leveraging subtype classification information, we were able to predict
externalizing symptoms and total mental health problems in indepen-
dent unseen cases (replication data), which was not possible without
subtype classifications. Finally, the lack of meaningful subtyping based
on either brain structure or environmental factors alone highlights the
value of integrating across modalities to better represent the links be-
tween neural and environmental factors. In sum, the present study
provides a proof-of-concept demonstration of the value of a multimodal
and fully data-driven approach to decompose associations between
heterogeneous environmental exposures and brain development. Over-
all, the results of this project demonstrate that the observed subtypes are
highly reproducible, and that subtype classification aids in decomposing
heterogeneity in brain structure and environmental exposures to
enhance efficacy of clinical prediction. Moreover, the sensorimotor and
default mode networks found to be influential for both subtype classi-
fication and clinical prediction may represent developmentally sensitive
brain systems.

Findings from the two-subtype solution provided novel insight into
overarching associations among brain and environmental factors, while
findings from the five-subtype solution further parsed heterogeneity to
produce relatively more homogenous clusters of environmental expo-
sures and brain structure. Overall, the two-subtype solution demon-
strated reciprocal patterns across subtypes. In one subtype, global
cortical thinning and greater myelination (relative to the other subtype)
co-occurred with higher levels of parent and caregiver support as well as
lower ratings of neighborhood safety. In the other subtype, the inverse
pattern occurred, with greater global cortical thickening and lower
myelination (relative to the other subtype), observed together with
lower ratings of parent and caregiver support and higher ratings of
neighborhood safety. These findings were mostly replicated in an in-
dependent dataset, though parent support did not differ between the
subtypes in the replication dataset. Caregiving was also central to the
strongest findings in the five-subtype solution, where relatively less
supportive caregiving and higher family conflict co-occurred with
globally elevated cortical thickness (Subtype 3). These findings are
generally consistent with a previous study linking favorable caregiving
conditions with greater cortical thinning (Whittle et al., 2014), though
greater cortical thinning has also been observed in children exposed to
institutional neglect, relative to non-institutionalized children (Hodel
et al., 2015; McLaughlin et al., 2014). Within the five-subtype solution,
differences in cortical thickness were particularly evident in the right
superior frontal region. Prior research has shown that a higher degree of
positive maternal behavior is associated with greater cortical thinning in
the right anterior cingulate and in the bilateral orbitofrontal cortices
among males (Whittle et al., 2014), whereas higher maternal aggres-
siveness has been linked with greater cortical thickening in the right
superior frontal and lateral parietal cortices (Whittle et al., 2016).
Further, supportive caregiving has been shown to buffer the effects of
adversity related to poverty and living in a
socioeconomically-disadvantaged neighborhood (Brody et al., 2019;
Whittle et al., 2017). Specifically, male adolescents whose caregivers
showed higher positivity demonstrated relatively greater cortical thin-
ning in dorsofrontal and orbitofrontal cortices compared to those who
were also living in disadvantaged neighborhoods and had caregivers
who showed less positivity (Whittle et al., 2017). Exposure to commu-
nity violence has been associated with smaller gray matter volumes in
adolescence (Butler et al., 2018; Saxbe et al., 2018), but less is known
about perceptions of neighborhood safety and brain structure. Our
findings extend previous work to demonstrate that the neural correlates
of caregiving and neighborhood safety may go beyond changes in spe-
cific brain regions and involve global differences in cortical thickness.
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Though less is known about myelination and childhood experiences,
the co-occurrence of supportive caregiving and higher myelination
values across both the two- and five-subtype solutions may be consistent
with normative development, as myelination increases throughout
development (Lebel and Deoni, 2018). Regional differences in myeli-
nation between the five subtypes were observable in clusters located in
the right medial and lateral frontal convexity, the posterior cingulate
cortex and paracentral lobule, the lateral occipito-temporal area, and
the insula. Within the five-subtype solution, despite only moderate
cortical thinning, the highest myelination values co-occurred not only
with high ratings of caregiver support but also with high parental
monitoring, lower family conflict, a lesser family history of mental
health problems, higher neighborhood safety, and a more positive
school environment (Subtype 1). These patterns provide novel evidence
that myelination and cortical thickness may be independently associated
with discrete environmental exposures. A recent study indicated that
cortical thinning throughout child development largely results from
increasing myelination. Yet changes in myelination did not fully explain
variability in cortical thinning, suggesting that additional cellular pro-
cesses also contribute to cortical morphology (Natu et al., 2019). Our
findings appear to align with this model. Specifically, inverse associa-
tions between myelination and cortical thickness were observable across
the two- and five-subtype solutions. However, unique associations be-
tween specific environmental exposures and myelination versus cortical
thickness in the five-subtype solution suggest that environmental ex-
posures may differentially impact these processes.

Given the demonstrated relationships between childhood experi-
ences and psychopathology, and the potential for changes in brain
structure to contribute to these effects, we examined the clinical rele-
vance of the identified subtypes. Despite robust differences in neural and
environmental phenotypes, there were no differences in clinical symp-
toms in the two-subtype solution. However, symptoms did differ be-
tween subtypes in the five-subtype solution, consistent with the idea that
this solution may have parsed heterogeneity more finely to produce
meaningful groupings of brain and environmental factors, and their
associations with clinical symptoms. Most notably, Subtype 3 displayed
the highest internalizing, externalizing, and total problems across both
the discovery and replication datasets. The profile of this subtype,
characterized by family conflict and history of psychopathology and
greater global cortical thickness, aligns with previous work linking
internalizing and externalizing symptoms with lower levels of cortical
thinning in late childhood (Whittle et al., 2020), and externalizing
problems with attenuated cortical thinning in adolescence (Oos-
termeijer et al., 2016). By contrast, other studies have found lower
cortical thickness in association with externalizing (Ameis et al., 2014;
Ducharme et al., 2011) and internalizing (Bora et al., 2012; Newman
et al., 2016) disorders, highlighting the importance of future work to
address the challenging nature of linking brain, environment, and clin-
ical outcomes. Here we also found that subtyping enhanced clinical
prediction, such that including subtype classification information
enhanced the prediction of clinical symptoms based on neuroanatomical
features (which was not possible without the inclusion of subtype in-
formation). The fact that the subtypes did not differ on clinical symp-
toms in the two-subtype solution, yet prediction was still improved by
subtype information, may be counterintuitive. However, these findings
may be explained by the subtype-specific feature contribution maps,
which show highly variable anatomical specificity of brain features
(both cortical thickness and T1lw/T2w ratio) that contributed to pre-
diction within each subtype. That is, the association between neuro-
anatomy and clinical symptoms is not consistent across subtypes; even
though the two subtypes revealed non-differential (or similar) clinical
symptoms, the underlying brain-behavior associations can be still het-
erogeneous across those groups. Thus, applying a predictive model
within each subtype that uses individual measures of brain structure to
predict clinical symptoms yielded meaningful results, while examining
group differences in means (via an ANOVA) did not. This further
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demonstrates the value of using multivariate techniques to preserve
individual heterogeneity, as this heterogeneity can meaningfully
contribute to understanding brain-symptoms associations and
improving clinical prediction. These findings suggest that subtyping
approaches may prove useful for understanding heterogeneity in clinical
outcomes during development.

This study leveraged the data from the ABCD Study, a large publicly
available and demographically diverse, population-based develop-
mental cohort, to test whether heterogeneity in brain structure and
environmental exposures could be parsed using a multimodal data
fusion and subtyping approach. To our knowledge, this study is the first
to examine associations between myelination and cortical thickness
with environmental risk and protective factors across multiple levels (i.
e., caregiver, family, school, neighborhood). A key strength of this work
is the dimensional approach taken to assess environmental exposures.
Given that much previous work has focused on solely adverse experi-
ences, or examined only one facet of the environment (e.g., caregiving),
we prioritized using a data-driven method to empirically determine
patterns of co-occurrence between different types of environmental ex-
posures and measures of brain structure. Our findings demonstrated
highly reproducible and robust brain-environment relationships, and
the confirmation of our results in a held-out sample is an important
strength of this work. Finally, we applied the subtyping of brain struc-
ture and environmental exposures to examine individual differences in
clinical symptoms. As this study employed the first wave of ABCD data,
the findings set the stage for future investigations of how adversity and
brain structure are associated throughout adolescence, as well as how
they may predict longitudinal changes in mental health. This vast po-
tential for follow-up research is well aligned with the ABCD Study’s
vision of open science and collaborative research to facilitate novel
insight into brain and behavioral development.

While this study meaningfully contributes to the literature on
childhood experiences and brain development, there are nevertheless
aspects upon which future research can improve. Here we employed a
population-based dataset derived from communities nationwide and
tested generalizability in unseen cases within this same sample. How-
ever, replication of these findings in external samples will be needed to
confirm generalizability. The age range of 9-10 years old in this sample
also represents a very specific point in childhood, and it is unknown
whether similar brain-environment relationships would be observed at
different ages during development. Given marked neurodevelopmental
changes throughout childhood and adolescence (Casey et al., 2019; Gee
et al., 2018; Giedd et al., 1999; Herting and Sowell, 2017; Kaczkurkin
et al., 2019; Luna, 2009), as well as the likelihood that different envi-
ronmental factors will influence the brain in unique ways depending on
developmental stage (Cohodes et al., 2020; Gee and Casey, 2015; Lupien
et al., 2009; Tottenham and Sheridan, 2010), conducting subtyping of
brain-environment relationships across development is a vital next step.
Perhaps due to the relatively low rate of parent-reported trauma expo-
sure in the current sample, childhood trauma did not meaningfully vary
across subtypes in this study. Notably, however, the assessment of
trauma exposure in the KSADS does not include more detailed aspects of
exposure such as the timing, chronicity, and severity of exposure.
Variability in these factors is likely to relate to neural and behavioral
functioning following trauma (Cohodes et al., 2020; Gee and Casey,
2015; Lupien et al., 2009; Tottenham and Sheridan, 2010), and future
work examining heterogeneity in brain—-environment associations
would benefit from a detailed assessment of trauma exposure. Moreover,
we were unable to examine differential effects of specific types of trauma
given the limited variability in reported exposures. Given the
well-documented link between childhood trauma and psychopathology
(Green et al., 2010), examining trauma at later ages and with child
self-report will be important next steps. The present study observed
notable differences in cortical thickness and myelination between sub-
types but only examined these two features of brain structure. In order to
gain a more nuanced understanding of differential patterns of brain
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structure, future research will benefit from assessing additional mea-
sures such as white matter integrity or developmentally relevant
morphological features (e.g., sulco-gyral profiles). Further, we cannot
rule out potential genetic contributions to profiles of cortical thickness
and myelination that co-occurred with specific childhood experiences (e.
g, Liu et al., 2019). Study designs that clarify genetic and epigenetic
effects will be important to further elucidate the mechanisms by which
specific features of the childhood environment and brain structure may
co-occur in future research. Evaluating the clinical relevance of the
current findings is another important goal for future work. Though our
findings demonstrate that the current subtypes inform prediction of
contemporaneous externalizing symptoms, testing prediction of future
symptoms and disorder onset will be essential to assessing the clinical
utility of these subtypes. Similarly, longitudinal data will be important
for examining the temporal nature of changes in brain structure and
externalizing symptoms across development, which was not possible
within the current cross-sectional study. Finally, due to the already
high-dimensional nature of the data, we limited our current investiga-
tion to brain structure, environmental factors, and clinical symptoms.
However, future examinations employing similar approaches could
benefit from integrating the functional neuroimaging data and genetic
data available in the ABCD Study to provide a deeper understanding of
the biological processes related to the childhood environment and
mental health outcomes.

Taken together, the current study supports the utility of subtyping
approaches for examining associations between brain structure and
environmental exposures during development. Among the observed
brain-environment patterns, findings highlighted the co-occurrence of
supportive caregiving and lower family conflict with greater cortical
thinning. These patterns of co-occurrence are consistent with prior work
underscoring the importance of family functioning during middle
childhood, and may motivate future studies that investigate the poten-
tial role of caregiving in buffering against experiences of adversity.
Finally, this study demonstrates that parsing heterogeneity in brain and
environmental exposures has clinical relevance, and provides a foun-
dation on which future studies can leverage subtyping approaches to
predict mental health outcomes across development.
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