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The work proposes a computer-based diagnosis method (CBDM) to delineate and assess the corpus callosum (CC) segment from
the 2-dimensional (2D) brain magnetic resonance images (MRI). The proposed CBDM consists of two parts: (1) preprocessing and
(2) postprocessing sections. The preprocessing tools have a multithreshold technique with the chaotic cuckoo search (CCS)
algorithm and a preferred threshold procedure. The postprocessing employs a delineation process for extracting the CC section.
The proposed CBDM finally extracts the vital CC parameters, such as total brain area (TBA) and CC area (CCA) to classify the
considered 2D MRI slices into the control and autism spectrum disorder (ASD) groups. This attempt considers the benchmark
brain MRI database which includes ABIDE and MIDAS for the experimental investigation. The results obtained with ABIDE
dataset are further confirmed against the fuzzy C-means driven level set (FCM+LS) and multiphase level set (MLS) technique
and the proposed CBDM with Shannon entropy along with active contour (SE +AC) presented improved result in comparison
to the existing methodologies. Further, the performance of CBDM is confirmed on MIDAS and clinical dataset. The
experimental outcomes approve that the proposed CBDM extracts the CC section from the 2D MR brain images that have
higher accuracy compared to alternative techniques.

1. Introduction

Corpus callosum (CC) is one among the vital brain parts
responsible for neural communication among the two brain
sections. CC is the prime commissural territory in the human
brain, and it is composed of nearly 200-300 axons [1]. The
work by Hinkley et al. (2012) on agenesis of corpus callosum
(ACC) confirms that CC plays a significant role in problem
cracking schemes and swiftness in vocal processing [2]. The
study of Paul et al. (2014) also presents the relation of ACC
and autism [3]. Their work also confirms that the CC disor-
der will lead to autism. In early significant researches, many
works are reported to observe autism disorder based on CC

[4–7]. Some of similar research works also report the study
of sexual dimorphism in CC [8–14].

Due to its clinical significance, a substantial amount of
CC assessment procedures has been proposed and dis-
cussed by researchers [15, 16]. Normally, the CC region is
best visible in the sagittal view of two-dimensional (2D)
brain MRI. The visibility of the CC is also approximately
similar to other normal brain tissues and hence, the seg-
mentation of CC from the MRI requires some complex
procedures in comparison with the separation of other
brain regions. Considering literature, procedures such as
manual segmentation [6], level set scheme [10], active con-
tour method [15], and fuzzy C-means [16] are applied to
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extract CC with possible accuracy. Most of these approaches
consider a two-step procedure to separate the CC from the
sagittal view MRIs.

In recent times, the two-step process which integrates
multithresholding and segmentation is widely adopted by
the investigators to obtain the region of interest (ROI) of
the brain MRI documented with various modalities such as
flair, T1, T1C, T2, and diffused weighting (DW) [17–22].
These approaches implement the heuristic algorithm-
oriented threshold process to develop the prominence of
the ROI and a preferred segmentation plan to mine the
ROI. Further, the ROI is assessed in comparison with the
corresponding ground truth (GT) pictures presented by a
domain professional. The image similarity parameters (ISP)
obtained during the ROI and GT evaluation confirm the
superiority of the brain MRI assessment technique [23–25].

The earlier works confirms that the heuristic approach-
based brain MRI work offers improved result. This is
obtained in comparison with the existing conventional
processes [25]. Hence, in this work, most successful heuristic
procedure called the cuckoo search (CS) algorithm is consid-
ered during the brain MRI preprocessing. The performance
of the traditional CS (TCS) is enhanced based on the chaotic
operator known as Ikeda map (IM), which aided to accom-
plish better threshold result. The details of the IM and its
application are discussed in [20, 21). Experimental investiga-
tion of their work is then compared with the Lévy-Flight and
Brownian-Walk operators, which confirmed that the chaotic
cuckoo search (CCS) offers better threshold compared to the
traditional CS.

During the preprocessing procedure, CCS identifies the
optimal value of thresholds for brain MRI. In preprocessing,
a comparative examination amongst the famous threshold
approaches, such as Kapur, Tsallis, Otsu, and Shannon is
performed. This helps in finding the best suited threshold
scheme for CC examination using the 2D brain MRI. The
role of the postprocessing plan is to demarcate the CC
subjected to preprocessing. After mining the CC, an assess-
ment in comparison with the ground truth is performed to
obtain the vital ISPs.

In literature, few methods are discussed to obtain the CC
present in the considered 2D brain images. Further, most of
the methods are interested in computing the total brain area
(TBA) and corpus callosum area (CCA) to categorize the 2D
brain MRI dataset into control and autism spectrum disorder
(ASD) groups. In analyzing an image which belongs to med-
ical, it is always essential to measure the outcome of the
proposed tool with a chosen image dataset. If the tool works
well on the dataset, further, the developed image examination
instrument can be considered to estimate the medical grade
images.

The earlier works on CC examination computes only
the TBA and CCA and directly implements a categorization
process. To evaluate the efficacy of the developed tool, it is
essential to compute the ISPs and the essential statistical
measures. Further, the soft computing-based CC examina-
tion is also needed to improve the extraction accuracy.
Because of these reasons, in the projected work, CCS with
CBDM is proposed for examining the CC section.

This research work also presents a detailed study on (i)
different threshold procedures, such as Otsu, Kapur, Tsallis,
and Shannon and (ii) various segmentation approaches, such
as level set (LS), Chan-Vese (CV), region growing (RG), and
active contour (AC) in order to identify the appropriate pre-
and postprocessing practice to mine CC.

The experimental investigation is implemented in Matlab
software (Version7, Release14, Lic. No. 285705 with perpet-
ual term) using the public autistic databases, like ABIDE
(images of 60 volunteers) [19, 20] and MIDAS (images of
4 × 2 volunteers) [21]. The clinical implication of projected
tool is confirmed with the real-time clinical MRI obtained
from Proscans laboratory (images of 10 × 2 volunteers) [22].

2. Related Works

The MR imaging technique is extensively utilized to
record the performance and malformations of internal
organs of living beings. The improvement in the MRI
method additionally supports the upgrading and appraisal
of features recorded in 3-dimensional digital pictures. Pre-
vailing evaluation methods which deal with 3D images are
intricate. They require extraordinary swiftness in computing
machines since data volume is enormous. To reduce the dif-
ficulty in assessing the MRI, reorganized 3D image is further
transformed into a significant amount of 2D slices. Finally,
the two-dimensional slices are assessed using a suitable image
investigation system. In the proposed work, 2D brain MRI
slices are considered for the study, and the stages involved
in the CC segmentation and the corresponding brain abnor-
malities to be detected are presented in Figure 1.

Examination of CC from 2D slices of MRI with sagittal
view is commonly considered by the researchers. Paul
et al. (2014) proposed a practical examination to compare
ACC and autism using 2D MRI of T1 and DW modalities
[3]. Their work confirms that examination of CC is essen-
tial to asses ACC and autism. Wolff et al. (2015) proposed
a clinical investigation to confirm that the CC region is
reduced for elders and adults having autism spectrum dis-
order (ASD) [4]. Frazier and Hardan (2009) applied a
region-based examination on CC section of patients with
autism [5]. A manual segmentation scheme is considered
to extract and evaluate the CC’s size values and confirmed
that the ASD can be predicted based on the size of the CC
section. Tepest et al. (2010) inspected the size of CC and
its segments associated with total brain volume (TBV) to
identify the autism with respect to gender and revealed
that the TBV values in males are higher than in females
[6]. Lefebvre et al. (2015) proposed a work on neuroana-
tomical variety of CC and TBV in autism and verified
the work by considering the brain MRIs of 694 volunteers
[7]. The studies on the sexual dimorphism in CC and var-
iation in size of TBV and CC also widely examined using
the 2D MRI slices [8].

Previous studies authenticate the requirement of CC
examination during the human brain analysis; hence, more
care is essential during the segmentation of the CC region.
Normally, the CC is a thin section in the brain MRI and
will have the pixel intensity similar to other brain sections.
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Hence, it is essential to consider an efficient image pro-
cessing system to excerpt and estimate the CC from the
2D brain MRI of a chosen modality.

Fredo et al. (2014) applied a two-step process with
fuzzy-C-means (FCM) clustering and multiphase level set
(LS) approach to delineate the CC, cerebellum, and brain
stem from the 2D MRI recorded with T1 modality and
obtained a mean area of 0.87 for control (normal) cases
and 0.67 for ASD cases [9]. Further, Fredo et al. (2015)
implemented a similar work on the ABIDE database with
20 samples of control cases (male = 14 and female = 6)
and 20 samples of ASD cases (male = 11 and female = 9)
and attained mean area of 0.90 for control cases and
0.75 for ASD [10, 11]. Fredo et al. (2015) employed the
reaction diffusion regularized level set (RDRLS) method
to delineate CC [10]. Vachet et al. (2012) implemented
the deformable active Fourier contour model [15], and
İçer (2013) discussed a two-step approach based on the
Gaussian mixture model and FCM to extract the CC
[16]. Li et al. (2013) executed an automated two-step seg-
mentation scheme by combining the mean shift clustering
technique-based image improvement and geometric active
contour (GAC) dependant segmentation of CC [26]. The
work of Elsayed et al. (2010) implements a spectral segmen-
tation with the multiscale graph decomposition process to
extract CC [27]. Recent review of Cover et al. (2018) presents
an elaborate evaluation of various CC evaluation schemes,
MRI modalities, and performance measures existing in the
literature [28]. Their work also reports that T1-weighted
MRI is the widely adopted modality (44%) to examine CC.
This work also discusses the merits and demerits of the exist-
ing schemes and also recommends the need for a novel eval-
uation tool.

The proposed procedure has a two-stage process to
extract the CC section present in 2D brain MRI of T1
modality that is also implemented. For experimental inves-
tigation, the database such as ABIDE and MIDAS is uti-
lized. Further, in this proposed method, it is implemented
and validated for the clinical MR image obtained from
Proscans laboratory.

3. Computer-Based Diagnosis Method

A brief summary concerning the methods adopted in this
paper to provide a computer-based diagnosis method
(CBDM) for the extraction of CC from 2D brain MRI is dis-
cussed in this segment. The outline of the database utilized,
rudimentary tasks in examining images of brain, preprocess-
ing, delineation, and validation are presented elaborately.

Figure 2 presents various phases used in this examination
tool. Firstly, a 2D image of sagittal viewMRI of chosen slice is
considered with/without skull section. Early improvement of

Corpus callosum
extraction from 2D MRI

Modality: T1
Orientation: sagittal view

Segmentation of CC with
manual/automated

technique

Agenesis of
corpus callosum

Autism spectrum
disorder

Total brain
volume

Figure 1: Various approaches to examine the CC to detect different brain abnormalities.

Image preprocessing

Skull
stripping

Image
enhancement

Image post-processing

Ground truth
image

Performance assessment for
proposed tool

Validation

Figure 2: Overview of proposed tool.
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raw MRI slice is carried out using an appropriate image pre-
processing method, and a preferred postprocessing scheme is
to be adopted to mine the CC section. Further, the perfor-
mance of the tool can be validated with a relative analysis
with ground truth (GT) image presented by a specialist.
Extracted CC is then validated by a doctor by providing the
decision of next step in treating the patient to normalize or
provide remedy for the brain prognosis state. In all cases,
the developed tool by any suitable approach can only offer
a suggestion/preopinion regarding the brain abnormality,
and the doctor has to provide consultation and thereby a
conclusion in treating the patient further based on the
condition.

3.1. MRI Database. The sagittal view of MRI adopted in
this paper is collected from the public database such as
ABIDE and MIDAS. Further, real clinical image obtained
from Proscans is also used in this research work. These
entire databases consist of 3D brain structures recorded
with T1 modality. ITK-SNAP version 3.6.0 tool aids to
obtain the 2D slices from the complete dataset. [29, 30],
and an image normalization is implemented to obtain
2D slices of size 256 × 256 pixels. Similar practice is
employed for the GT image of ABIDE. The ABIDE is
the commonly used database in autism studies, which pro-
vides the vital details, like subject case (controlled/autistic),
gender, age, area of CC, and TBV [9–11].

In this work, 60 volunteer’s (age group of 13-16 years)
images are considered for the examination. The MIDAS
database consists of two control (normal) and two autistic
volunteer’s images that are recorded in the age of 2 years
and follow-up in 4 years, respectively. Finally, the clinical
images of a volunteer collected from Proscans are also exam-
ined using the proposed approach.

3.2. Image Preprocessing. This scheme is generally considered
to improve the picture under assessment using a suitable
image processing technique. This procedure will increase
the ROI by uniting the similar pixel values with a set of
threshold values selected. Recent related works confirm that
preprocessing practice is an essential stage in two-step image
processing tool.

3.2.1. Skull Stripping. Usually, the reconstructed brain MRI is
associated with the outer head bone called the skull. For
modalities of T2 and flair type, concentration of pixels
belonging to the skull is roughly greater than soft brain
tissues. Also, in T1 MRI modality, the skull intensity is simi-
lar to the intensity level of the brain tissue. Automated brain
region segmentation always requires a suitable skull stripping
procedure to discrete the soft region of the brain from that of
the skull information [31]. Various skull removing methods
discussed by the researchers can be found in [32]. If semiau-
tomated brain section segmentation is implemented, the
additional procedure of skull removal will not be required
further. The methods such as LS, CV, RG, and AC fall in
the semiautomated group do not take into consideration of
the skull section. In this paper, the work is instigated on the
2D MRI slice, with and without skull section.

3.2.2. Cuckoo Search Algorithm. In consideration with var-
ious existing metaheuristic methods, cuckoo search (CS)
presented by Yang and Deb has appeared to be one of
the effective soft computing techniques [33–37]. Recently,
CS is widely accepted by maximum number of researchers
in solving numerous optimization tasks [38, 39]. The main
advantage of CS compared with the firefly and bat algorithm
is the structure of the CC that is simple and supports higher
probability of getting the optimized solution. Various chaotic
search procedures assisted CS can be found in [40, 41].

The mathematical expression of CS is as follows:
The CS executed with the following conventions:

(i) Each bird leaves behind an egg in randomly nomi-
nated nest of other host birds

(ii) Nest of strong surviving egg is inherited to the
succeeding level. The hatching rate of this egg is
faster than that of the host

(iii) The chance of categorizing the egg by host bird in CS
is pa ∈ ½0, 1� for a selected optimization task

In most of the heuristic algorithms, accomplishment in
discovering a resolution for a job generally depends on its
direction finding method. Typically, it is guided by Lévy
Flight (LF) and chaotic strategies [42, 43].

In this paper, the Ikeda map (IM) is chosen to drive the
CS, and the details on IM are available in [44, 45]. In CS opti-
mization investigation, nascent location ðXðt+1ÞÞ naturally
count on previous position ðXi

ðtÞÞ. In this section, the subse-
quent equations are accounted to search an updated location
of cuckoo:

X t+1ð Þ
i = X tð Þ

i + α ⊕ IM, ð1Þ

where Xðt+1Þ
i is the updated position and signifies early posi-

tion, ⊕ denotes the entrant multiplier, and IM shows the cha-
otic Ikeda map approach. Normally, the parameter “α” is
assigned with a positive integer (i.e., α > 0) and in this
research, “α” is allocated as 1. Additional particulars regard-
ing CS are cited in the works of Yang and Deb [37].

IM is one of the chaotic search operator, and its explana-
tion and application on various heuristic algorithms can be
found in [17, 18].

IM = R::exp ZΦ − Z
δ

1 + Xi
tð Þ�� ��2

 !" #
, ð2Þ

where Z is the iteration number, ϕ is allotted as 0.1, δ is
chosen as 7, and the disordered attraction constraint (R)
value is given as 0.75.

Equation (2) presents the IM implemented in the recent
attempt of Satapathy et al. (2018) to increase the investiga-
tion competence of the bat algorithm (BA) [46]. This work
established that the IM-assisted BA offered better result in
comparison with particle swarm optimization (PSO), firefly
algorithm (FA), and traditional BA. Further, the work of
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Abhinaya and Raja (2015) [17] and Lakshmi et al. (2016) [18]
confirms the advantage of IM-based cuckoo search for the
medical image processing. Hence, this work implements a
chaotic IM search technique to improve the performance of
the traditional cuckoo search (TCS) method. The efficacy of
the proposed chaotic cuckoo search (CCS) is further
confirmed with other techniques, such as particle swarm
optimization (PSO) [47], bacterial foraging optimization
(BFO) [48], bat algorithm (BA) [41], and TCS [41].

The subsequent initial constraints are assigned for every
heuristic algorithms adopted in this paper: representative’s
dimension is designated as 30, exploration measure is set as
3 (a three-level), the complete iteration limit is maintained
as 1500, and end criteria are given as maximized value of
image measure (between class variance for Otsu and maxi-
mized entropy for Kapur, Shannon, and Tsallis thresholding
schemes).

3.2.3. Image Thresholding. Thresholding is an extensively
followed image enhancement process employed to process
traditional and medical images [23–25]. During the thresh-
old process, a picture frame is separated into several sections
by grouping related pixels, to find and evaluate the significant
information existing in the picture. Previous research works
confirm the availability of a variety of threshold schemes,
such as Otsu, Kapur, Shannon, and Tsallis to preprocess the
gray scale and RGB pictures. This section also implements
a comparative study among the above said threshold
procedures.

(1) Otsu’s Scheme. This scheme is one of the well-known pro-
cedures widely adopted to progress the trial picture based on
the chosen threshold value. In the related works of this
research, multithresholding based on Otsu’s approach is
widely applied by the researchers for a class of image cases
based on maximizing the interclass variance.

Otsu is a nonparametric threshold scheme developed in
1979 [49], and its mathematical relation is depicted as
follows;

Let L = 256, and the chosen threshold number is three
(i.e., Th = 3), which divides the input image into three dis-
tinct groups, like Q0, Q1, and Q2.

Assume that the image consists the thresholds like ðt1,
t2 ⋯ tThÞ, which split the input picture into three groups:
Q0; gray level values are accounted from 0 to t − 1, Q1
which has gray levels of range t1 to t2 − 1, and Q2 con-
tains gray levels from t3 to L − 1.

The objective function for the above case will be

Maximize F Tð Þ = φ0 + φ1 + φ2, ð3Þ

where φ0 = ω0ð μ0 − μTÞ2, φ1 = ω1ð μ1 − μTÞ2, φ2 = ω2
ðμ2 − μTÞ2:

In Eq. (3), the symbols ω and μ represent the class prob-
abilities and class means, respectively.

(2) Kapur’s Technique. Kapur’s entropy (KE) was originally
proposed in 1985 to appraise gray scaled images in accor-
dance with its entropy based on histogram [50]. KE aids to
explore the optimal threshold of a picture on the basis of its
entropy alone. Since the outcome proves to provide satisfac-
tory results, many researches using KE are deliberated in the
literature [18].

Precise model of the KE is well defined as follows:
Let T = ½t1, t2,⋯, tL−1� represent individual threshold

values of the image. Further, the complete entropy of KE is
represented as follows:

Costfunction = JKapur = F Tð Þ = 〠
L

J=1
OR

j forR 1, 2, 3f g: ð4Þ

Equation (4) designates to get the most out of value of
entropy for the selected threshold.

In trilevel thresholding assignment, the objective func-
tion value is denoted as

OR
1 = 〠

t1

j=1

PoRj
θR0

ln
PoRj
θR0

 !
,

OR
2 = 〠

t2

j¼t l+1

PoRj
θR1

ln
PoRj
θR1

 !
,

OR
3 = 〠

L

j¼t2+1

PoRj
θR2

ln
PoRj
θR2

 !
,

ð5Þ

where PoRj shows the likelihood distribution and θR0 , θ
R
1 , :θ

R
2

depicts the probability occurrence in L-levels.

(3) Shannon’s Technique. Shannon’s entropy (SE) procedure
was established by Kannappan in 1972 [51]. Rajinikanth et al.
(2017) states that the SE approach-based brain MRI exami-
nation offers better result in comparison with Kapur’s and
Tsallis technique [18].

In recent works, SE dependant thresholding is employed
to perform preprocess medical pictures. To elucidate the SE,
a picture with dimension A × B is to be under consideration.
The pixel arrangement of the gray picture (h, v) is expressed
as Gðh, vÞ, for h ∈ f 1, 2,⋯, Ag and v ∈ f 1, 2,⋯, Bg. Let L be
the various levels of gray for the considered test image, and
the set of all gray values f0, 1, 2,⋯, L − 1g can be symbolized
as Z, in such a way that

G h, vð Þ ∈ Z∀ h, vð Þ ∈ picture: ð6Þ

Then, the normalized histogram will be X = ft1, t2,⋯,
tL−1g.
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For thresholding with level set to 3, Eq. (5) becomes

X Tð Þ = x0 t1ð Þ + x1 t2ð Þ + x2 t3ð Þ,
F Tð Þ =max

T
X Tð Þf g: ð7Þ

Threshold value which is represented by T = ft1, t2,⋯,
tLg, X = fx0, x1,⋯, xL−1g denotes the normalized histogram,
and FðTÞ indicates the optimal threshold. Further informa-
tion about SE can be found in [52].

(4) Tsallis Technique. Tsallis entropy (TE) is a nonextensive
entropy idea derived from the SE by Tsallis [53, 54] and rep-
resented as

Sq =
1 −∑T

i=1 pið Þq
q − 1

: ð8Þ

In the equation, T is the scheme prospective, q is the
entropic indicator, and p i represents the probability of each
state i. Usually, the entropy value obtained with Tsallis proce-
dure, Sq, will meet Shannon’s entropy when q⟶ l.

The entropy information is denoted using a quasiadditive
instruction as

Sq A + Bð Þ = Sq Að Þ + Sq Bð Þ + 1 − qð Þ:Sq Að Þ:Sq Bð Þ: ð9Þ

TE can be utilized to discover the finest threshold
values in the image. A test picture with L gray levels
which have the values f0, 1,⋯, L − 1g with possibility
spreading pi = p0, p1,⋯, pL−1 is considered. Thus, the Tsal-
lis trilevel-based threshold process is achieved with the
objective function:

F Tð Þ = t1, t2, t3½ � = argmax,

F Tð Þ = t1, t2, t3½ � = argmax,

SAq Tð Þ + SBq Tð Þ + SCq Tð Þ + 1 − qð Þ:SAq Tð Þ:SBq Tð Þ:SCq Tð Þ
h i

,

ð10Þ

where

SAq Tð Þ = 1 −∑
t1−1
i=0 Pi/PA� �
q − 1

q

, PA = 〠
t1−1

i=0
Pi,

SBq Tð Þ = 1 −∑t2−1
i=t1 Pi/PB� �
q − 1

q

, PB = 〠
t2−1

i=t1

Pi,

SCq Tð Þ = 1 −∑L−1
i=t2 Pi/PC� �
q − 1

q

, PC = 〠
L−1

i=t2

Pi:

ð11Þ

When the multilevel process is executed base on
threshold, an optimal threshold value T is to be obtained
such that the objective function FðTÞ is being maximized.
In this existing work, the principal part of the CCS algo-

rithm is to discover the maximized optimal threshold
“FðTÞ” in Otsu, KE, SE, and TE cases for a chosen thresh-
old of three.

3.3. Image Postprocessing. This phase purpose is to mine the
ROI (CC) from preprocessed brain MRI. The details of var-
ious automated and semiautomated separation measures
prevailing in the image processing literature are presented
in detail. Based on the implementation, the segmentation
processes are categorized as (i) automated and (ii) semiauto-
mated schemes. In the automated scheme, the segmentation
procedure requires a minimal or nil operators’ assistance. In
the semiautomated method, the initiation of the segmenta-
tion task is to be done by the operator based on a trial and
error approach or a by adopting a directed practice.

3.3.1. Automated Segmentation. The segmentation methods,
such as watershed [55], principal component analysis [56],
and clustering approaches (k-means, fuzzy k-means, etc.)
[57], are some of the techniques that falls in the category of
the automated segmentation approach. In these procedures,
the interaction of human operator during the initiation is
comparatively less.

3.3.2. Semiautomated Segmentation. Semiautomated seg-
mentation (SAS) approaches are widely considered in medi-
cal image analysis, when a complex segmentation task is to be
completed. In these methods, the operator’s assistance is
essential throughout the segmentation execution. The opera-
tor is responsible to begin the operation, assigning the run
time/number of iteration required and assigning the termi-
nating criterion. SAS is widely applied by the investigators
to extract the ROI from a class of complex medical images
[25]. Generally, SAS works based on the identification of
the similar pixel values from its initial point. It will explore
all the possible alike pixel values present in the preprocessed
picture, until the maximum iteration value is reached. The
approaches, such as level set (LS) [58], Chan-Vese (CV)
[59, 60], region growing (RG) [61], and active contour
(AC) [62], fall in this category. In the projected work, the
AC segmentation is executed to obtain the CC, and its perfor-
mance is then validated against alternative approaches, like
LS, CV, and RG.

AC has an adaptable snake-like search mechanism,
which modifies its direction such that it addresses all the pos-
sible comparable pixel clusters available in the image based
on energy minimization theory as discuss in [63]. Because
of its merit, AC is commonly adopted to inspect medical
images.

AC performs operations, like (i) border recognition, (ii)
preliminary curve generation with respect to the identified
border, (iii) changing the snake’s orientation to follow the
pixel group till the energy becomes minimal, and (iv) final
curve generation and extraction of the region inside the final
contour.

Energy function of AC’s snake is

min
C

EGAC Cð Þ =
ðL Cð Þ

0
g ∇I0C sð Þj jð Þds

� �
, ð12Þ

6 Computational and Mathematical Methods in Medicine



where ds is the Euclidean distance constituent and LðCÞ is the
length of the curvature C. It satisfies the constraints LðCÞ =Ð LðCÞ
0 ds. The limitation g indicates edge, which will wane

based on the objective periphery defined as

g ∇I0j jð Þ = 1
1 + β ∇I0j j2 , ð13Þ

where I0 signifies test image under study and β depicts a ran-
dom constant. The energy value quickly declines because of
the values reflected by the edges as in gradient succession
quantification.

This method is scientifically characterized as

∂tC = kg − ∇g,M
� �� �

M, ð14Þ

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Outcome of the preprocessing approach for a chosen test image (image 1). (a, b) depicts test image and the GT, respectively, (c, d)
shows Otsu’s thresholding outcome for image with and without skull section, (e, f) presents the outcome of Kapur’s entropy, (g, h) depicts the
thresholding result of Shannon’s, and (i, j) illustrates the result by Tsallis.
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where∂tC = ∂C/∂t indicates the changes in the snake
model. t represents the repetition period. k and M are
the curve and normal for the considered snake “C.” In this
process, the silhouette of the snake is constantly adjusted
till nominal value of the energy; EGAC is accomplished.

3.4. Evaluation of ROI with GT. The goal of this section
focuses to examine the performance of the suggested method
by employing a qualified examination amongst ROI and GT.
This work deliberates standard brain MRI dataset identified
as ABIDE, in which test images are associated with GT. In
this study, image resemblance values, such as Jaccard, dice,
false-positive rate (FPR), and false-negative rate (FNR), are
computed [23–25].

The mathematical terminologies are presented in Eqs.
(15)–(18):

Jaccard IG, ICð Þ = IG ∩ ICIG ∪ IC , ð15Þ

Dice IG, ICð Þ = 2 IG ∩ ICð Þ IGj j ∪ ICj j, ð16Þ
FPR IG, ICð Þ = IGICð Þ IG ∪ ICð Þ, ð17Þ
FNR IG, ICð Þ = ICIGð Þ IG ∪ ICð Þ, ð18Þ

where IG signifies the GT and IC represents the mined
section.

Furthermore, the image statistical outcomes, which
include sensitivity, specificity, accuracy, and precision, are
also calculated [64, 65].

Expressions for these bounds are specified in Eqs.
(19)–(22):

Sensitvity = TP TP + FNð Þ, ð19Þ

Specificity = TN TN + FPð Þ, ð20Þ
Accuracy = TP + TNð Þ/ TP + TN + FP + FNð Þ, ð21Þ

Precision = TP TP + FPð Þ, ð22Þ

where TN , TP, FN , and FP signify related measures.

4. Result and Discussions

The outcomes accomplished with the planned tool are elabo-
rated. Various early works endorse the accessibility of
considerable processing procedures for CC examination of
the considered images. The projected work tools have a
two-stage procedure to observe the well-known 2D sagittal
brain MRI and the MR images obtained from the clinic. This
work reflects the support of the contemporary heuristic tech-
nique known as CCS along with the well-known threshold
approach. A comprehensive valuation among the prevailing
segmentation processes, such as LS, CV, RG, and AC, is also
presented. The developed CDT is executed with a AMD C70
Dual Core 1GHz CPU with 4GB of RAM PC which is
equipped with Matlab software.

Firstly, the ABIDE dataset of 60 volunteers (30 control
and 30 ASD class) is considered for the examination. This
database contains the 2D sagittal MRI recorded with T1
modality with a pixel measurement of 256 × 256. This dataset
is associated with relevant GT offered by a professional.

Figure 3 depicts a chosen 2D MRI and the GT of ABIDE.
The preprocessing procedure is then implemented on this
image by considering its original version and the skull
stripped version. This figure also depicts the threshold results
of various procedures reflected in this work. Figures 3(c) and
3(d) represent the enhanced image with Otsu’s approach,
Figures 3(e) and 3(f) depict the outcome of KE-based trilevel
thresholding, and Figures 3(g) and 3(h) show that the result
of SE and Figures 3(i) and 3(j) shows the results by TE. After
enhancing the test picture based on a chosen threshold
approach, a segmentation task is used to extract the CC sec-
tion in order to find the parameters, such as TBA and CCA as
discussed in [11]. During the segmentation task, every
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Figure 4: Convergence of the optimization search with Otsu’s function.
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(a) (b) (c) (d) (e) (f)

Figure 5: Extraction of CC using active contour segmentation: (a) Otsu’s, (b) Kapur’s, (c) Shannon’s, (d) Tsallis, (e) Shannon’s without the
skull, and (f) Tsallis without the skull.

Table 1: Results obtained for the sample images.

Image
(ASD)

Image Test picture GT SE+AC TE+AC

Male

Image 2

Image 3

Female

Image 4

Image 5

Image 6
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preprocessed test image is tested using the LS, CV, RG, and
AC approaches. This test result confirms that the LS
approach offered false result most of the time due to the
visibility of CC. In most of the image cases, the CC pixel
intensity is similar to the normal brain tissue intensity.
Hence, for all the considered images, the extraction and eval-
uation task is implemented only with CV, RG, and AC.

Figure 4 represents the search merging of the heuristic
algorithm for Otsu’s trilevel threshold operation imple-
mented on image 1. The proposed CCS is converged at
582th iteration, and the search process is terminated at
1417th iteration. This confirms that the projected CCS per-
forms better compared to other approaches adopted in this
study. Similar techniques are repeated with other threshold
techniques, such as Kapur, Tsallis, and Shannon and for most
of the cases, the proposed CCS offered improved outcome
compared to the PSO, BFO, and BA. This confirms that the
CCS works well for the chosen brain MRI thresholding
problem.

Figure 5 depicts the execution of the AC-based extraction
of CC from the preprocessed test images presented in
Figure 3. Similar procedure is recurrent for the additional
2D sagittal images of the database, and its effects are
recorded. To confirm the preeminence of the considered
preprocessing approach, a relative study among the mined
CC and the GT is performed, and the image match and
statistical outcomes are calculated. This comparative study
confirmed that, for the chosen dataset, Otsu’s and KE pro-
cedures are failed to provide better result compared to the
SE and TE-based procedures. Hence, the results of Otsu’s
and KE are ignored, and the results of SE and TE are projected
in this paper. Table 1 represents the segmentation results
attained for the representative images with the SE+AC and
TE+AC. Similar results are attained with SE+CV, SE+RG,
TE+CV, and TE+RG. Tables 2 and 3 present the similar
information of the considered images and the statistical mea-
sures achieved during this experimental investigation. From
Tables 2 and 3, it can also be observed that the outcome

obtained with Otsu+AC and KE+AC is poor in comparison
to the alternatives.

The performance of the projected CBDM is confirmed
with a pixel level relative evaluation among the mined CC
section and the GT. To demonstrate the performance, the
mined CC sections SE+AC and TE+AC of image 1 are con-
sidered, and the obtained results are illustrated in Figure 6.
Figure 6(a) depicts the confusion matrix of SE+AC, and
Figure 6(b) presents the confusion matrix of TE+AC. From
these images, it can be distinguished that the image similarity
constraints (ISP) offered by the proposed CBDM are better.
Similar technique is repeated with further images, and the
sample consequences obtained with image 1 to image 6 are
depicted in Tables 2 and 3.

Table 3 authenticates that the image measures obtained
with the SE are better when compared to TE. The average

Table 2: Image similarity measures achieved for the selected sample mages.

Image Method TPR FNR TNR FPR Jaccard Dice

Image 1

Otsu 0.8035 0.1965 1.0000 0.0000 0.8032 0.8909

Kapur 0.1348 0.8652 0.9999 0.0001 0.1345 0.2372

Shannon 0.8804 0.1196 0.9992 0.0008 0.8201 0.9012

Tsallis 0.8800 0.1200 0.9996 0.0004 0.8518 0.9200

Image 2
Shannon 0.7907 0.2093 0.9992 0.0008 0.7454 0.8541

Tsallis 0.8339 0.1661 0.9996 0.0004 0.8078 0.8937

Image 3
Shannon 0.8405 0.1595 0.9993 0.0007 0.7841 0.8790

Tsallis 0.4450 0.1555 0.9993 0.0007 0.7876 0.8812

Image 4
Shannon 0.8912 0.1088 0.9991 0.0009 0.8281 0.9060

Tsallis 0.8482 0.1581 0.9988 0.0012 0.7750 0.8732

Image 5
Shannon 0.8535 0.1465 0.9998 0.0002 0.8270 0.9053

Tsallis 0.8261 0.1739 0.9995 0.0005 0.7705 0.8704

Image 6
Shannon 0.9133 0.9986 0.0014 0.0867 0.8019 0.8901

Tsallis 0.8396 0.1604 0.9998 0.0002 0.8263 0.9049

Table 3: Image statistical outcomes attained for the selected sample
images.

Image Method Sensitivity Specificity Accuracy Precision

Image 1

Otsu 0.8035 1.0000 0.9976 0.9996

Kapur 0.1348 0.9999 0.9373 0.9888

Shannon 0.8804 0.9992 0.9980 0.9230

Tsallis 0.8800 0.9996 0.9983 0.9637

Image 2
Shannon 0.7907 0.9992 0.9966 0.9287

Tsallis 0.8339 0.9996 0.9976 0.9627

Image 3
Shannon 0.8405 0.9993 0.9978 0.9212

Tsallis 0.8445 0.9993 0.9978 0.9212

Image 4
Shannon 0.8912 0.9991 0.9977 0.9212

Tsallis 0.8482 0.9988 0.9969 0.8998

Image 5
Shannon 0.8535 0.9998 0.9987 0.9638

Tsallis 0.8261 0.9995 0.9983 0.9197

Image 6
Shannon 0.9133 0.9986 0.9978 0.8680

Tsallis 0.8396 0.9998 0.9979 0.9811
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result computed for the ABIDE database (60 volunteers)
in percentage is presented in Table 4, and its graphical
representation is presented in Figure 7. This tabulation

and figure confirm that the overall image similarity and
the statistical outcomes obtained with SE+AC are superior
compared with other approaches. This also authenticates
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Figure 6: Confusion matrix to discuss the performance measure.

Table 4: Average values of similarity and statistical values of ABIDE dataset (60 volunteers).

Method Jaccard Dice Sensitivity Specificity Accuracy Precision

SE +AC 87.15 92.75 87.17 99.92 99.74 95.38

SE +CV 86.48 90.92 88.53 99.67 98.91 95.11

SE +RG 86.94 89.74 86.90 99.82 99.06 93.96

TE+AC 86.05 90.81 86.89 99.90 99.77 95.14

TE+CV 84.42 88.39 87.04 99.73 98.58 94.86

TE+RG 86.53 89.55 86.54 99.85 98.83 94.05
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Figure 7: Performance evaluation of CBDM with chosen processing methods.

Table 5: Average values of TBA and CCA of ABIDE dataset (60 volunteers).

Parameter
FCM+LS [11] Multiphase LS [9] SE +AC TE+AC

Controlled ASD Controlled ASD Controlled ASD Controlled ASD

TBA 0.87 0.92 0.59 0.79 0.8104 0.8826 0.8685 0.9175

CCA 0.90 0.75 0.82 0.69 0.9092 0.7761 0.8917 0.7481
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that AC outperforms the CV and RG for the considered
dataset. Table 5 presents the computed values of TBA
and CCA, and this result also authenticates that the aver-
age results of FCM+LS, SE+AC, and TE+AC are roughly
identical.

The results depicted in Figures 8 and 9 also confirm that
the method based on SE+AC and TE+AC provides better
result on the MIDAS and Proscans datasets. From these out-
comes, it can be understood that proposed CBDM has more

efficacy in mining the CC segment from the T1 modality
brain MRI slices.

This work also confirms that the average simulation
period taken by SE+AC/TE+AC for ABIDE dataset is
smaller (171.19 sec/168.94 sec) compared to other approaches
(SE + CV = 192:16 sec, SE + RG = 174:28, TE + CV = 191:38,
and TE + RG = 172:57 sec). The main limitation of the pro-
posed technique is it implemented the semiautomated seg-
mentation techniques, such as AC, CV, and LS procedures

Figure 8: Sample test pictures and a sample result obtained with the MIDAS database.

(a) (b)

(c) (d)

Figure 9: Sample 2D slices of real scan pictures and its corresponding result: (a) the sample test image with skull section, (b) segmented CC,
(c) sample image without skull section, and (d) extracted CC from image (c).
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to mine the CC section. In future, the segmentation methods
such as super pixel [66] and local binary pattern [67, 68] can
be considered to extract the CC. Further, the planned method
can be considered to evaluate the medical level brain MRI
collected from volunteers who are associated with autism.

5. Conclusion

This paper suggested a computerized CC extraction tool with
a two-step image processing scheme. The instigated method
considers the blend of CCS-assisted trilevel thresholding with
Shannon’s/Tsallis entropy and segmentation based on the
CV/RG/AC procedure. During the investigational assess-
ment, the benchmark datasets, such as ABIDE and MIDAS,
are used for the preliminary evaluation. Further, this tool is
tested on the clinical 2D sagittal MRI of T1 modality
obtained from a scan centre. The experimental investigation
authorizes that proposed tool extracts the CC region from the
brain picture with better accuracy and helps to compute the
TBA and CCA for the 2D brain MRI. A comparative study
also confirms that the results are approximately similar to
the result existing in the literature with fuzzy C-means+LS
procedure and better than multiphase LS. The proposed
CBDM also offers better segmentation result for the clinical
images. Hence, for the forthcoming requirements, this
method can be considered in medical clinics to estimate the
sagittal view MRI recorded with T1 modality. The proposed
outcome of this work could be extended further to aid the
investigations in identifying the prognosis of the disease at
various stages.
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