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Estimation of Discriminative 
Feature Subset Using Community 
Modularity
Guodong Zhao & Sanming Liu

Feature selection (FS) is an important preprocessing step in machine learning and data mining. In 
this paper, a new feature subset evaluation method is proposed by constructing a sample graph (SG) 
in different k-features and applying community modularity to select highly informative features as 
a group. However, these features may not be relevant as an individual. Furthermore, relevant in-
dependency rather than irrelevant redundancy among the selected features is effectively measured 
with the community modularity Q value of the sample graph in the k-features. An efficient FS method 
called k-features sample graph feature selection is presented. A key property of this approach is that the 
discriminative cues of a feature subset with the maximum relevant in-dependency among features can 
be accurately determined. This community modularity-based method is then verified with the theory 
of k-means cluster. Compared with other state-of-the-art methods, the proposed approach is more 
effective, as verified by the results of several experiments.

Feature selection (FS) is widely investigated and utilized in machine learning and data mining research. In this 
context, a feature, also called attribute or variable, represents a property of a process or system. The goal of FS 
is to select the feature subsets of informative attributes or variables to build models that describe data and to 
eliminate redundant or irrelevant noise features to improve predictive accuracy1. FS not only maintains the orig-
inal intrinsic properties of the selected features but also facilitates data visualization and understanding2. FS has 
been extensively applied to many applications, such as bio-informatics3, image retrieval4, and text classification5, 
because of its capabilities.

Traditional methods in FS can be broadly categorized into two approaches6, namely, filter and wrapper 
approaches. Filter algorithms7–10 utilize a simple weight score criterion to estimate the goodness of features. 
As a result, filter methods are classifier-independent and effective in terms of computational cost. However, fil-
ter methods disregard the correlations between features and provide feature subsets that may contain redun-
dant information, which reduces classification accuracy. The correlation of concern in this study is a measure 
of the relationship between two mathematical variables (called features) or measured data values. In wrapper 
approaches11–14, feature subset selection depends on a classifier, which results in superior classification accuracy 
but requires high computational cost for repeated training of classifiers. Filter methods are eliciting an increasing 
amount of attention because of their efficiency and simplicity. This study focuses on filter methods only.

FS involves two major approaches: individual evaluation (univariate) and subset evaluation (multivariate). 
The former, which is also known as variable ranking, assesses an individual feature by using a scoring function 
for relevance. Subset evaluation produces candidate feature subsets through a certain search strategy. Each can-
didate subset is evaluated by a certain evaluation measure and compared with the previous best subset based on 
this measure. Individual evaluation only selects relevant features as an individual. However, a variable that is 
completely useless by itself can result in a significant performance improvement when combined with others15. 
Therefore, individual evaluation methods have been criticized for disregarding these features with strong dis-
criminative power as a group but with weak power as an individual16. Furthermore, individual evaluation cannot 
eliminate redundant features because redundant features are likely to have similar rankings. Subset evaluation can 
handle feature redundancy with feature relevance17. The combination of several best individual features selected 
by individual evaluation methods does not generally lead to satisfactory classification results because the redun-
dancy among selected features is not eliminated by individual evaluation methods18. Thus, subset evaluation 
method is considered the better approach between the two. Generally, the solution of a feature optimal subset 
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is NP-hard19. To avoid the combinatorial search problem to find an optimal subset, variable selection methods 
are employed. The most popular of these methods mainly include forward20, backward21, and floating sequential 
schemes22, which adopt a heuristic search procedure to provide a sub-optimal solution.

In the subset evaluation method, evaluation of the relevance of a feature subset, including relevance and 
redundancy in a feature subset, is important in multivariate methods; however, this task is difficult in practice. 
Relevance evaluation methods based on mutual information (MI) have become popular recently23–28. However, 
these algorithms approximately estimate the discriminative power of a feature subset because loss of intrinsic 
information in raw data can occur while estimating the probability distribution of a feature vector by the discre-
tization of a feature variable27,28.

A good feature subset should contain features that are highly correlated with the class but uncorrelated with 
one another29. In other words, in a good feature subset, the samples in different classes can be separated well; that 
is, the within-class distance in samples is small and between-classes distance is large. Therefore, if the samples are 
shown in a graph (also referred to as a complex network), the graph should exhibit obvious community struc-
tures30 and a high community modularity Q value31,32. Thus, the community modularity Q value can be utilized 
to evaluate the relevance of a feature subset with regard to the class. In this paper, a novel method is proposed 
to address the feature subset relevance evaluation problem by introducing a new evaluation criterion based on 
community modularity. The method accurately assesses the relevance independency of a feature subset by con-
structing a sample graph in different k-features. To the best of our knowledge, this work is the first to employ 
community modularity in feature subset relevance evaluation. The proposed method indiscriminately selects 
relevant features through the forward search strategy. This method not only selects relevant features as a group 
and eliminates redundant features but also attempts to retain intrinsic interdependent feature groups. The effec-
tiveness of the method is validated through experiments on many publicly available datasets. Experimental results 
confirm that the proposed method exhibits improved FS and classification accuracy. The discriminative capacity 
of the selected feature subset is significantly superior to that of other methods.

Related Work
FS has elicited increasing attention in the last few years. In the early stage, individual evaluation methods were 
more popular, such as those in7–10, which measure the discriminate ability of each feature according to a related 
evaluation criterion. Based on class information, these methods belong to the supervised FS algorithm. An unsu-
pervised feature ranking algorithm has also been proposed; this algorithm considers not only the variance of each 
feature but also the locality preserving ability, such as the Laplacian score33.

A known limitation of individual evaluation methods is that the feature subset selected by these methods may 
contain redundancy15,34, which degrades the subsequent learning process. Thus, several subset evaluation-based 
filter methods, such as those in17,29,35–37, have been proposed to reduce redundancy during FS.

MI is gaining popularity because of its capability to provide an appropriate means of measuring the mutual 
dependence of two variables; it has been widely utilized to develop information theoretic-based FS criteria, such 
as MIFS23,38, CMIM39, CMIF24, MIFS-U25, mrmr27, NMIFS28, and FCBF40. MI is calculated with a Parzen win-
dow41, which is less computationally demanding and provides better estimation. The Parzen window method 
is a non-parametric method to estimate densities. It involves placing a kernel function on top of each sam-
ple and evaluating density as the sum of the kernels. The author in42 pointed out that common heuristics for 
information-based FS (including Markov Blanket algorithms43 as a special case) approximately and iteratively 
maximize the conditional likelihood. The author presented a unifying framework for information theoretic-based 
FS, bringing almost two decades of research on heuristic filter criteria under a single theoretical interpretation. 
Analysis of the redundancy among selected features is performed by computing the relevant redundancy between 
the features and the target. However, MI-based FS methods have been criticized for their limitations. First, loss 
of intrinsic information in raw data could occur because the probability distribution of the feature vector is esti-
mated by the discretization of the feature variable. The second limitation is that these methods only select relevant 
features as an individual and disregard these informative features as a group44. Several researchers have also found 
that combining optimal features as an individual does not provide excellent classification performance45.

Graph-based methods, such as the Laplacian score33 and improved Laplacian score-based FS methods46–49, 
have been widely applied to feature learning because these approaches can evaluate the similarity among data. 
Generally, the graph-based method includes two phases. First, a graph is constructed in which each node corre-
sponds to each feature, and each edge has a weight based on a criterion between features. Second, several clus-
tering methods are implemented to select a highly coherent set of features50. Optimization-based FS algorithms 
are preferred by many researchers. R. Tibshirani51 proposed a new method called “lasso” for estimation in linear 
models. Based on graphical lasso (GL), a new multilink, single-task approach that combines GL with neural net-
work (NN) was proposed to forecast traffic flow52.

Statistical methods have been widely applied to FS. Two popular feature ranking measures are t-test53 
and F-statistics54. Well known statistic-based feature selection algorithms include χ2-statistic55, odds ratio56, 
bi-normal separation57, improved Gini index58, measure using Poisson distribution59, and ambiguity measure60. 
Most of these methods calculate a score based on the probability or frequency of each feature in bag-of-words to 
rank features according to a feature’s score; the top features are selected. Yan Wang61 introduced the concept of 
feature forest and proposed feature forest-based FS algorithm.

Results
Experiments on artificial datasets, including binary class and multi-class datasets, were conducted to test the 
proposed approach. The proposed approach was also compared with several popular FS algorithms, including 
MIFS_U, mrmr, CMIM, Fisher, Laplacian score33, RELIEF62, Simba-sig63, and Greedy Feature Flip (G-Flip-sig)63. 
Off-the-shelf codes42 were used to implement MIFS_U, mrmr, and CMIM methods.
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To evaluate the effectiveness of the proposed method, the nearest neighborhood classifier (1NN) with 
Euclidean distance and support vector machine (SVM)64 using the radial basis function and the penalty param-
eter c =  100 were employed to test the performance of the FS algorithms. We utilized the LIBSVM package65 for 
SVM classification. All experiments were conducted on a PC with Intel(R) Core(TM) i3-2310 CPU@2.10 GHz 
and 2G main memory.

Datasets and preprocessing. To verify the effectiveness of the proposed method, six continuous datasets 
from the LIBSVM datasets65, two cancer microarray datasets, and two discrete datasets from UCI were utilized 
in the simulation experiments. All the features in the datasets, except discrete features, were uniformly scaled to 
zero mean and unit variance. The details of the 10 datasets are shown in Table 1.

Feature selection and classification results. Classification performance was utilized to validate the FS 
method, and tenfold cross validation was employed to avoid the over-fitting problem. To reduce unintentional 
effects, all the experimental results are the average of 10 independent runs. In comparing the different methods, 
the feature subset was produced by picking the top s selected features to access each method in terms of classi-
fication accuracy (s =  1, ..., P). We discretized continuous features to nine discrete levels as performed in66,67 by 
converting the feature values between μ −  σ/2 and μ +  σ/2 to 0, the four intervals of size σ to the right of μ +  σ/2 
to discrete levels from 1 to 4, and the four intervals of size σ to the left of μ −  σ/2 to discrete levels from − 1 to 
− 4. Extremely large positive or small negative feature values were truncated and discretized to ± 4 appropriately.

Table 2 indicates the average classification accuracy of both 1NN and SVM classifiers at different s. A bold 
value indicates the best among the FS methods under the same classifier and the same number of selected fea-
tures. To avoid the influence of data scarcity, the average value of accuracy at different s for all datasets in the same 
selector is shown in the bottom line of Table 2 (Avg.). The results in Table 2 indicate that the proposed method 
(k-FSGFS) exhibits the best average performance compared with other methods in both classifiers. The Avg. 
values are 83.65% and 83.97% in 1NN and SVM classifiers, respectively. These values are higher than those of 
the other methods. CMIM is superior to mrmr and MIFS_U. Figures 1 and 2 show the performance of SVM and 
1NN at different s of selected features for six datasets, namely, Sonar, Glass, Svmguide4, Segment, DLBCL_A, 
and Lung-cancer. The six datasets were selected because they cover a diverse range of characteristics, including 
continuous and discrete data, in terms of the number of features and number of examples.

Figures 1 and 2 show that the proposed method (k-FSGFS) outperforms the other methods. In most cases, 
the average accuracy of the two classifiers is significantly higher than that of other selectors. High classification 
accuracy is commonly achieved with minimal selected features, which indicates that our evaluation criterion 
based on community modularity Q not only selects the most informative features but also provides the solution 
of relevant independency among selected features. The proposed method can evaluate the discriminatory power 
of a feature subset.

Additionally, the proposed approach was compared with other popular FS methods, including Laplacian 
score33, Relief62, Simba-sig63, and Greedy Feature Flip (G-Flip-sig)63. Relief62, Simba-sig63, and G-Flip-sig63 are 
margin-based FS or feature weighting methods, in which a large nearest neighbor hypothesis margin ensures 
a large sample margin. Thus, these algorithms find a feature weight vector to minimize the upper bound of the 
leave-one-out cross-validation error of a nearest-neighbor classifier in the induced feature space. For fairness, 
only the 1NN classifier was utilized to evaluate the performance of the compared FS algorithms in all the data-
sets. Figure 3 shows that the proposed method is also superior or comparable to other methods in most cases. 
Particularly, the proposed method can achieve significantly higher classification accuracy in the first several fea-
tures than the other methods in most cases. To verify, the classification accuracy results with the 1NN classifier at 
different selected features s (s =  2, 3, 4) for different methods are illustrated in Table 3. The table clearly indicates 
that our method significantly improves the classification results with fewer selected features. Thus, our method 
achieves optimal performance with an acceptable number of features.

To further confirm the effectiveness of this feature evaluation criterion, the decision boundary of the 1NN 
classifier in 2D feature spaces from the Wine database was used, as shown in Fig. 4(a–d). The indicated dimen-
sions are the two best features selected by each method. The two features selected by k-FSGFS and CMIM are 
relatively informative (Fig. 4(d)) and help in effectively separating the sample data. Both Fish Score and mrmr 
selected the same top two features, as indicated in Fig. 4(a), and separated the samples better than MIFS_U in 

No. Dataset Sample Features Classes Source style

1 Wine 178 13 3 Libsvm dataset continuous

2 Sonar 208 60 2 Libsvm dataset continuous

3 Svmguide4 300 10 6 Libsvm dataset continuous

4 Glass 214 9 6 Libsvm dataset continuous

5 Vehicle 846 18 4 Libsvm dataset continuous

6 Segment 2310 19 7 Libsvm dataset continuous

7 DLBCL-A 141 661 3 77 continuous

8 Breast-A 98 1213 3 77 continuous

9 Lung-cancer 32 56 3 UCI discrete

10 SPECTF 80 44 2 UCI discrete

Table 1.  Characteristics of the data sets in our experiment.
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Fig. 4(c). The proposed approach achieves high accuracy in classifying the samples in the two best informative 
feature spaces based on the results of the Wine dataset in Table 2.

The capability of k-FSGFS to obtain the discriminatory attribute of a feature subset and the relevant independ-
ency among features is so effective that it can select these informative features with fewer redundancies. Thus, 
k-FSGFS performs better than other FS algorithms. For parameter K during the construction of k-FSG in our 
method, numerous experiments demonstrate that a value of K selected from 2 to 11 is effective for most datasets 
for either SVM or 1NN classifier. In this study, K was set to 2.

Statistical test. The classification experiments demonstrated that the proposed framework outperforms the 
other FS algorithms. However, the results also indicate that k-FSGFS does not perform better than several algo-
rithms in a number of cases. Therefore, paired sample one-tailed test was used to assess the statistical significance 
of the difference in accuracy. In this test, the null hypothesis states that the average accuracy of k-FSGFS at differ-
ent numbers of subsets is not greater than that of the other FS algorithms in terms of classification. Meanwhile, 
the alternative hypothesis states that k-FSGFS is superior to other FS algorithms in terms of classification. For 

1NN accuracy SVM accuracy

#R Fisher CMIM MIFS_U mrmr k-FSGFS #R Fisher CMIM MIFS_U mrmr k-FSGFS

Wine (n =  13)

 s =  2 84.41 92.84 78.08 85.58 92.84 s =  2 90.59 94.55 82.58 91.59 94.55

 s =  5 95.32 94.57 94.56 94.91 97.02 s =  4 90.82 95.12 92.7 92.67 95.89

 s =  7 96.07 97.57 94.21 97.38 98.31 s =  6 99.25 95.67 95.32 99.25 99.43

Sonar (n =  60)

 s =  10 74.57 79.85 79.78 80.73 86.57 s =  10 70.66 78.03 77.86 78.03 83.96

 s =  15 80.35 76.03 75.95 76.38 87.04 s =  15 74.66 81.71 80.31 81.28 87.33

 s =  20 85.54 75.45 80.33 77.95 89.85 s =  20 83.64 78.98 82.25 81.14 88.73

Glass (n =  9)

 s =  4 57.16 68.21 68.7 68.89 71.86 s =  4 63.87 68.78 67.17 67.11 71.77

 s =  5 64.39 68.8 68.66 69.93 78.49 s =  5 63.51 70.39 67.78 69.32 76.21

 s =  6 67.2 70.03 63.06 63.59 76.14 s =  6 66.06 68.83 68.23 67.71 75.11

Vehicle (n =  18)

 s =  2 56.26 48.93 49.2 48.02 61.14 s =  2 56.84 64.65 56.99 46.34 65.85

 s =  4 60.05 64.93 58.83 51.71 69.86 s =  4 55.08 67.36 63.37 53.89 74.47

 s =  6 64.31 68.99 61.82 61.27 72.22 s =  6 66.54 75.06 68.31 71.51 74.45

Svmguide4 (n =  10)

 s =  3 73.88 59.66 59.22 59.88 80.11 s =  3 76.11 68.89 71.04 69.87 83.22

 s =  5 77.88 67.11 57.11 57.44 83.02 s =  5 78.11 79.78 66.78 66.11 84.89

 s =  7 61.66 68.33 52.01 62.33 81.22 s =  7 72.13 77.44 62.78 73.02 84.33

Segment (n =  19)

 s =  1 62.03 45.36 44.89 45.1 56.32 s =  1 56.97 49.91 49.48 49.78 61.04

 s =  2 83.93 77.05 76.96 76.62 87.96 s =  2 84.98 74.85 74.72 75.02 84.55

 s =  3 87.22 93.03 92.55 93.11 97.05 s =  3 86.62 90.39 90.48 90.82 96.11

DLBCL-A (n =  661)

 s =  5 79.42 83.85 80.19 79.47 90.09 s =  5 80.24 82.19 82.9 75.29 88.62

 s =  10 82.33 90.71 88.61 87.9 95.71 s =  10 83.05 88.67 92.14 89.33 97.19

 s =  15 87.23 90.71 89.33 89.33 97.85 s =  15 85.05 93.62 92.14 87.9 97.86

Breast-A (n =  1213)

 s =  5 83.29 88.96 86.14 84.77 94.55 s =  3 80.66 82.66 80.66 81.66 91.66

 s =  10 80.03 92.25 91.07 89.14 94.25 s =  5 74.55 87.88 78.88 82.77 93.88

 s =  15 85.22 91.48 90.81 87.7 97.96 s =  7 75.55 86.77 91.03 79.44 96.03

Lung-cancer (n =  56)

 s =  8 70.02 53.33 60.83 59.44 76.66 s =  3 74.16 73.33 52.5 57.5 77.5

 s =  12 56.66 40.04 48.33 60.83 76.94 s =  12 60.83 64.16 62.5 63.33 72.5

 s =  16 56.94 53.33 48.61 61.38 74.72 s =  16 55.83 55.03 55.01 66.66 75

SPECTF (n =  44)

 s =  4 76.25 60.03 80.02 72.5 76.25 s =  2 57.91 60.41 58.33 55.83 73.75

 s =  6 78.75 66.25 73.75 76.25 82.5 s =  5 80.41 67.5 71.25 72.08 85.41

 s =  8 71.25 73.75 72.5 67.5 85 s =  9 72.91 66.66 66.25 67.08 87.91

Avg. 74.65 73.37 72.21 72.9 83.65 73.92 76.28 73.78 73.44 83.97

Table 2.  Average accuracy (%) for different FS algorithms based on 1NN and SVM classifier, respectively.
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example, if the performance of k-FSGFS is to be compared with that of Fisher Score method (k-FSGFS vs. Fish 
Score), the null and alternative hypotheses can be defined respectively as follows: H0: μk−FSGFS ≤  μFish_Score and H1: 

Figure 1. The average classification accuracy using 1NN classifier with respect to the subset of s features 
selected by different methods. For different methods, (a) is the classification accuracy with 1NN in data Sonar, 
(b) is the classification accuracy with 1NN in data Glass, (c) is the classification accuracy with 1NN in data 
Svmguide 4, (d). Is the classification accuracy with 1NN in data Segment, (e) is the classification accuracy with 
1NN in data DLBCL-A, (f) is the classification accuracy with 1NN in data Lung-cancer.

Figure 2. The average classification accuracy using SVM classifier with respect to the subset of s features 
selected by different methods. For different method, (a) is the classification accuracy with SVM classifier in 
data Sonar, (b) is the classification accuracy with SVM classifier in data Glass, (c) is the classification accuracy 
with SVM classifier in data Svmguide 4, (d) is the classification accuracy with SVM classifier in data Segment, 
(e) is the classification accuracy with SVM classifier in data DLBCL-A, (f) is the classification accuracy with 
SVM classifier in data Lung-cancer.
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μk−FSGFS >  μFish_Score, where μk−FSGFS and μFish_Score are the average classification accuracy of k-FSGFS and Fish Score 
methods at different numbers of selected features, respectively. The significance level was set to 5%. Tables 4 and 
5 indicate that regardless of whether 1NN or SVM is used, the p-values obtained by the pair-wise one-tailed t-test 
are substantially less than 0.05, which means that the proposed k-FSGFS significantly outperforms the other 
algorithms.

Justification of k-FSGFS based on K-means cluster. The justification of the proposed feature evalua-
tion criterion based on community modularity was demonstrated by adopting the theory of K-means cluster to 
determine why k features with a higher Q value are more discriminative.

The K-means cluster68 is the most well-known clustering algorithm. It iteratively attempts to address the fol-
lowing objective: given a set of points in a Euclidean space and a positive integer c (the number of clusters), the 
points are split into c clusters to minimize the total sum of the Euclidean distances of each point to its nearest 
cluster center, which can be defined as follows:

∑∑µ µ= −
= ∈

J c x( , ) ,
(1)t

c

i c
i c

1 2
t

t

where xi and µct
 are the i-th sample point and its nearest cluster center, respectively, and ⋅ 2 is the L2-norm.

In the feature weighting K-means, the feature that minimizes within-cluster distance and maximizes 
between-cluster distance is preferred, thus obtaining higher weight56. Confirming whether the features with 
a high community modularity Q value in our method can minimize within-cluster distance and maximize 
between-cluster distance is necessary.

According to Equation (7), = ∑ 

− 

=Q ( )c
n l

m
d
m1 2

2c c c . Increasing the Q value equivalently maximizes inner edges 

lc and minimizes outer edges dc, =l( c
d
2
in , dc =  dout). In other words, each community of k-FSGs in k-features 

Figure 3. The average classification accuracy using 1NN classifier with respect to the subset of s features 
selected by other popular methods. (a) is the classification accuracy with 1NN classifier in data Sonar, (b) 
is the classification accuracy with 1NN classifier in data Glass, (c) is the classification accuracy with 1NN 
classifier in data Svmguide 4, (d) is the classification accuracy with 1NN classifier in data DLBCL-A, (e) is the 
classification accuracy with 1NN classifier in data Lung-cancer, (f) is the classification accuracy with 1NN 
classifier in data Segment, (g) is the classification accuracy with 1NN classifier in data Breast-A, (h) is the 
classification accuracy with 1NN classifier in data Vehicle, (i) is the classification accuracy with 1NN classifier in 
data Wine, (j) is the classification accuracy with 1NN classifier in data SPECTF.
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exhibits a large inner-degree din(small out-degree dout), and the sample points in the k-features space with the 
same labels can be correctly classified as many as possible into the same class and as few as possible into different 
classes while these k features are good features as a group. The expected number of sample points in the k-features 
space that are correctly classified can be calculated through Neighborhood components analysis69.

Given the selected feature subset S and candidate features f, each sample point i in S ∪  f feature space selects 
another sample point j as its neighbor with probability Pij. Pij can be defined by a soft max over Euclidean dis-
tances as follows:

=
− −

∑ − −
=

− −
= .

≠

‖ ‖

‖ ‖

‖ ‖
P

x x

x x

x x

D
P

exp( )

exp( )

exp( )
, 0

(2)
ij

i j

k i i k

i j

i
ii

2

2

2

Under this stochastic selection rule, we can compute the probability Pi that point i will be correctly classified 
(denote the set of points in the same class as i by Ct =  { j|ct =  cj}).

1NN accuracy

#R Relief LaplacianScore Simba-sig G-Flip-sig k-FSGFS

Wine (n =  13)

 s =  2 75.81 83.66 74.73 75.22 93.26

 s =  3 86.99 93.88 89.28 89.80 95.52

 s =  4 92.18 94.93 95.49 94.90 95.55

Sonar (n =  60)

 s =  2 67.74 70.76 66.33 68.71 73.17

 s =  3 68.21 67.86 68.29 68.33 78.31

 s =  4 66.36 70.17 70.76 69.81 83.71

Glass (n =  9)

 s =  2 49.89 47.12 63.18 62.97 65.05

 s =  3 52.27 60.24 68.68 72.42 73.68

 s =  4 56.21 60.78 76.69 78.03 79.87

Vehicle (n =  18)

 s =  2 35.81 59.32 40.42 42.89 60.75

 s =  3 47.38 60.06 50.83 51.42 65.85

 s =  4 59.79 60.87 62.28 61.94 68.92

Svmguide4 (n =  10)

 s =  2 53.33 42.33 70.67 70.33 71.04

 s =  3 74.67 59.03 77.67 77.08 81.07

 s =  4 78.33 62.04 81.67 82.33 82.67

Segment (n =  19)

 s =  2 62.68 14.51 81.65 81.52 86.84

 s =  3 84.33 55.63 91.95 92.16 96.58

 s =  4 93.38 79.52 96.75 96.84 97.23

DLBCL-A (n =  661)

 s =  2 42.33 28.33 42.33 60.24 83.05

 s =  3 51.86 39.03 51.86 73.76 79.43

 s =  4 57.52 50.29 57.52 70.19 85.11

Breast-A (n =  1213)

 s =  2 53.89 51.04 57.22 58.11 87.89

 s =  3 56.78 54.11 74.33 73.33 90.78

 s =  4 54.02 66.56 75.78 73.33 95.06

Lung-cancer (n =  56)

 s =  2 28.33 25.83 35.03 40.03 51.67

 s =  3 25.83 35.06 43.33 41.67 70.83

 s =  4 37.52 30.83 54.17 54.17 77.51

SPECTF (n =  44)

 s =  2 65.03 63.75 67.51 63.75 73.75

 s =  3 73.75 53.75 72.51 72.51 75.03

 s =  4 70.06 58.75 76.25 76.25 82.51

Avg. 60.73 56.66 67.83 69.80 80.05

Table 3.  Average accuracy (%) for other different FS algorithms based on 1NN classifier.
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∑=
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Hence, the expected number of sample points in the S ∪  f space correctly (ENC) classified into the same class 
is defined by

Figure 4. Decision boundary of 1NN classifier of samples with the two best informative features for 
different methods. Three colors represent three classes. (a) the decision boundary of 1NN classifier of samples 
in the two best informative features by Fish Score and mrmr. (b) the decision boundary of 1NN classifier of 
samples in the two best informative features by CMIM. (c) the decision boundary of 1NN classifier of samples 
in the two best informative features by MIFS_U. (d) the decision boundary of 1NN classifier of samples in the 
two best informative features by our method. From the results, both our method and CMIM have the lower 
classification error.

Pair-wise t-test 1NN_p-value SVM_p-value

k-FSGFS vs. Fish Score 1.51E-09 5.08E-11

k-FSGFS vs. CMIM 4.75E-08 5.91E-09

k-FSGFS vs. MIFS_U 4.75E-08 3.63E-10

k-FSGFS vs. mrmr 3.07E-11 4.28E-11

Table 4.  The paired sample one-tailed test results of k-FSGFS and other algorithms in 1NN and SVM.

Pair-wise t-test 1NN_p-value

k-FSGFS vs. Relief 5.80E-10

k-FSGFS vs. LaplacianScore 6.28E-09

k-FSGFS vs. Simba-sig 2.53E-07

k-FSGFS vs. G-Flip-sig 1.53E-07

Table 5.  The paired sample one-tailed test results of k-FSGFS and other algorithms in 1NN.
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Feature f with larger ENC is more discriminative.
According to Eqs. 2 to 4, maximizing ENC is mutually equivalent to minimizing the K-means cluster objective 

J(c, μ).

(1) Proof: minimizing J(c, μ) ⇒  maximizing ENC(f ∪ S)
G i v e n  f e a t u r e  f  ∈   F  −   S,  E q. 2  i s  s u b s t i t u t e d  i n t o  Eq. 4 .  Thus,  ∪ = ∑ =ENC f S P( ) i i  
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 c is the number of clusters.
The lower bound of ENC( f ∪  S) is defined by ENCL_bound.
ENC( f ∪  S) can be maximized simultaneously by maximizing its lower bound ENCL_bound and equivalently 

minimizing ∑ ∑ −= ∈ < ‖ ‖x xt
c

i j c i j i j1 , , 2t
.

As we know, µ µ µ∑ ∑ − ≤ ∑ ∑ − = ∝= ∈ < = ∈‖ ‖ ‖ ‖x x x J c J c2 2 ( , ) ( , )t
c

i j c i j i j t
c

i c i c1 , , 2 1 2t t t
, which denotes that 

lower bound ENCL_bound has been maximized. ENC(f ∪  S) obtains the maximum value when the K-means objec-
tive (Eq. 1) is optimized for the minimum.

(2) Proof: maximizing ENC(f  ∪ S) ⇒  minimizing J(c, μ)
Based on the results in proof (1), ∪ < ∑ ∑= ∈ ∈

− −‖ ‖
ENC f S( ) ,t

c
i c j c i

x x

D1 , /
exp( )

t t

i j 2

min
 Dmin =  min{D1, D2, ..., Dn} 

∑ ∑ −= ∈ ∈ − ‖ ‖x xt
c

i c j c i i j1 , 2t t
 is equivalent to minimize while maximizing the ENC(f ∪  S), and because 
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2  Hence, k-means cluster function J(c, μ) is min-
imized while ∑ ∑ −= ∈ ∈ − ‖ ‖x xt

c
i c j c i i j1 , 2t t

 is minimized and ENC(f ∪  S) is maximized.
J(c, μ) in the S ∪  f space must be minimized when the community modularity Q value of SG in S ∪  f 

space obtains a high value, which indicates that the features selected by the proposed method can minimize 
within-cluster distance. Similarly, the expected number of points incorrectly classified is defined by ENIC(f ∪  S) 
=  n −  ENC(f ∪  S), where n is the number of samples. A small ENIC(f ∪  S) results in a few edges between commu-
nities and large between-cluster distance. The feature subset with a high Q value is highly relevant, which not only 
minimizes within-cluster distance but also maximizes between-cluster distance.

Discussion
In this study, a novel feature subset evaluation criterion using the community modularity Q value by constructing 
k-features sample graphs (k-FSGs) is presented to measure the relevance of the feature subset with target variable 
C. To address the redundancy problem of ranking in filter methods, the sample graph in k-features that captures 
the relevant independency among feature subsets is utilized rather than the conditional MI criteria. By combining 
the two points above, a new FS method, namely, k-FSGFS, is developed for feature subset selection. The method 
effectively retains as many interdependent groups as possible during FS. The proposed k-FSGFS works well and 
outperforms other methods in most cases. The method remarkably or comparatively improves FS and classifi-
cation accuracy with a small feature subset, which demonstrates the ability of the proposed method to select a 
discriminative feature subset. The experimental results also verify that interdependent groups commonly exist in 
the real dataset and play an important role in classification. Unlike the other methods used for comparison, the 
proposed method accurately evaluates the discriminative power of a feature subset as a group. The Fisher method, 
which is an individual evaluation criterion, cannot eliminate the redundancy in a feature subset, thereby reduc-
ing classification performance. The experiment results for the Fisher method verify this finding. The MI-based 
methods, such as mrmr, MIFS_U, and CMIM, consider the relevance and redundancy among feature subsets as a 
group and are superior to the Fisher method. However, these MI-based methods can only approximately estimate 
the relevance and redundancy in a feature subset (such as considering all the redundancy between pair-wise fea-
tures to estimate the redundancy among a feature subset as a group in mrmr method) because of the difficulties in 
accurately computing the probability density function. The results in Table 2 and Figs 1 to 2 indicate that mrmr, 
MIFS_U, and CMIM methods perform better than the Fisher method but worse than the proposed method.

From the mentioned above, our method perform better than MI-based methods in most cases. In our method, 
larger inter-class distance implies that the local margin of any sample should be large enough. By the large mar-
gin theory70, the upper bound of the leave-one-out cross-validation error of a nearest-neighbor classifier in the 
feature space is minimized and usually generalizes well on unseen test data70,71. However, traditional mutual 
information based relevance evaluation between feature and class can not accurately measure the discriminative 
power of a feature. In order to better illustrate this, for simplicity, the features f1, f2 and the class vector C are 
defined by as following:

= =

=

f f

C

(1 1 1 1 1 3 3 3 3 3) (1 1 1 1 1 6 6 6 6 6)

(0 0 0 0 0 1 1 1 1 1)

T T

T
1 2
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According to MI-based methods, the feature f1 has the same relevancy as f2. In our method, the feature f2 has 
more discriminative power than f1 because the community modularity Q in feature f2 is larger than feature f1. 
Intuitively, feature f2 should be more relevant than f1 due to its between-class distance is larger than f1. However, 
the MI-based method can not capture the difference between f1 and f2. Therefore, our relevancy evaluation crite-
rion based on community modularity Q is more efficient and accurate.

However, in practice, the proposed method is not always efficient for all types of datasets, such as imbalanced 
datasets, especially when a few samples in one class are compared with other classes. For example, in the dataset 
Lung-cancer, our method performs worse than simba-sig and G-flip-sig. Because, modularity optimization is 
widely criticized for its resolution limit72 illustrated in Fig. 5, which may prevent the approach from detect-
ing clusters. The clusters are comparatively small with respect to the graph as a whole, which results in maxi-
mum modularity Q not corresponding to a good community structure, that is, features with a high Q value may 
be irrelevant. The KNN searching needs to be conducted iteratively in our method, thus, the efficiency of our 
method is low for larger data amounts in real applications with regard to time complexity. Our future work will 
focus on resolving these problems.

Methods
In this paper, a new feature evaluation criterion based on the community modularity Q value is proposed to 
evaluate the class-dependent correlation73 of features as a group instead of identifying the discriminatory power 
of a single feature. Detailed information on our method is presented in Algorithm 2. The innovations of our work 
mainly include the following points.

(1) The discriminatory power of features as a group can be evaluated exactly based on the community modularity 
Q value of sample graphs in k-features.

(2) The proposed method can select features that have discriminatory power as a group but have weak power as 
an individual.

(3) Relevant independency instead of irrelevant redundancy between features is measured using the community 
modularity Q value rather than information theory.

The proposed framework is presented in a flow diagram in Fig. 6.

Community modularity Q. The community structure in an undirected graph exhibits close connections 
within the community but sparse connections among various communities relatively31,32. Figure 7 shows a sche-
matic example of a graph with three communities to demonstrate the community structure.

Thus far, the most regarded quality function is the modularity of Newman and Girvan32. Modularity Q can be 
written as follows:

∑ δ=




−






Q
e

A
d d

e
C C1

2 2
( , ),

(6)ij
ij

i j
i j

where the sum runs over all pairs of nodes, A is the adjacency matrix, e is the total number of edges of the graph, 
and di and dj represent the degree of nodes i and j, respectively. The δ-function is equal to one if nodes i and j are 

Figure 5. Resolution limit of modularity optimization. The natural community structure of the graph, 
represented by the individual cliques (circles), is not recognized by optimizing modularity, if the cliques are 
smaller than a scale depending on the size of the graph. In this case, the maximum modularity corresponds to a 
partition whose clusters include two or more cliques (like the groups indicated by the dashed contours)72.
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in the same community and equal to zero otherwise. Another popular description of modularity Q can be written 
as follows:

∑=







−













=

Q l
e

d
e2

,
(7)c

n
c c

1

2c

where nc is the number of communities, lc is the total number of edges joining the nodes of module C, and dc is the 
sum of the degrees of the nodes of C. The range of modularity Q is [− 1, 1]. Modularity-based methods23 assume 
that a high value of modularity indicates good partitions. In other words, the higher modularity Q is, the more 
significant the community structure is.

Figure 6. The flow diagram of proposed method (k-FSGFS), mainly including three steps: i) constructing 
the SGs in f ∪  S features (f ∈  F), ii) computing the community modular Q value of SGs, iii) selecting the feature f 
with the largest Q value into the selected features subset S. The iterative process terminates until the |S| =  P.

Figure 7. A simple graph with three communities, enclosed by the dashed circles. Reprinted figure with 
permission from72.
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Based on the definition of community, the within-class distance in a community is small and the between-class 
distance is large. Thus, if a graph has a clear community structure, the nodes in different communities can be 
locally and linearly separated easily, as shown in Fig. 7. The features that minimize within-cluster distance and 
maximize between-cluster distance are preferred and obtain a high weight. If the sample graph in k-features 
(k-FSG) has an apparent community structure, these k features will have strong discriminative power as a group 
because intra-class distance is small and inter-class distance large. This condition can be proven sequentially with 
the theory of K-means cluster.

Sample graph in k-features (k-FSG). Given an m ×  n dataset matrix (m corresponding to samples and n 
corresponding to features), the sample graph in k-features (k-FSG) can be constructed as follows: an edge A(i, j) 
(A(i, j) =  1) exists between samples Xi and Xj if Xi ∈  K −  NN(Xj) or Xj ∈  K −  NN(Xi).where Xi is the node i corre-
sponding to the sample i, K −  NN(Xi) is the K-neighborhood set of node i, and A is the adjacency matrix, which is 
symmetrical. K is the predefined parameter and does not have large values, which generally range within {3–11}.

The discussion above indicates that if k-FSG in k-features exhibits clear community structures corresponding 
to a large Q value, these k features are highly informative as a group. The algorithm of constructing k-FSG is 
shown as Algorithm 1.

Algorithm 1: Pseudo-code for constructing k-FSG

Feature subset selection with sample graph in k-features. In this subsection, a novel k-FSG-based 
feature selection method (k-FSGFS) for ranking features is proposed based on k-FSG and community modularity 
Q. First, all the sample graphs in 1D feature space (k =  1) can be constructed based on Algorithm 1. The most 
informative feature is f1, where the sample graph in f1 (1-feature) enables the largest community modularity Q 
value to be selected. Given feature f1, all the sample graphs in a two-feature space (k =  2) (f1 and q ∈  F −  f1 space) 
and all the community modularity ↔Q f q1

 values of the two FSGs are calculated. Feature q with the highest ↔Q f q1
 

values will be selected in feature subset S. The procedure will not stop until the number of selected features satis-
fies |S| =  P. To facilitate understanding of our evaluation scheme, we regard a UCI dataset, iris, as an example. The 
dataset consists of 150 samples and four features. The dataset is divided into three classes with 50 samples in each 
class. The iris dataset is processed with zero mean and unit variance according to 1-FSG in one feature. The 3rd 
feature with the highest Q value is the most informative as an individual. Given the 3rd feature, Fig. 8 illustrates 
the sample scatter points in 2-FSGs for the remaining features {1 2 4} in dataset iris. Three community modularity 
Q3↔q values are shown in Table 6 (q =  1, 2, 4). Figure 8 clearly indicate that the 2-FSG in 3 ↔  4 feature space 
exhibits more obvious community structures, and the sample points in different classes in 3 ↔  4 features can be 
easily separated. The results in Table 6 show that the 2-FSG in 3 ↔  4 feature space provides the largest community 
modularity Q value. Thus, the 4th feature has strong informative power combined with the 3rd feature. Given the 

Figure 8. The sample scatter points in 2-FSGs (k = 2) of three pairs features in iris dataset. The different 
color corresponds to different classes. (a) The sample scatter points in features 3 and 4. (b) The sample scatter 
points in features 3 and 1. (c) The sample scatter points in features 3 and 2. From the sample scatter points 
results, it can be concluded that the sample points in features 3 and 4 can be easily separated, which means the 
features 3 and 4 as a group have more discriminative power.



www.nature.com/scientificreports/

13Scientific RepoRts | 6:25040 | DOI: 10.1038/srep25040

3rd and the 4th features, the 1st and the 2nd features can be selected according to the 3-FSGs and 4-FSGs, respec-
tively. The selected feature subset in iris using our method is {3 4 1 2}, which is the selected features of most of the 
methods.

In short, given selected feature subset S, feature f selected by our criterion can be defined as follows:

∪=
∈ −

f Qarg max ,
(8)f F S

f S

where Qf∪S is the community modularity value of SG in features f ∪  S and F and S are the set of all features and 
selected feature subset, respectively.

Relevancy analysis. Ranking-based filter methods cannot handle high redundancy among the selected fea-
tures. To solve this problem, conditional MI (CMI) is applied in this study to obtain the relevant independency 
(RI) or relevant redundancy74 instead of the irrelevant redundancy between features, as shown in Fig. 9. RI(fi, C; 
fj) is now the amount of information features fi that can predict target variable C when feature fj is given; RI(fi, C; 
fj) =  I(fi, C | fj). Similarly, RI(fj, C; fi). In other words, if RI(fi, C; fj) between features fi and fj is large, the combina-
tion of feature fi can provide informative information when feature fj is selected. However, calculating RI(fi, C; 
S) when selected feature subset S is given is difficult for MI-based methods. The first reason is that examples are 
often insufficient. Second, accurate estimation for multivariate density P(f1, f2, ..., fn, C) and P(f1, f2, ..., fn) is diffi-
cult. For the MI-based methods, such as MIFS, mrmr, MIFS_U, CMIM, and CMIF, RI(fi, C; fj) are often approxi-
mated in different ways. Therefore, MI-based methods cannot exactly evaluate RI(fi, C; S).

In this study, the discriminative capability of k features as a group was evaluated using the community mod-
ularity Q value of the constructed k-FSG. A high Q value of k-FSG denotes large RI among the k features as a 
group, and the sample points in different classes can be separated well. Thus, the community modularity Q value 
of k-FSG in k-features can accurately illustrate relevant independency RI(fi, C; S) in selected feature subset S. The 
community modularity Q value of k-FSG was utilized to measure relevant independency instead of MI theory. 
For verification, the iris dataset was used as an example. Different RI(fi, C; f3) values were calculated, and the third 

2 − FSG3↔q 3 ↔ 4 3 ↔ 1 3 ↔ 2

Q3↔q 0.6057 0.5719 0.5430

Table 6.  The community modularity Q values of 2-FSG (k = 2) in different pairwise features in iris dataset. 
The more larger the community modularity is, the more relevant the pairwise features are. The features 3 and 4 
as a group have more discriminative power.

Figure 9. Visualization of IR, RR and RI between features fi and fj, where H(fi) (H(fj)) is the entropy 
of feature fi (fj), and H(C) is the entropy of class variable. The shaded area IR is the class-independent 
correlation between features fi and fj the shaded area is the class-dependent correlation between features fi and 
fj with respect to classy. The shaded area RI to what we refer as relevant independency, that is, the amount of 
information two random variables can predict about a relevant one and it is not shared by each other. See text 
for details.

RI RI (f1, C; f3) RI (f2, C; f3) RI (f4, C; f3)

value 0.0221 0.0031 0.1358

Table 7.  The RI in different pairwise features in terms of the third feature in iris dataset. The larger RI states 
that the features 3 and 4 as a group have more discriminative power.
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feature was selected (i =  1, 2, 4), as indicated in Table 7 The table clearly indicates that RI(f4, C; f3) is the largest, 
which demonstrates that fourth feature f4 can provide more informative information when the third feature is 
given. Similarly, the Q3↔4 value in Table 6 is also the highest in Table 7, which demonstrates that the community 
modular Q value of k-FSG in k-features can replace MI to effectively evaluate the RI of feature subset S. Thus, our 
method can resolve relevant redundancy among selected features. CMI can be computed with the FEAST tool42.

Relevant independency RI(fi, C; S) between feature fi and selected feature set S was replaced by the community 
modularity Q value of SG in fi ∪  S, which can be defined as follows:

∪=RI f C S Q( , ; ): (9)i f Si

A larger value of RI(fi, C; S) indicates that fi is highly independent with features in S but relevant in terms of 
target variable C and has strong informative power combined with features in S. These results indicate that our 
method can select these features with more relevancy as a group in terms of class and larger RI among selected 
features.

The details of k-FSGFS are presented in Algorithm 2.
Algorithm 2: k-FSGFS: k-features sample graph based feature selection

Time complexity of k-FSGFS. Algorithm 2 shows that k-FSGFS mainly includes two steps. The first step is 
to construct k-FSG in k-features space. The second step is to calculate the community modularity Q value of each 
k-FSG. The most time-consuming step is establishing k-FSG, whose time complexity is about ο(Pnm2), where n is 
the number of features in feature space, m is the number of samples in the dataset, and P is the number of prede-
fined selected features. Fortunately, fast K-nearest neighbor graph construction methods75,76 can be applied to the 
construction of k-FSGs; such application would reduce the time complexity from ο(Pnm2) to ο(Pnm1.14). In the 
second step, the spending time is approximately ο(mlog m). Thus, the overall time cost of k-FSGFS is approxi-
mately ο ο+.Pnm m( ) ( log m)1 14 .
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