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Abstract

Background: The cat flea (Ctenocephalides felis) is a blood-feeding ectoparasitic insect and particular nuisance pest
of companion animals worldwide. Identification of genes that are differentially expressed in response to feeding is
important for understanding flea biology and discovering targets for their control.

Methods: C. felis fleas were maintained and fed for 24 h using an artificial rearing system. The technique of
suppression subtractive hybridization was employed to screen for mRNAs specifically expressed in fed fleas.

Results: We characterized nine distinct full-length flea transcripts that exhibited modulated or de novo expression
during feeding. Among the predicted protein sequences were two serine proteases, a serine protease inhibitor, two
mucin-like molecules, a DNA topoisomerase, an enzyme associated with GPl-mediated cell membrane attachment
of proteins and a component of the insect innate immune response.

Conclusions: Our results provide a molecular insight into the physiology of flea feeding. The protein products of
the genes identified may play important roles during flea feeding in terms of blood meal digestion, cellular
growth/repair and protection from feeding-associated stresses.
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Background

Arthropod ectoparasites represent a considerable nuis-
ance and cause of suffering and economic losses in com-
panion animals, livestock and humans. Among these, the
cat flea Ctenocephalides felis is a widespread pest across
temperate and tropical areas of the world with particular
importance in domestic pets [1]. C. felis is the dominant
flea species infesting both dogs and cats, and as an obli-
gate hematophagous parasite is additionally capable of
causing harm by acting as a disease vector [2]. This in-
cludes transmission of the bacterial diseases flea-borne
spotted fever (Rickettsia felis) and cat-scratch disease
(Bartonella henselae), and being an intermediate host of
the intestinal cestode Dipylidium caninum, which is
spread to dogs and cats via ingestion of infected fleas.
Besides its roles in the spread of infectious disease, C.
felis is also notable for causing pruritic skin disease (flea
allergy dermatitis) in animals, particularly dogs, which
are immunologically hypersensitive to flea bites [3].
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Current control measures for C. felis are based on
chemical agents, which may have complementary activ-
ities such as insecticides and insect growth regulators
[4]. Further improvements in flea control will be greatly
aided by detailed knowledge of flea physiology at a mo-
lecular level. In the case of the cat flea, this knowledge
remains fragmentary. Identification of genes expressed
in the flea in response to feeding is of key importance
for elucidation of the mechanisms that permit successful
feeding, digestion, immune defence and reproduction.
Several feeding-specific genes have been isolated from
the flea to date, including those encoding digestive pro-
teases, protease inhibitors and synaptic vesicle proteins
[5-7], however many other components involved in the
physiology of feeding remain to be identified.

In this study we used an untargeted approach of sup-
pression subtractive hybridization [8], coupled to PCR
verification assays to identify C. felis genes differentially
expressed upon feeding. A total of nine full-length
c¢DNA sequences were obtained which showed hom-
ology to proteins associated with digestion, defence and
cell proliferation. Expanded knowledge of how flea
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species respond to the physical, chemical and biotic
stresses of blood feeding may facilitate new ap-
proaches for flea control through the exploitation of
novel molecular targets.

Methods

Flea rearing

A colony of cat fleas (Ctenocephalides felis felis) was
maintained using an artificial rearing system [9] con-
sisting of a plexiglas temperature-controlled chamber
(Artificial Dog, Flea Data Inc. Freeville, NY, USA).
Within this apparatus, fleas were contained in screened
vessels and fed on citrated bovine blood through a Par-
afilm membrane (Bemis Company Inc, Oshkosh, WI,
USA). To complete the lifecycle, eggs were removed
from the feeding vessels 2—3 times weekly and flea lar-
vae reared on a mixture of pine sawdust, flea faeces,
ground guinea pig pellets and powdered brewer’s yeast.
Resultant cocoons were retrieved and stored in sealed
containers for adult emergence. For the fed and unfed
comparison, fleas were allowed to feed for 24 h while
unfed fleas were never exposed to a blood meal. Adult
fleas were stored at —80 °C in batches of approximately
100. Midgut and carcass tissues were obtained by dis-
secting pre-chilled adult fleas in PBS with fine forceps
under a stereomicroscope using a cold light source.

RNA Isolation and cDNA Synthesis

Total RNA was extracted from whole fleas or flea tissues
in Trizol reagent (Life Technologies, Carlsbad, CA, USA)
using a homogenizer (DIAX 600, Heidolph, Schwabach,
Germany) and purified following the manufacturer’s
protocol. Poly A+ mRNA was enriched from total RNA
by oligo-dT cellulose chromatography (Life Technologies).
For first strand cDNA synthesis, Poly A+ RNA (5 ug) was
reverse transcribed with oligo(dT)20 using Thermoscript
(Life Technologies) at 60 °C for 80 min. Second-strand
c¢DNA synthesis was performed in second-strand synthesis
buffer (20 mM Tris—HCI [pH 7.4], 100 mM KCI, 5 mM
MgCl,, 10 mM (NH4),SO4, 10 mM DTT, 50 pg/ml BSA),
with 150 uM beta-NAD, 5 U of E. coli DNA ligase (New
England Biolabs, Ipswich, MA, USA), 3 U of RNase H
(Life Technologies), and 40 U of E. coli DNA polymerase I
(Life Technologies) in a final volume of 200 ul and incu-
bating the mixture at 15 °C for 2 h and then at 22 °C for
1 h. Double-stranded ¢cDNA was phenol/chloroform ex-
tracted, ethanol precipitated in the presence of 4 pg of
glycogen carrier, and resuspended in TE buffer (10 mM
Tris—HCI [pH 7.4], 1 mM EDTA).

Suppression subtractive hybridization (SSH)

Selective amplification of flea genes differentially expressed
in response to feeding was achieved using the PCR-Select
¢DNA Subtraction Kit (Clontech Laboratories, Mountain
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View, CA, USA) according to the manufacturer’s in-
structions. Briefly, double-stranded ¢cDNA from both
fed and unfed whole fleas was fragmented by Rsa I
digestion. Subtraction was achieved by hybridizing
adapter-ligated cDNA from fed fleas as the tester in the
presence of an excess of unfed flea cDNA as the driver.
Differentially expressed ¢cDNAs were PCR amplified
with Advantage PCR polymerase mix (Clontech) and
cloned using the pCR2.1 T/A cloning kit (Life Tech-
nologies). Two hundred clones were isolated from the
subtracted library in 96-well plates containing LB
medium supplemented with ampicillin and grown over-
night. An aliquot from each culture was gridded onto
LB-ampicillin agar plates, grown overnight at 37 °C and
then transferred onto nylon membranes (Magna, Ther-
moFisher Scientific, Waltham, MA, USA). The filters
were denatured for 5 min with 0.5 M NaOH, 1.5 M
NaCl, neutralized for 5 min with 0.5 M Tris—HCI
(pH 7.4), 1.5 M NaCl and then screened with probes la-
belled with **P using the Rediprime system (GE Health-
care, Piscataway, NJ, USA). Probes were generated from
50 ng of each of fed and unfed unsubtracted cDNA in
order to identify clones of differentially expressed genes.
Plasmids were purified from clones showing at least
two-fold higher hybridization to the labeled fed cDNA
using a Mini Kit system (Qiagen, Hilden, Germany). Au-
tomated cycle sequencing of plasmid DNA inserts was
performed with an ABI PRISM Model 377 DNA Se-
quencer (Applied Biosystems, Foster City, CA, USA)
using the PRISM BigDye Terminator Cycle Sequencing
Kit (Applied Biosystems).

Rapid amplification of cDNA 5’ and 3’ ends (RACE)

The 5 and 3’ ends of differentially expressed cDNAs
were amplified by RNA ligase-mediated RACE using the
GeneRacer system (Life Technologies) according to the
manufacturer’s instructions. Briefly, 5 pg of total RNA
extracted from fed fleas was treated with calf intestinal
phosphatase and tobacco acid pyrophosphatase to allow
subsequent ligation of mRNA, but not truncated and
non-mRNA species, to the GeneRacer RNA oligonucleo-
tide adapter. Reverse transcription of adapter-ligated
mRNAs was performed in 20 pl reaction volumes using
Thermoscript primed with the GeneRacer Oligo dT pri-
mer. Aliquots (2 pl) of the resultant cDNA containing
full-length 5’ or 3’ ends were then used as a template for
nested PCR using gene-specific primers (Table 1). The
PCR amplifications were performed with 7th Plus DNA
polymerase (Fisher Biotec, Perth, W.A., Australia) in
50 pl reaction volumes using an automated thermal cy-
cler (PTC-100, MJ Research, Waltham, MA, USA). A
30-cycle touchdown protocol was employed with an ini-
tial annealing temperature of 63 °C for 1 min, decreasing
by 1 °C every second cycle down to 55 °C for the final
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Table 1 Primer sequences used for RT-PCR and RACE

Transcript ID

RT-PCR Forward Primer Reverse Primer

B2 tgctctcatcaaagtttctagtge Ccagacgaaagacgtgacaccaac
S5 acccagtggctegctecgcttatg gctaacataggcagacaagccac
S16 acgacgtcgaacgttttgtgatgc gccttgcaaatttcaccaccct
B43 aacctaaatctgatggcagtgatg cacaattttgtatctgagctttcc
S49 actgttctatccctggtgtcaatg gacaagaaccattcttgaatectg
B52 catgggtggaatgatattggttac gttgcctaataaatgctgtgtcag
S58 ccatctgtagcctacgactatgtc agcgctcacgtagtcagcaacaa
S61 atgcacatatcccaatatggatac gtttcctaagaacacctttgcaa
B68 agtgaccaccacttcctatgcaac gtaactggagtggaaacaacattg
RACE 5" RACE Primer 3" RACE Primer

B2 gcactagaaactttgatgagagca gttggtgtcacgtctttcgtctgg
S5 cataagcggagcgagccactgggt gtggcttgtctgectatgttage
S16 gcatcacaaaacgttcgacgtcgt agggtggtgaaatttgcaaggc
B43 catcactgccatcagatttaggtt ggaaagctcagatacaaaattgtg
S49 cattgacaccagggatagaacagt caggattcaagaatggttcttgtc
B52 gtaaccaatatcattccacccatg ctgacacagcatttattaggcaac
S58 gacatagtcgtaggctacagatgg ttgttgctgactacgtgagegct
S61 gtatccatattgggatatgtgcat ttgcaaaggtgttcttaggaaac
B68 gttgcataggaagtggtggtcact caatgttgtttccactccagttac

14 cycles. Denaturation was carried out at 97 °C for
30 s and extension at 72 °C for 1 min 30 s. For the
second (nested) PCR, 1 pl of the initial reaction was
used as template DNA. PCR products were visualized
on ethidium bromide-stained agarose gels, then cloned
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into the pCR 2.1 TA cloning vector and sequenced. The
BLAST program was used to search for homologous
genes and for multiple sequence alignments. Analysis of
secretory signal peptide sequences was performed using
SignalP 4.1 program [10].

Reverse transcriptase PCR (RT-PCR) analysis

For cDNA synthesis, whole flea, flea gut or flea carcass
total RNA (5 pg) from 24 h fed or unfed fleas, was treated
with DNAse I enzyme (DNA-free, Life Technologies) and
reverse transcribed with oligo (dT) using Thermoscript
according to the manufacturer’s instructions. PCR amplifi-
cations were performed with 7th Plus DNA polymerase
(Fisher Biotec) in 25 pl reaction volumes using the
30-cycle touchdown protocol as per RACE. The primer
sequences used are shown in Table 1. PCR products were
visualized on ethidium bromide-stained agarose gels.

Results

Identification of genes associated with blood feeding in
cat fleas by suppression subtractive hybridization (SSH)
To obtain cloned sequences of transcripts differentially
expressed in fed fleas, polyA+ RNAs from whole cat
fleas before and 24 h after a blood meal were converted
to ¢cDNA, fragmented with Rsa I and compared by the
SSH procedure (Fig. 1). SSH was performed with fed flea
¢DNA acting as the tester in the presence of an excess
of unfed flea cDNA as the driver. This was designed to
identify transcripts that are over-expressed or up-
regulated in response to feeding. Enriched SSH bands
detected after agarose gel electrophoresis (Fig. 1b), were
cloned and 200 randomly selected recombinant colonies
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Fig. 1 a Agarose gel electrophoresis showing double-stranded cDNA generated from fed and unfed Ctenocephalides felis fleas before and after
Rsa | fragmentation. b Enrichment of cDNA products differentially associated with feeding by suppression subtractive hybridization (SSH).
Subtraction was achieved by hybridizing adapter-ligated cDNA from fed fleas as the tester in the presence of an excess of unfed flea cDNA as
driver. Unsubtracted fed flea cDNA products are shown for comparison
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subjected to sequential hybridization with unsubtracted
¢DNA from fed and unfed fleas as probes in order to
confirm differential expression. Preliminary sequence
analysis of 75 clones showing at least two-fold higher
hybridization to fed flea cDNA, revealed a majority to be
novel, low quality or redundant sequences. Nine candi-
dates (B2, S5, S16, B43, S49, B52, S58, S61, B68), con-
firmed to be independent transcripts, were selected for
full-length cloning and sequence analysis following 5’
and 3’ RACE. The GenBank accession numbers for these
nucleotide sequences are KR534879 to KR534887, re-
spectively. Differential expression of these 9 transcripts
were examined in more detail and with greater sensitiv-
ity by semi-quantitative RT-PCR using RNA generated
from fed (24 h) and unfed whole flea, midgut and
carcass. As shown in Fig. 2, a majority of the transcripts
(6/9) showed higher expression in both flea midgut and
carcass, while two (B2 and B52) showed differential
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Fig. 2 Differential gene expression between unfed and fed cat fleas
(Ctenocephalides felis). cONA from whole fleas, flea gut or flea carcass
harvested before, or 24 h after a blood meal were assessed by
semi-quantitative RT-PCR. Beta-actin and 185 RNA were amplified as
controls for the amount of cDNA used in each reaction. cDNA from
bovine blood used for flea feeding and a no-template reaction were
included as negative controls. The results shown are representative
of two independent experiments
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expression that was restricted to flea gut only. A final
transcript (B43) appeared to show higher expression in
fed midgut but lower expression in fed carcass. Thus, all
9 fully characterised mRNA sequences were confirmed
to be differentially expressed in fed flea tissues and ap-
pear to be modulated by blood feeding.

Characterization of feeding-associated transcripts

The nine sequences were subjected to a homology
search and almost all (8/9) had homologous sequences
in the nr-protein database and thus could have their
functions predicted (Table 2). One short transcript of
0.6 kb (S5) encoding a small protein of 111 amino acids
had no significant similarity to sequences in the database
and therefore its potential function is unknown. Among
the annotated gene products, most (6/8) possessed a
predicted signal peptide and therefore likely represent
extracellular proteins. These could be classified into two
broad classes. Two were digestive enzymes (B2 and S16)
with very high similarity (97 % and 78 %, respectively)
with previously described C. felis chymotrypsin-like
serine proteases CfSP18 and CfSP25 [5]. An alignment
of the predicted amino acid sequences of these serine
proteases is shown in Fig. 3. The remainder appeared to
be molecules with various protective roles, namely a
serine protease inhibitor (serpin; S49) with high similar-
ity (96 %) to a previously described C. felis serpin [6], a
novel peptidoglycan recognition protein (PGRP; B52)
with 61 % homology to a C. felis PGRP LB-like protein
[11], and two related novel mucins (S58 and B68), both
with 36 % homology to a predicted Japanese medaka
mucin-17-like protein [12]. The remaining two anno-
tated gene products lacked predicted signal peptides and
therefore likely represent intracellular proteins. One
(B43) showed significant (38 %) amino acid homology
with red flour beetle topoisomerase II [13], an enzyme
associated with DNA replication. The other (S61) was
47 % homologous to diamondback moth glycophosphati-
dylinositol (GPI) mannosyltransferase 2, an enzyme in-
volved in the biosynthesis of the GPI anchor for the
membrane attachment of GPI-anchored proteins.

Discussion

The purpose of this study was to provide insight into
gene expression changes associated with blood meal
processing in the cat flea C. felis. To this end, sup-
pression subtractive hybridization was used to identify
a diverse group of nine genes that were up-regulated,
or exclusively expressed, in the cat flea C. felis during
a 24 h period of feeding. Genes associated with feed-
ing included those encoding proteolytic digestive en-
zymes as well as those encoding several proteins
putatively involved in a variety of protective roles.
Most of these sequences had a predicted signal
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Table 2 Sequence characteristics of C. felis gene transcripts associated with feeding

Transcript ~ Full Predicted Signal ~ Genbank Homology Result (Best Match) % aa Accession N°  E Value  Biological Function
D Transcript ~ Size of Peptide Identity
Size (kb) Encoded
Protein
(aa)
B2 09 250 Y Chymotrypsin-like serine protease 97 AF053907.1 Proteolytic digestive
CfSP-18 (Ctenocephalides felis) 6e-163 enzyme
S5 06 (AR No significant similarity found - - - -
S16 09 248 Y Chymotrypsin-like serine protease 78 AF053912.1 7e-138 Proteolytic digestive
CfSP-25 (Ctenocephalides felis) enzyme
B43 12 242 N DNA topoisomerase |l 38 EFA01344.1 9e-06  DNA replication
(Tribolium castaneum)
S49 1.8 405 Y Serine protease inhibitor (Serpin) 3 96 AY150534.1 0.0
(Ctenocephalides felis) Serine protease regulator
B52 1.0 201 Y Peptidoglycan recognition protein LB-like 61 GU059275.1 5e-88  Innate immunity pattern
(Ctenocephalides felis) recognition receptor
S58 12 329 Y Mucin-17-like 36 XP_011487420.1 6e-10
(Oryzias latipes) Protection and lubrication
of epithelial linings
S61 28 468 N GPI mannosyltransferase 2 47 XP_011549227.1 le-141
(Plutella xylostella) GPI-mediated membrane
attachment of GPI-
anchored proteins
B68 13 344 Y Mucin-17-like (Oryzias latipes) 36 XP_011487420.1 12e-09 Protection and lubrication

of epithelial linings

peptide for extracellular secretion. These findings were
broadly consistent with other transcriptomic studies dem-
onstrating differential gene expression in response to
blood feeding in fleas and other hematophagous ectopara-
sites [5, 6, 11, 14—16].

Two of the identified feeding-associated genes (B2
and S16) were serine proteases. Like many other
blood-feeding insect species, C. felis possesses a large
number of serine protease genes [5] that are involved
in a range of biological processes including digestion,

zymogen activation and immune defence. Indeed, they
constitute the most abundant digestive enzymes within
the midgut owing to the protein-rich nature of the blood
meal. Their functional importance means that they may
have application as targets for insect and ectoparasite con-
trol [17-20]. Transcript B2 was 97 % homologous at
the protein level with a previously identified C. felis
chymotrypsin-like serine protease, CfSP-18 [5], thus B2
and CfSP-18 appear to be the same gene. By contrast,
S16 appears to be a previously undiscovered serine

*
B2 MEMKILFVIGALIGASVGLPTDTNRIVNGVNAKNGSAPYMASLRDVNGNHFCGASILDERWILTAAHCLTDGHLDTVYVGSNHLSGDGEYYNVEEEIIHD 100
CESP-18 R e T T R 78
sie6 -ANFV--TLL- -VSVASSKYI-P --IG-ED-PE----- QV---NRDLE- - - -G- - -NK- - -V~ - - =A-KP-I-KS--M---S-D-M-T--D--RFVM-- 99
CESP-25 -ANFV--TLL- -VSVACSKYI-P --IG-ED-PE----- QV---NRDLE- - --G---NK---V---=--KP-I-KS--M---S-D-N-T--D--RFVM-H 99
* *
B2 KYFGQITGFKNDIALIKVSSAIKLSKTVRPIKLHKD FIRGGEKLKITGWGLTNQTHGEVPDALQELQVEALSNSKCKAITGVHLP AHLCTFRAP 194
CfSP-18  ----- Tl N oo oo oo e el K-- 172
Sie6 --TPR--VNYA--G- - - -AKD-VFGDK-Q- - -IS-R N-K---IC-A----- LGSVD S--NE--QVETTTITDE--FEL-QFID-TSQI----EF 193
CESP-25 --TPK--VNYA--G----TKD-IF-DK-Q- - - IA-KISRVXNLQ-HWLGS-G- - - P XYQTNCNKVETT-IT-E--YELSQFVE-TSQI--L-EF 193
s * *
B2 QKGVCMGDSGGPLVYKGKQVGVTSFVWEGCALGNPDFFTRVSLYVEWIKK IQKEYN 250
CESP-18 —mmmmmmom----- Kmmm e e e e D-V-- ----- K 228
Sle6 GR-I-F--=------- NEL--I--MHLYS-RG-R--I-VK-RDFQS--NSE-E-N 248
CfsSp-25 LR-I-F---------- -EL---S---LYT-GA-R--V-VK-RDFQS--NSE-R-K 248
Fig. 3 Alignment of the predicted amino acid sequences of four related C. felis chymotrypsin-like serine protease genes. Residues identical to
sequence B2 are shown as dashes. The predicted N-terminal signal peptide for secretion is underlined. The catalytic triad residues are in bold and
shaded. Conserved cysteines are marked with an asterix and the primary substrate determinant residue with an 's". Residues differing between
S16 and CfSP-25 are double-underlined
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protease, as it possessed only 78 % amino acid sequence
homology with its best match, a C. felis chymotrypsin-
like serine protease CfSP-25 [5]. The upregulation of
serine protease enzymes for blood digestion has been
well documented in various hematophagous arthro-
pods [15, 21-24]. Functionally, B2 is likely to have a
specific role in blood meal digestion since it was ex-
clusively expressed in flea midgut and upregulated
upon feeding. S16 was additionally expressed in flea
carcass after feeding, indicating that it may have other
roles besides digestion.

One identified feeding-associated gene (S49) belonged
to the ubiquitous serine protease inhibitor (serpin)
superfamily, which plays crucial roles in the regulation
of many physiological processes by limiting the activity
of proteases [25]. Not surprisingly, serpins have been ex-
plored as potential targets for the control of insects and
ectoparasites [26—29]. C. felis has previously been shown
to possess multiple serpins [6], one of which (serpin 3)
was 96 % homologous with S49, thus S49 may be
equivalent to C. felis serpin 3. It may have a role in feed-
ing before and after ingestion of a blood meal by regulat-
ing the activity of digestive proteases and protection of
the gut from deleterious proteolytic activity. S49 was
expressed in both flea midgut and carcass and this was
increased in both tissues in response to feeding. Thus, it
would also appear to be involved in processes other than
blood meal digestion. Serpins have been implicated in
numerous processes in insects including reproduction,
development, preventing activation of blood clotting,
longevity and innate immunity [25].

Alterations in the expression of genes with an immune
function have been observed after a blood meal in vari-
ous arthropod ectoparasites [14, 30—-33], which possess a
range of molecules for innate protection against micro-
organisms ingested during feeding. In this study, B52
was identified as a novel gene whose encoded product
has 61 % homology to a paralogous C. felis LB-like
peptidoglycan recognition protein (PGRP) [11]. Insect
PGRP-LB proteins have catalytic activity for digestion of
peptidoglycan and their function may be to modulate ac-
tivation of the insect immune system by the bacterial
cell wall [34]. In this way, the intensity of the insect im-
mune response is tightly adjusted to levels of ingested
bacteria. In keeping with such a role, B52 expression in
the flea was largely confined to the midgut.

Two further putative extracellular proteins identified
(S58 and B68) were novel mucins previously unde-
scribed in the flea. Expression of S58 and B68 was
completely absent in unfed fleas, but each was tran-
scriptionally activated in midgut and carcass in re-
sponse to feeding. No significant homology was found
with any known insect proteins. However, both S58
and B68 showed 36 % homology to their best match,
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a Japanese medaka mucin-17-like protein and were
predicted to be heavily O-glycosylated. The digestive
tract of the adult flea is unusual in that it reportedly
lacks a protective peritrophic membrane commonly
seen in other insects [35]. It is therefore plausible
that such mucin-type glycoproteins function as an in-
ducible physicochemical barrier to protect midgut and
other epithelia from attack by digestive enzymes or
from interaction with microbial pathogens and their
toxins. Mucins, which might also provide protection
from chemical and physical stresses of the blood meal
itself, may have practical utility for the biocontrol of
arthropod pests [36-38].

Two additional genes were identified that were not
secretory, namely B43 and S61, and these appear to en-
code a topoisomerase II and a glycophosphatidylinositol
(GPI) mannosyltransferase 2 enzyme, respectively. B43
expression increased following a blood meal specifically
in the midgut and, given the function of topoisomerases
in DNA replication, may reflect enhanced cell division in
this organ after feeding. In support of this hypothesis,
evidence from the fruit fly (Drosophila melanogaster) in-
dicates that the insect midgut is a dynamic organ that
can undergo growth in response to feeding leading to a
net increase in intestinal cells [39]. Moreover, the intake
of a large blood meal, whilst essential for haematopha-
gous insects, creates stresses that may induce cell death
[40]. Thus, cell proliferation may additionally be re-
quired in order to repair and regenerate the midgut epi-
thelium. The expression of S61, which also encoded an
intracellular enzyme, was exclusively detectable in fed
fleas, both in midgut and carcass tissue. As a putative
GPI mannosyltransferase 2, S61 is likely to function in
the biosynthesis of GPI anchors, which are critical for
cell membrane attachment of a diverse range of extracel-
lular proteins via their carboxyl termini. These include
specific cell adhesion molecules, cellular receptors,
hydrolytic enzymes and regulatory proteins [41]. The
transcriptional activation of a GPI mannosyltransferase 2
gene points to a potential plethora of cell surface
changes in the flea in response to feeding, involving in-
creased GPI-anchoring of proteins in various tissues, in-
cluding the midgut.

Conclusions

The identification of genes whose expression is induced
by blood feeding is a key step in understanding flea physi-
ology and flea interactions with their hosts, as well as the
transmission of flea-borne pathogens. Such molecules
may also have practical utility, representing potential tar-
gets for the development of new means of controlling fleas
via either chemical or immunological approaches. Further
studies utilizing higher throughput technologies are war-
ranted in order to generate a comprehensive picture of
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gene expression changes in the flea in response to feeding,
which may ultimately open new avenues for dealing with

this ubiquitous parasite and pest.
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