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Abstract

Mathematical models can be very useful in determining efficient and successful antibiotic

dosing regimens. In this study, we consider the problem of determining optimal antibiotic

dosing when bacteria resistant to antibiotics are present in addition to susceptible bacteria.

We consider two different models of resistance acquisition, both involve the horizontal trans-

fer (HGT) of resistant genes from a resistant to a susceptible strain. Modeling studies on

HGT and study of optimal antibiotic dosing protocols in the literature, have been mostly

focused on transfer of resistant genes via conjugation, with few studies on HGT via transfor-

mation. We propose a deterministic ODE based model of resistance acquisition via transfor-

mation, followed by a model that takes into account resistance acquisition through

conjugation. Using a numerical optimization algorithm to determine the ‘best’ antibiotic dos-

ing strategy. To illustrate our optimization method, we first consider optimal dosing when all

the bacteria are susceptible to the antibiotic. We then consider the case where resistant

strains are present. We note that constant periodic dosing may not always succeed in eradi-

cating the bacteria while an optimal dosing protocol is successful. We determine the optimal

dosing strategy in two different scenarios: one where the total bacterial population is to be

minimized, and the next where we want to minimize the bacterial population at the end of

the dosing period. We observe that the optimal strategy in the first case involves high initial

dosing with dose tapering as time goes on, while in the second case, the optimal dosing

strategy is to increase the dosing at the beginning of the dose cycles followed by a possible

dose tapering. As a follow up study we intend to look at models where ‘persistent’ bacteria

may be present in additional to resistant and susceptible strain and determine the optimal

dosing protocols in this case.

1 Introduction

Misuse and overuse of antibiotics has led to bacteria developing resistance to antibiotics, and

this has resulted in complications in treatment and even treatment failures. Antibiotic resis-

tance is rising to very high levels throughout the world and is now a major public health chal-

lenge, with new resistance mechanisms emerging and spreading globally. According to the

CDC, more than 2.8 million antibiotic-resistant infections occur every year in the US and
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account for more than 35,000 deaths. In the EU, antibiotic resistance causes more than 25,000

deaths every year, and there have been estimates attributing more than 700,000 deaths globally

to antibiotic resistance [1–3].

Antibiotic resistance occurs when bacteria stop responding to antibiotic agents at specific

concentration levels and are able to proliferate in the presence of the drug at these concentra-

tions. While antibiotic resistance was reported very soon after the large scale use of antibiotics,

this was ameliorated by the discovery of newer and more effective antibiotic agents; however,

the development of new antibiotics has been outpaced by the acquisition of resistance to exist-

ing drugs by bacteria [4–6].

Bacteria can become resistant to antibiotics either by spontaneous mutations in their DNA

(De-Novo resistance) or through the transfer of genetic material from drug-resistant bacteria,

horizontal gene transfer (HGT). There are several mechanisms that give rise to resistance, and

these include the production of enzymes that cause drug inactivation, alteration of the target

sites of the drug, activation of efflux pumps that remove the drug from the bacterium, and the

alteration of cell wall proteins preventing the uptake of the drug. The overuse and misuse of

antibiotics provide selection pressure favoring the resistant strains causing these to proliferate.

The well-known mechanisms for horizontal gene transfer include conjugation, transduction,

and transformation. Conjugation or Bacterial conjugation involves the transfer of DNA via a

plasmid during cell to cell contact. In the process of transduction, DNA is moved from one

bacterium to another by a phage (virus), and in transformation, foreign genetic material is

taken up and expressed by a bacterium. It has been well established in the literature [7] that

HGT is the predominant mechanism for resistance acquisition; specifically, conjugation and

transformation have been identified as primary pathways by which resistance may be trans-

ferred from a resistant strain to a susceptible one [8–12].

Several mechanistic models have been proposed in the literature to investigate the acquisi-

tion of antimicrobial resistance through HGT. These include models of HGT via conjugation,

as well as via transformation. D’agata et al. presented an ODE based single and multidrug-

resistant strain model with resistance acquired through conjugation which was modeled using

a mass action law [13]. They included the innate immune response in their model, the effects

of which were modeled using a Monod function. They studied that the the relationship

between antimicrobial therapies immune response in preventing the proliferation of the resis-

tant strains. Stekel et al. present a model of resistance via conjugation in a natural environment

[14]. The model is based on a system of two ODEs and with conjugation modeled via a mass

action term. They show that the spread of resistance is very sensitive to the rates of gene trans-

fer and the antibiotic inflow. Imran et al. study the effects of different dosing regimens on a

population of susceptible and resistant bacteria in a chemostat setting using a series of ODE

based models [15]. Resistance may be acquired via bacterial conjugation which is modelled by

a mass action term, effects of the antibiotic treatment are modeled by a pharmacodynamic

function. The derive conditions for treatment success based on the model parameters. Svara

et al. present a model to study selection pressure which favors the plasmid carried resistant

genes in the presence of an antibiotic [16]. Using a system of ODEs to model the dynamics

they show that the dosage and the inter-dose time of the antibiotic are critical in determining

the selection for plasmid carried resistance. Torella et al. study the synergistic effects of multi-

ple antibiotic agents and their efficacy, considering drug interaction [17]. They consider a sus-

ceptible bacterial strain, strains resistant to one particular antibiotic and strains that are

resistant to both. The dynamics are modeled by a system of ODEs with the resistance to either

strain acquired de novo. They include effects of drug interaction via a function representing

the effective doses of the antibiotic felt by the susceptible strain. They show that greater synergy

between the antibiotic may not always be beneficial and under certain conditions drug
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antagonism may be more advantageous in preventing multi drug resistance. Johnson et al.

look into dynamics that maintain natural competence (i.e. the ability to transform by uptake

of DNA) and transformation in a bacterial population [17]. Their ODE based model incorpo-

rates compartments for bacteria that do and do not express competence and transformed bac-

teria, the process of transformation is modeled by a mass action law [18]. They show that

selection pressure can help maintain competence in the population, this is further augmented

if there is in addition selection pressure favoring transformants. Lu et al. explain the experi-

mentally observed rates of natural transformation in the presence of motile and non-motile

strains of Azotobacter vinelandii using a simple model of interaction between the competent

cells and the transforming DNA based on Levin’s mass action term [11].

The use of mathematical models to study antibiotic resistance and successful treatment pro-

tocols is an area of active research. The conventional treatment protocols involved periodic

dosing with doses of constant strength, this, however, may not be the optimal strategy. Mathe-

matical models have been used to identify successful strategies for antibiotic dosing. However,

there does not seem to be a consensus on the issue. Several studies have recommended a hit-

hard and fast strategy. This involves high early doses of the antibiotic [13, 19, 20], however

other studies have shown that this may not always be optimal [21]. Some studies recommend a

pulsed and tapered strategy, but other studies show that resistant strains may persist under

such a regimen. Merideth et al. recommend dosing strategies be adopted in light of a patho-

gen-antibiotic interaction metric, based on the time a bacterial population takes to return to its

initial density after a single dose of the antibiotic [21]. Bonhoeffer et al. investigated the use of

single and multiple antibiotics. In the case of a single antibiotic, they find that high initial dos-

ing is a better strategy [22]. Hoyle et al. study single and multiple fixed-dose regimens as well

as tapered dosing [23]. They conclude that a single large dose is never optimal, while the opti-

mal dosing when we also want to minimize the total antibiotic quantity follows a tapering pat-

tern; in a follow-up work [24] they find similar results and also validate their findings using

biological experiments. Penna-Miller et al. use optimal control to study dosing strategies in the

case where commensal and pathogenic bacteria are present; they find that an ‘intermittent’ or

pulsed dosing is optimal [25].

In this study, we consider the problem of determining the optimal antibiotic dosing when

both susceptible and resistant bacteria are present. The goal is to find the dosing regimen that

is successful in eradicating the bacterial population while keeping the total administered anti-

biotic at a minimum. Resistant strains are assumed to have a higher minimum inhibitory con-

centration (MIC). This is included in our models in the pharmacodynamic term as described

in detail in the sections below. We now briefly describe the structure of the paper.

In section (2), we describe a numerical optimal control scheme, the direct gradient descent

method (DGDM); we will use this to determine the optimal antibiotic dosing. We then con-

sider a bacterial growth model in a chemostat setting proposed in [26] and use the DGDM to

obtain a discrete optimal dosing schedule. We compare our results to those obtained using a

quasi-optimal strategy in the literature.

In the next section (3), we propose a model for resistance acquisition via transformation.

This is an HGT mechanism, where DNA fragments containing the resistant genes are taken

up and incorporated in the chromosome of susceptible bacteria. We incorporate the uptake of

antibiotic by the bacteria in our model. We first consider discrete doses of antibiotics applied

periodically, using the killing rates of the susceptible and resistant strains as bifurcation param-

eters. We show that the system exhibits bistability, i.e., a periodic dosing regimen may not be

successful. We then formulate the dosing problem as an optimal control problem, and we

want to minimize the bacterial population while keeping the total antibiotic quantity low.

Using the DGDM, we determine a discrete optimal dosing regimen. We show that the optimal
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treatment is successful in eradicating the bacteria for a wide range of scenarios, including dif-

ferent antibiotic killing rates and different relative costs of the antibiotic dosing. Finally, we

consider a slightly different functional in our optimal control setup; here, we are interested in

minimizing the bacterial population at the end of our simulated time while keeping the total

antibiotic quantity low. We note that the initial dosing schedule is somewhat different in this

case, followed by tapered dosing.

In section (4), we determine the optimal dosing for the case where HGT occurs via conjuga-

tion; we use a model presented in [15]. We set up the optimal control problem and use the

DGDM to determine the best antibiotic dosing strategy. We again consider two different func-

tionals, and note that we obtain the qualitatively similar result as in the case where resistance

acquisition is via transformation. We also compare our results to those obtained in [26], who

determined a quasi-optimal strategy for this case, and note that while our method also suggests

a tapered dosing strategy, the total antibiotic needed is much lower.

In the last section (5), we summarize the study and present the main findings of this work.

2 Optimal antibiotic dosing using the direct gradient descent

method

We give a brief overview of our numerical optimization scheme, the direct gradient descent

method (DGDM). We then apply it to a simple antibiotic dosing problem to benchmark the

method. Using the method, we determine a discrete optimal strategy and compare the results

with those obtained using a quasi-optimal strategy proposed in the literature [26]. In subse-

quent sections, we will use the DGDM to find the best dosing strategy when resistant bacteria

are also present.

2.1 Direct gradient descent algorithm

We consider the problem of minimizing a cost functional, subject to differential equation con-

straints. Mathematically, the functional to be minimized is of the form

min FðuÞ ¼
Z t¼b

t¼a
f ðu; s1; s2; :::; skÞ dt

subject to differential equation conditions

dsi

dt
¼ g1ðu; s1; s2; :::; skÞ i ¼ 1; 2; � � � ; k

with initial conditions

si ¼ s0
i

We now give a description of our numerical optimization scheme, the DGDM. The gradient

(functional derivative)rF(u) of a functional F can be found from the Taylor series

Fðuþ hÞ ¼ FðuÞþ < rFðuÞ; h > þOðh2Þ

where h is a permissible variation about u and<, > is the inner product in the space being

used. Different inner products for the same set of vectors will result in different gradients with

different numerical properties. The gradientrF(u) points in the direction of greatest increase

of F in the inner product space in whichrF(u) was calculated.

Zizza [27] and Gigena [28] discussed the minimization of a functional subject to constraints

by taking the exterior derivative of the functional and of the constraints. The wedge product of

the exterior derivative gives a gradient in the independent variable that is set equal to zero and
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then solved. In our case, we use automatic differentiation to find the gradient with respect to

the control variable and construct all other state variables from the control, as described below.

This avoids the Lagrange multiplier as well as the explicit construction of the gradient in the

space of only the control.

We consider the state variables as functions of the control variable u. That allows us to con-

sider the system of the control and state variables as defining a manifold with local coordinates

u. The numerical problem is then done on a grid with equally space nodes on the interval [a,

b]. The algorithm is given below.

For each optimization step;

1. values of the state variables si are found numerically at each node

2. these values are used in the numerical analogue of the functional F

3. the gradientrF(u) is calculated the value of the functional is reduced by replacing u by

u−λrF(u).

4. process continues until a convergence criterion is met.

2.2 A discrete optimal dosing strategy for susceptible bacteria

We consider a chemostat-based model of bacterial growth, introducing antibiotic dosing

through a pharmacodynamic term; this was proposed by [15]. The model consists of three dif-

ferent compartments, representing the nutrient, antibiotic, and bacteria concentrations.

Let S denote the nutrient concentration, A the antibiotic concentration, u the susceptible

bacterial population with no drug resistance. The model equations are

dS
dt
¼ dSðS0 � SÞ �

1

g
GðSÞu

dA
dt

¼ dAfA0ðtÞ � Ag � f ðAÞu

du
dt
¼ fGðSÞ � du � KðS;AÞgu

ð1Þ

Here the first equation shows the change in nutrient concentration. The first term dS S0 repre-

sents the flux of nutrients into the chemostat, −dS S and G(S)u are the washout and removal of

nutrients by the bacteria, respectively. Similarly, the only way for antibiotics to deplete is

through consumption by susceptible bacteria and via washout. The time-dependent function

A0(t) shows the antibiotic dosing strategy that is being employed. The susceptible bacterial

population is changing due to the nutrient-dependent growth term GðSÞ ¼ mS
aþS, constant dilu-

tion with rate du and killing of the susceptible bacteria due to the antibiotic, represented by the

term KðS;AÞ ¼ kSA
ðaþSÞðLþAÞ which is assumed to be dependent on nutrient as well as and antibi-

otic concentration.

The problem we consider is designing a dosing strategy that minimizes the bacterial popu-

lation while keeping the total cost of antibiotic dosing low at the same time. Mathematically,

the optimization problem is to minimize the objective functional

J½A0ðtÞ� ¼
Z tf

t0

1

2
WaA

2

0
ðtÞ þ uðtÞ

� �

dt ð2Þ

subject to ODE system constraints (1).
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We use Pontryagin’s Maximum Principle from the theory of optimal control to determine

continuous and quasi-continuous optimal dosing strategies. In the case of quasi-continuous

optimal control problem, we consider the A0(t) = Am δ(t) where Am is the maximum concen-

tration of the antibiotic and δ(t) is a function which determines the antibiotic influx. For a

detailed description of the numerical algorithm, we would refer to [26]. Next, we look at deter-

mining a discrete optimal dosing protocol using the DGDM. The underlying optimization

problem is to minimize (2) subject to constraints (1). The dosing applied in this case is consists

of discrete periodic doses given by A0(t) = ∑i Ai δ(t−iP). This means that the antibiotic concen-

tration Ai is applied periodically with a period P. For simulation purposes, we considered the

case when P = 5 hours and the total number of cycles are 6. We compare the results obtained

by continuous, quasi-continuous and discrete techniques in Fig 1.

The total antibiotic used at the optimal dosing is given in the Table 1.

We note that while all these methods lead to bacterial eradication, the discrete strategy does

so at a much lower total antibiotic usage.

Fig 1. Optimal dosing strategies and bacterial population.

https://doi.org/10.1371/journal.pone.0275762.g001

Table 1. Total antibiotic consumption.

Numerical Scheme
R tf
t0
A0ðtÞdt

Optimal Continuous Dosing 10.5044

Optimal Quasi Continuous Dosing 7.3541

Optimal Discrete Dosing 1.8520

https://doi.org/10.1371/journal.pone.0275762.t001
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3 Modeling antibiotic resistance via transformation

Transformation is a horizontal gene transfer mechanism, where foreign DNA is taken up and

incorporated by bacteria from the environment [12]. Within the body, cell-free DNA (cf-

DNA) can be introduced into the blood due to cell death, active secretions, phagocytosis,

autophagocytosis, etc. cf-DNA is distributed throughout the organism, and all cells release cf-

DNA during cell division.

In this section, we propose a model of bacterial growth in a chemostat setting, where both

resistant and susceptible bacteria are present; we also include the introduction of antibiotics in

the system. The mechanism of resistance acquisition is horizontal gene transfer through trans-

formation. Cell-free DNA can persist after disinfection and promote gene transfer in the

absence of physical and temporal contact between a donor and recipient bacteria. Natural

transformation is the process of physiological uptake of foreign DNA by ‘competent bacteria,’

and its genomic integration [29]. Competence is the ability of bacteria to take up extracellular

DNA from the environment. Approximately 80 bacterial species, including human and animal

pathogens, and soil bacteria, in their lifetime, are able to acquire the competence in a natural

environment [30] and it has been posited that around 10 to 20% of a bacterial population may

be competent [31].

We now define the state variables in the model. S represents the nutrient concentration

present in the chemostat, A is the antibiotic concentration, x the amount of cf-DNA present in

the chemostat, and u, v are the susceptible and resistant bacterial populations, respectively.

We hypothesize that the natural transformation happens through the uptake of cf-DNA

from resistant strains by the competent bacterial population. In previous work on HGT via

transformation, Johnson et al. [30] used the mass action dynamics to illustrate the transforma-

tion mechanism where the competent bacteria takes up the DNA interacting with the transfor-

mant bacterial population. Lu [11] proposed a mathematical model to explain the natural

transformation dynamics in azotobacter vinelandii. The transformation mechanism used is

based on Levin’s mass action dynamics [18] and transformation rates for the tetracycline-resis-

tant gene were estimated by taking into account the motile/non-motile nature of the bacterial

population. Our work extends these models by including more of the process pathways in the

model, in particular we incorporate a compartment for the cell free DNA density along with

the resistant and susceptible bacterial populations which we hope better captures the dynam-

ics, moreover we have set our model in a chemostat setting, as a proxy for a more complex

organism, a detailed description of the model is given below

dS
dt
¼ dSðS0 � SÞ � g� 1fG1ðSÞuþ G2ðSÞvg

dA
dt

¼ dAðA0ðtÞ � AÞ � f ðAÞfuþ vg

dx
dt
¼ K2ðS;AÞv � dxx � axu

du
dt
¼ fG1ðSÞ � du � K1ðS;AÞgu � k3xu

dv
dt
¼ fG2ðSÞ � dþ � K2ðS;AÞgvþ k4xu

ð3Þ

where G1ðSÞ ¼ mS
aþS, G2ðSÞ ¼

m1S
aþS, f ðAÞ ¼ nA

L1þA, K1ðS;AÞ ¼ kSA
ðaþSÞðLþAÞ, and K2ðS;AÞ ¼

k1SA
ðaþSÞðLþAÞ.
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Here, G1(S) and G2(S) are the nutrient-dependent growth rates of the susceptible and resis-

tant bacteria, and K1(S, A) and K2(S, A) are the antibiotic killing rates, which we have assumed

to depend on the limiting nutrient and antibiotic levels, as has been done in the literature [32,

33].

The primary mechanism for nutrient concentration change includes a constant nutrient

flux into the reservoir with a constant dilution of the nutrient and nutrient-dependent bacte-

rial population growth.

The antibiotic concentration changes with the input of time dependent dosing given by

A0(t) = ∑i Am δ(t−iP) with a period P over the time interval [t0, tf]. The antibiotic is consumed

by the susceptible and resistant bacteria and its removal is represented by the term −f(A)(u+ v).

The third additional state variable x changes with the influx of cf-DNA from dead resistant

bacteria. This depends on the killing rate K2(S, A) which results in the release of free circulating

DNA. The term −dx x shows the constant dilution of the cf-DNA from the chemostat with

dilution rate dx. The term αxu represents the phenomena of transformation where the cell-free

DNA is taken up and incorporated by the susceptible bacteria resulting in resistance

acquisition.

The fourth equation shows the change in susceptible bacterial population density. This

includes the nutrient-dependent influx, constant dilution with rate dS, and nutrient and antibi-

otic-dependent killing of the susceptible bacterial population. The last term −k3 xu represents

the removal of susceptible bacteria due to interaction with and incorporation of the cf-DNA

leading to resistance.

The last equation represents the change in resistant bacterial density where G2(S)v is the

growth of resistant bacteria at a nutrient-dependent rate. The terms −d+ v, −K2(S, A)v show

the removal of resistant bacteria due to washout and the effect of the antibiotic, respectively.

3.1 Periodic dosing treatment

We now consider antibiotic being given at fixed dosage periodically. We analyze the system

and determine the steady states. We show that both sterile i.e. bacteria free steady state and

infection states, those with the bacterial population surviving exist. We then find conditions

for stability and the long term behavior of the system.

The parameters for the models are attached in Table 2.

Theorem 3.1. The non-negative cone R5

þ
is positively invariant for the model (3) and all solu-

tion for the model equations are ultimately uniformly bounded in forward time.

proof. The proof is attached in the appendix A.1 in S1 Appendix.

The periodic solution to (3) includes the sterile steady state

E0ðtÞ ¼ ðS0;A�ðtÞ; 0; 0; 0Þ ð4Þ

where A� is the solution of A0(t) = dA(A0−A(t)). There are also other infection states where bac-

terial populations are not identically zero. The local stability of the sterile state can be found by

the computing the Floquet exponents associated with the u and v states.

Theorem 3.2. The sterile state E0(t) corresponding to (3) is locally asymptotically stable if λ4

= G1(S0)−du−[K1(S0, A�)]m < 0 and λ5 = G2(S0)−d+−[K2(S0, A�)]m < 0 and unstable if either λ4

> 0 or λ5 > 0. Moreover in the constant case when A0(t) = A0 and both λ4 < 0, λ5 < 0 then E0 is
globally asymptotically stable.

Proof. The proof is attached in the appendix A.2 in S1 Appendix.

To determine the stability of the sterile and infection states we use Floquet theory [34]. We

calculate Floquet exponents and consider those related to the state variables u and v, and if

both of them are negative then the sterile state is stable and the system converges to the sterile
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state (Fig 2). If either one of these is positive the sterile state is unstable and the bacterial popu-

lation grows (Fig 3). Our simulation results verify the theoretical findings.

Biologically this means that a periodic dose may or may not be successful in eradicating the

bacteria, depending on the effect (killing rates) of the antibiotic on the susceptible and resistant

bacteria and the amount of nutrient and antibiotic influx.

Fig 2. The left figure shows the antibiotic usage throughout the time when λ4 = −0.1057, λ5 = −0.0861. The right figure shows the success of the

treatment for 0< t< 30h when λ4 = −0.1057< 0 and λ5 = −0.0861< 0.

https://doi.org/10.1371/journal.pone.0275762.g002

Table 2. Description of the parameters used for models.

Parameters Description Values

S0 Substrate feed concentration 0.45 [15, 26]

Am Maximum antibiotic dosage concentration 3 [15, 26]

dS Substrate dilution rate 0.23 [15, 26]

dA Antibiotic dilution rate 0.23 [15, 26]

du Bacterial dilution rate 0.23 [15, 26]

d+ cf-DNA dilution rate 0.23 [15, 26]

γ Yield constant 0.8 [15, 26]

q Probability of Mis-segregation 0.01 [15, 26]

μ Rate of plasmid transfer during Conjugation 0.0000001 [15, 26]

α Re-Combination rate for Transformation 0.0000001 [11]

m Maximum growth rate for susceptible bacteria 0.417 [15, 26]

m1 Maximum growth rate for resistant bacteria 0.416 [15, 26]

ν Maximum antibiotic uptake 0.345 [15, 26]

k Maximum kill rate for susceptible bacteria 0.96 [15, 26]

k1 Maximum kill rate for resistant bacteria 0.87 [15, 26]

k3 Susceptible bacterial removal rate via Transformation 0.30 Assumed

k4 Resistant strain formation rate 0.15 Assumed

a Half saturation constant for bacterial growth 0.1 [15, 26]

L Half saturation constant for bacteria kill 0.1 [15, 26]

L1 Half saturation constant for antibiotic uptake 0.1 [15, 26]

Wa Antibiotic cost sensitivity 0.001 [26]

tf Final time (in hours) 30.0 [15, 26]

P Period of dosing regimens (in hours) 5 [26]

https://doi.org/10.1371/journal.pone.0275762.t002
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3.2 Optimal dosing strategy

3.2.1 Minimizing the total bacterial population. In this section, we look at the problem

of determining the optimal dosing strategy, where the bacterial population in minimized while

keeping the total antibiotic does low using the Direct Gradient Descent Method (DGDM). The

functional we consider involves minimizing the total bacterial population along with the total

antibiotic dosage. In the following section, we will look at the case where we consider minimiz-

ing the bacterial population at the end of the dosing period.

The mathematical problem is to find out the optimal antibiotic dosing strategy by minimiz-

ing the objective functional

J½A0ðtÞ� ¼
1

2

Z tf

t0

ðWaA
2

0
ðtÞ þ uðtÞ þ vðtÞÞdt ð5Þ

subject to constraints (3).

The dosing applied in this case is consists of discrete doses given by A0(t) = ∑i Ai δ(t−iP).

This means that the antibiotic Ai is applied periodically with a period P. For simulation pur-

poses, we considered the case when P = 5 hours and total number of cycles are 6.

Using the DGDM, we determine the optimal dosing scheme and note that in this case a

high initial dose with subsequent tapering is optimal (Fig 4). This is in line with several studies

in the literature.

We now consider several scenarios and determine optimal dosing in each case. First, we

vary the values of k+, biologically as the value of k+ becomes smaller the resistant strain is less

Fig 3. The left figure shows the failure of the antibiotic treatment for 0 < t< 30h when λ4 = −0.0017< 0 and λ5 = 0.0821> 0. The right figure

shows the failure of the antibiotic treatment for 0< t< 30h when λ4 = 0.3868, λ5 = 0.4224> 0.

https://doi.org/10.1371/journal.pone.0275762.g003

Fig 4. Optimal dosing strategy and states.

https://doi.org/10.1371/journal.pone.0275762.g004
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‘susceptible’ to the antibiotic. Using the DGDM, we obtain the dosing schemes under a range

of values of k+, the results are shown in the Fig 5.

Fig 5 shows that as the value of k+ is reduced, a higher total dose of antibiotic is needed.

This is consistent over a wide range of values of k+, moreover, a tapered dosing regimen is still

optimal in each case.

Next, we look at how optimal dosing changes as the relative cost of the treatment is varied.

In our model, this is captured by the parameter Wa (Cost sensitivity parameter associated with

the implementation of the dosing protocol). As expected, we observe that the total antibiotic in

the optimal dosing is reduced as it becomes more costly. However, this also means that the

bacterial population decreases at a lower rate as seen in the Fig 6. The dosing strategy remains

qualitatively the same in this case, with higher initial doses that are tapered with time.

3.2.2 Minimizing the bacterial population at the end of dosing period. We now con-

sider the problem of determining a dosing strategy where we want to minimize the bacterial

population at the end of the dosing period, keeping the total antibiotic at a minimum. The

mathematical problem is formulated by now evaluating u and v at the final time tf in the

Fig 5. Optimal bacterial populations and dosing strategies by varying the k+.

https://doi.org/10.1371/journal.pone.0275762.g005

Fig 6. Optimal dosing strategies and bacterial population corresponding to various cost sensitivity parameter Wa.

https://doi.org/10.1371/journal.pone.0275762.g006
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optimization functional as given below

J½A0ðtÞ� ¼ uðtf Þ þ vðtf Þ þ
1

2

Z tf

t0

WaA
2

0
ðtÞdt ð6Þ

subject to ODE system constraints (3).

We use the DGDM to determine the optimal dosing strategy in this case, which is given in

the Fig 7.

We now look into how the dosing schedule varies across different values of the antibiotic

killing rate for resistant bacteria k+, and for different relative antibiotic costs. Our results show

that the optimal strategy remains qualitatively similar and involves an initial dose build up fol-

lowed by tapering. This is observed across a wide range of values of k+ and du and demon-

strated in Fig 8.

4 Modeling antibiotic resistance via conjugation

We consider a model for resistance acquisition through conjugation proposed by Imran et al.

[15]. In follow-up work, Khan et al. used optimal control theory to determine a quasi-optimal

Fig 7. Optimal dosing strategy and bacterial population.

https://doi.org/10.1371/journal.pone.0275762.g007

Fig 8. The left figure shows the optimal dosing strategies for various k+. The right figure shows the dosing strategies for various values of washout

parameter du.

https://doi.org/10.1371/journal.pone.0275762.g008
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dosing strategy for the problem [26]. Using the DGDM, we will find the optimal strategy and

compare our results to those in [26]. We now give a brief description of the model.

Let S denote the nutrient concentration, A the antibiotic concentration, u the susceptible

bacterial population with no drug resistance, and v is the resistant bacterial population. The

model equations are

dS
dt
¼ dSðS0 � SÞ �

1

g
fG1ðSÞuþ G2ðSÞvg

dA
dt

¼ dAfA0ðtÞ � Ag � f ðAÞfuþ vg

du
dt
¼ fG1ðSÞ � du � K1ðS;AÞguþ qG2ðSÞv � muv

dv
dt
¼ fG2ðSÞð1 � qÞ � dþ � K2ðS;AÞgvþ muv

ð7Þ

The model represents bacterial growth in a chemostat setting. The first and second equations

represent the change in the nutrient and antibiotic concentrations. The change in the suscepti-

ble bacterial population density is represented by the third equation. Susceptible bacteria

increase at a nutrient dependent growth rate G1(S), moreover it was posited that mis-segrega-

tion of resistant strains also give rise to susceptible bacteria. The last equation shows popula-

tion density change in the resistant bacteria. The term G2(S)(1−q)v represents the increase the

population, where the loss due to mis-segregation is accounted for, the process of conjugation

is modelled by the mass action term μuv. For a more detailed discussion on the model we

would refer to Imran et al. [15].

4.1 Optimal discrete dosing

4.1.1 Minimizing the total bacterial population. We would like to determine the best

dosing strategy which minimizes the overall cost of antibiotic and the susceptible and resistant

bacterial population density.

The optimization problem takes the following mathematical form where we want to mini-

mize the objective functional

J½A0ðtÞ� ¼
Z tf

t0

1

2
WaA

2

0
ðtÞ þ uðtÞ þ vðtÞ

� �

dt ð8Þ

subject to ODE system constraints (7). We want to determine the optimal discrete dosing

given by A0(t) = ∑i Ai δ(t−iP). The antibiotic concentration Ai applied periodically with a

period P will be determined using the DGDM. For simulation purposes, we considered the

case when P = 5 hours and total number of cycles are 6. The optimal dosing schedule, antibi-

otic concentration and the bacterial population are given in the Fig 9.

We note that the optimal strategy is to give a high initial dose which is then tapered off with

each subsequent dose. We also compare the discrete optimal dose to the quasi optimal regimen

obtained by the method used in [26]. We observe that the discrete optimal strategy is successful

in eradicating the bacteria at a lower total antibiotic dose. As antibiotic is mostly administered

in discrete doses (or doses given over short intervals) the discrete regimen may also help quan-

titatively determine the optimal strategy.

4.1.2 Minimizing the bacterial population at the end of dosing period. We also look at

the problem which is to minimize the susceptible and resistant bacterial at the end of the anti-

biotic dosing along with cost associated with administering the antibiotic. The optimization
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problem takes the following mathematical form

J½A0ðtÞ� ¼ uðtf Þ þ vðtf Þ þ
1

2

Z tf

t0

WaA
2

0
ðtÞdt ð9Þ

subject to ODE system constraints (7). The optimal dosing strategies, antibiotic concentration

and bacterial population are shown in Fig 10.

The optimal strategy in this case is an initial increase in the dose which is then tapered off.

This is in contrast to the case where we want to minimize the total bacterial population. In that

case, a higher initial antibiotic concentration is used but each subsequent does is smaller than

the previous one. Qualitatively, both the results are similar for both HGT mechanisms we have

studied.

5 Conclusion

In this work, we consider the problem of determining the optimal antibiotic dosing regimen

when both susceptible and resistant bacterial strains are present. We consider mechanistic

models for resistance acquisition and set up an optimal control problem, the goal being to

minimize the bacterial population while keeping the total antibiotic dose low. We use a numer-

ical optimal control method, the direct gradient descent (DGDM) algorithm, to determine

these dosing regimens. Resistance acquisition is assumed to be via horizontal gene transfer. In

particular, we propose a model of acquired resistance via transformation and determine the

optimal dosing regimen for a variety of scenarios. We also consider a model from the literature

for resistance acquisition via conjugation and find the best dosing strategies in this case.

We first describe our numerical optimal control algorithm, the DGDM, and then use it for

the simple case of determining optimal dosing for susceptible bacteria. Using a chemostat-

based model from the literature [15], we determine the dosing regimen and compare our

results to some quasi-optimal ones in the literature [26].

Fig 9. Optimal dosing strategies, bacterial population, and antibiotic concentration.

https://doi.org/10.1371/journal.pone.0275762.g009

Fig 10. Optimal dosing strategies, bacterial population, and antibiotic concentration.

https://doi.org/10.1371/journal.pone.0275762.g010
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We then propose and analyze a model of resistance acquisition via transformation (3),

where resistant genes are acquired by susceptible bacteria from the surrounding environment.

We incorporate antibiotic dosing in the model and show that discrete antibiotic doses admin-

istered periodically may lead to treatment failure, i.e., the system exhibits bi-stability. This

means that the success or failure of treatment under such dosing protocols would depend on

the sensitivity of the resistant strain to the antibiotic.

We then set up the optimal control problem (3.2), where the dynamics of bacterial growth

and antibiotic administration are governed by a mechanistic model. We want to determine a

successful strategy to eliminate the bacteria while keeping treatment costs low by cutting down

on antibiotic usage. We want to minimize the total bacterial population along with the admin-

istered antibiotic quantity. We look at different scenarios, varying the killing rates of the anti-

biotic for the resistant strain and varying the relative cost of administering the antibiotic. Our

findings show that the optimal strategy in all cases is high initial loading followed by dose

tapering.

We also look at the problem where we would like to minimize the bacterial population at

the end of our treatment, rather than the total bacterial population over the dosing cycles. In

this case, the optimal strategy is to build up the initial doses and then taper off. We again study

the dosing under a variety of scenarios, varying the sensitivity of the resistant strains and the

relative cost of antibiotic dosing. We note that qualitatively similar dosing is recommended in

the different scenarios. A higher quantity of antibiotics is needed when the resistant strains are

less sensitive. We also observe that as the relative cost of dosing becomes higher, the optimal

dose is quantitatively smaller, the cost being that the bacterial population is reduced at a slower

rate.

Finally, we consider treatment strategies when resistance is acquired through conjugation.

We consider a model from the literature and set up the optimal control problem. Using the

DGDM, we determine the optimal dosing once again for different scenarios. We find that the

results are qualitatively similar to those in the transformation acquired resistance case.

We have determined discrete optimal antibiotic dosing when both resistant and susceptible

bacteria are present. Our results can help determine both qualitative and quantitative dosing

regimens for antibiotic treatment.

As a follow-up study, we would like to model horizontal gene transfer via transduction as a

resistance acquisition mechanism. In this case, we would further determine efficient dosing

protocols by setting up the optimal control problem and optimizing using our numerical opti-

mization scheme. Another direction for future work is to extend our basic model and include

a persister cell population, and this has been identified in the literature to be important in sus-

ceptible cell survival; the natural setting for this study would be a bio-film. We would again

like to study efficient and effective antibiotic dosing based on the model.
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