
fgene-12-703541 July 29, 2021 Time: 16:52 # 1

REVIEW
published: 04 August 2021

doi: 10.3389/fgene.2021.703541

Edited by:
Diego Ortega-Del Vecchyo,

National Autonomous University
of Mexico, Mexico

Reviewed by:
Iain Mathieson,

University of Pennsylvania,
United States

Gulsah Merve Kilinc,
Hacettepe University, Turkey

*Correspondence:
Evan K. Irving-Pease

evan.irvingpease@gmail.com
Fernando Racimo

fernandoracimo@gmail.com

Specialty section:
This article was submitted to

Evolutionary and Population Genetics,
a section of the journal

Frontiers in Genetics

Received: 30 April 2021
Accepted: 08 July 2021

Published: 04 August 2021

Citation:
Irving-Pease EK, Muktupavela R,

Dannemann M and Racimo F (2021)
Quantitative Human Paleogenetics:

What can Ancient DNA Tell us About
Complex Trait Evolution?

Front. Genet. 12:703541.
doi: 10.3389/fgene.2021.703541

Quantitative Human Paleogenetics:
What can Ancient DNA Tell us About
Complex Trait Evolution?
Evan K. Irving-Pease1* , Rasa Muktupavela1, Michael Dannemann2 and
Fernando Racimo1*

1 Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark, 2 Center
for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia

Genetic association data from national biobanks and large-scale association studies
have provided new prospects for understanding the genetic evolution of complex traits
and diseases in humans. In turn, genomes from ancient human archaeological remains
are now easier than ever to obtain, and provide a direct window into changes in
frequencies of trait-associated alleles in the past. This has generated a new wave of
studies aiming to analyse the genetic component of traits in historic and prehistoric
times using ancient DNA, and to determine whether any such traits were subject to
natural selection. In humans, however, issues about the portability and robustness of
complex trait inference across different populations are particularly concerning when
predictions are extended to individuals that died thousands of years ago, and for
which little, if any, phenotypic validation is possible. In this review, we discuss the
advantages of incorporating ancient genomes into studies of trait-associated variants,
the need for models that can better accommodate ancient genomes into quantitative
genetic frameworks, and the existing limits to inferences about complex trait evolution,
particularly with respect to past populations.
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INTRODUCTION

The last decade has seen dramatic advances in our understanding of the genetic architecture of
polygenic traits (Visscher et al., 2017). The advent of genome-wide association studies (GWAS),
with large sample sizes and deep phenotyping of individuals, has led to the identification of
thousands of loci associated with complex traits and diseases (MacArthur et al., 2017; Bycroft et al.,
2018; Buniello et al., 2019). The resulting associations, and their inferred effect sizes, have enabled
the development of so-called polygenic risk scores (PRS), which summarise either the additive
genetic contribution of single nucleotide polymorphisms (SNPs) to a quantitative trait (e.g., height),
or the increase in probability of a binary trait (e.g., major coronary heart disease) (Dudbridge, 2013).
For some well-characterised medical traits, like cardiovascular disease, the predictive value of PRS
has led to their adoption in clinical settings (Knowles and Ashley, 2018); however, the accuracy
of PRS remains limited to populations closely related to the original GWAS cohort (Martin et al.,
2019) and can vary within populations due to age, sex and socioeconomic status (Mostafavi et al.,
2020). Ancient genomics has yielded considerable insights into natural selection on large-effect
variants (Malaspinas, 2016; Dehasque et al., 2020), and an increasing number of studies are also
now utilizing ancient genomes to learn about polygenic adaptation; the process by which natural
selection acts on a trait with a large number of genetic loci, leading to changes in allele frequencies
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at many sites across the genome. Among these studies, the
most commonly inferred complex traits are pigmentation and
standing height.

ANCIENT DNA AND COMPLEX TRAIT
GENOMICS

Skin, hair and eye pigmentation are among the least polygenic
complex traits; though more than a hundred pigmentation-
associated loci have been found, their heritability is largely
dominated by large-effect common SNPs (Sulem et al., 2007;
Eiberg et al., 2008; Han et al., 2008; Sturm et al., 2008; Hider
et al., 2013; Liu et al., 2015; O’Connor et al., 2019). Additionally,
several of these variants have signatures of past selective sweeps
detectable in present-day genomes (Lao et al., 2007; Sabeti
et al., 2007; Pickrell et al., 2009; Rocha, 2020). Nevertheless,
genomic analyses in previously understudied populations—like
sub-Saharan African groups—suggest that perhaps hundreds of
skin pigmentation alleles of small effect remain to be found
(Martin et al., 2017b). Similarly, recent studies have shown
that eye pigmentation is far more polygenic than previous
thought (Simcoe et al., 2021). Recent quantitative and molecular
genomic studies are painting an increasingly complex picture
of the architecture of these traits, featuring more considerable
roles for epistasis, pleiotropy and small-effect variants than
were previously assumed (for an extensive review of skin
pigmentation, see Quillen et al., 2019).

Recently, ancient DNA (aDNA) studies have attempted
to reconstruct pigmentation phenotypes in ancient human
populations, although the extent to which these predictions are
accurate remains uncertain. These reconstructions have been
mostly focused on ancient individuals from Western Eurasia, due
to the relatively higher abundance of SNP-phenotype associations
from European-centric studies, and the poor portability of
gene-trait associations to more distantly related populations
(Martin et al., 2017a, 2019). For example, Olalde et al. (2014)
queried pigmentation-associated SNPs in genomes of Mesolithic
hunter-gatherer remains from western and central Eurasia, and
suggested that the lighter skin colour characteristic of Europeans
today was not widely present in the continent before the
Neolithic. González-Fortes et al. (2017) analysed Mesolithic
and Eneolithic genomes from central Europe, and inferred
dark hair, brown eyes and dark skin pigmentation for the
Mesolithic individuals and dark hair, light eyes, and lighter
skin pigmentation for an Eneolithic individual. Similarly, Brace
et al. (2019) inferred pigmentation phenotypes for Mesolithic
and Neolithic genomes from western Europe, and reported that
the so-called “Cheddar Man,” a Mesolithic individual found
in England, had blue/green eyes and dark to black skin, in
contrast to later Neolithic individuals with dark to intermediate
skin pigmentation. Contrastingly, Günther et al. (2018) found
elevated frequencies of light skin pigmentation alleles in
individuals from the Scandinavian Mesolithic, suggestive of
early environmental adaptation to life at higher latitudes. These
reconstructions have also been carried out in individuals with
no skeletal remains; for example, Jensen et al. (2019) used
pigmentation-associated SNPs to infer the skin, hair and eye

colour of a female individual whose DNA was preserved in a piece
of birch tar “chewing gum.”

Some aDNA studies have sought to systematically investigate
how pigmentation-associated variants were introduced and
evolved in the European continent. Wilde et al. (2014) was one
of the first studies to provide aDNA-based evidence that skin,
hair, and eye pigmentation-associated alleles have been under
strong positive selection in Europe over the past 5,000 years. The
first large-scale population genomic studies (Allentoft et al., 2015;
Haak et al., 2015; Mathieson et al., 2015) showed that major effect
alleles associated with light eye colour likely rose in frequency
in Europe before alleles associated with light skin pigmentation.
More recently, Ju and Mathieson (2021) argued that the increase
in light skin pigmentation in Europeans was primarily driven
by strong selection at a small proportion of pigmentation-
associated loci with large effect sizes. When testing for polygenic
adaptation using an aggregation of all known pigmentation-
associated variants, they did not detect a statistically significant
signature of selection.

The other trait that has shared comparable prominence with
pigmentation in the aDNA literature is standing height. In
contrast to pigmentation, the genetic architecture of height
is highly polygenic (Yang et al., 2015; Bycroft et al., 2018;
Yengo et al., 2018). The heritability of this trait is dominated
by a large number of alleles with small effect sizes, and
shows strong evidence for negative selection in present-day
populations (O’Connor et al., 2019). Studies of the genetic
component of height in ancient populations have shown that
ancient West Eurasian populations were, on average, more highly
differentiated for this trait than present-day West Eurasian
populations, and more so than one would predict from genetic
drift alone (Mathieson et al., 2015; Martiniano et al., 2017; Cox
et al., 2019). Cox et al. (2019) compared predicted genetic changes
in height in ancient populations to inferred height changes
estimated via skeletal remains. They concluded that the changes
in inferred standing height were partially predicted by genetics;
with both measures remaining relatively constant between the
Mesolithic and Neolithic, and increasing between the Neolithic
and Bronze Age. A follow-up study by Cox et al. (2021) used
polygenic scores for height to show that PRS predicts 6.8% of
the observed variance in femur length in ancient skeletons, after
controlling for other variables. This is approximately one quarter
of the predictive accuracy of PRS in present-day populations;
which the authors attribute to the low-coverage aDNA data used
in their study. Contrastingly, Marciniak et al. (2021) used the
discordance between PRS for height, calculated from aDNA, and
height inferred from the corresponding skeletal remains, to argue
that Neolithic individuals were shorter than expected due to
either poorer nutrition or increased disease burden, relative to
hunter-gatherer populations.

However, the inference of standing height from skeletal
remains is not without its own problems. Both Cox et al. (2021)
and Marciniak et al. (2021) used the method developed by
Ruff et al. (2012) to estimate stature from skeletal remains.
Nevertheless, their respective estimates of stature—based on
femur length—varied between some of the individuals included
in both studies. Where multiple skeletal elements were available
for ancient individuals, Marciniak et al. (2021) also produced
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separate stature estimates from femur, tibia, humerus and radius
length, which varied substantially within some individuals;
highlighting the uncertainty in estimates of stature from
skeletal remains.

INFERRING COMPLEX TRAITS IN
ARCHAIC HOMINIDS

The availability of genome sequences from archaic humans,
like Neanderthals and Denisovans, has greatly expanded our
understanding of their demographic history and interactions
with modern humans (Meyer et al., 2012; Prüfer et al., 2014,
2017). However, little is known about complex traits in archaic
humans, besides what can be inferred directly from their skeletal
remains. In the case of Denisovans, such remains are presently
limited to a few teeth, a mandible and other small bone fragments,
making it difficult to make confident inferences of their biology
(Meyer et al., 2012; Sawyer et al., 2015; Slon et al., 2017; Chen
et al., 2019). However, past admixture events with archaic human
groups have left a genetic legacy in present-day people, providing
a possible inroad to study archaic human biology (Sankararaman
et al., 2012). Today, around 2% of the genomes of non-African
humans are known to be descended from Neandertals, and an
additional ∼5% of the genomes of people in Oceania can be
traced back to Denisovans (Sankararaman et al., 2014, 2016;
Vernot and Akey, 2014; Vernot et al., 2016).

Knowledge about admixture between archaic and modern
humans has led to a recent flurry of exploratory studies
concerning the potential impact of archaic variants on complex
traits in present-day populations. Various approaches have been
used to identify introgressed archaic DNA putatively under
positive selection in modern humans (Khrameeva et al., 2014;
Sankararaman et al., 2014, 2016; Vernot and Akey, 2014; Perry
et al., 2015; Gittelman et al., 2016; Vernot et al., 2016; Racimo
et al., 2017b). Overall, these studies have shown that archaic DNA
is linked to pathways related to metabolism, as well as skin and
hair morphology. Via association studies, Neanderthal variants
in specific loci have been shown to influence several disease and
immune traits, as well as skin and hair colour, behavioural traits,
skull shape, pain perception and reproduction (Sankararaman
et al., 2014; Dannemann et al., 2016; Sams et al., 2016; Gunz et al.,
2019; Skov et al., 2020; Zeberg and Pääbo, 2020, 2021; Zeberg
et al., 2020a,b).

Additionally, comparisons between the combined phenotypic
effects of Neandertal variants and frequency-matched non-
archaic variants have revealed that Neanderthal DNA is over-
proportionally associated with neurological and behavioural
phenotypes, as well as viral immune responses and type 2
diabetes (Quach et al., 2016; Simonti et al., 2016; Dannemann
and Kelso, 2017; Dannemann, 2021). These groups of phenotypes
may be linked to environmental factors, such as ultraviolet light
exposure, pathogen prevalence and climate, that substantially
differed between Africa and Eurasia. It has been suggested
that the over-proportional contribution of Neandertal DNA to
immunity and behavioural traits in present-day humans might
be a reflection of adaptive processes in Neandertals to these
environmental differences. In comparison, much less is known

about the impact of Denisovan DNA on complex traits, because
limited phenotypic data are presently available from present-
day populations. However, individual Denisovan-like haplotypes
found in high frequencies in some human populations have
been associated with high altitude adaptation and fat metabolism
(Huerta-Sánchez et al., 2014; Racimo et al., 2017a).

One key limitation to these approaches is that only about
40–50% of the Neandertal genome can be recovered in present-
day humans, and therefore discoverable in such analyses
(Sankararaman et al., 2014; Vernot and Akey, 2014; Skov et al.,
2020). Furthermore, the majority of tested cohorts used for
such studies are of European ancestry, which limits analyses to
archaic variants present in these populations. This is particularly
notable since Neandertal phenotype associations in European
and Asian populations have been shown to contain population-
specific archaic variants (Dannemann, 2021). It has also been
shown that negative selection, soon after admixture, has played
an important role in removing some of the missing segments of
archaic DNA (Harris and Nielsen, 2016; Juric et al., 2016; Petr
et al., 2019). It is therefore possible that missing segments of
archaic DNA had strong phenotypic effects. For archaic DNA that
does persist in present-day populations, much of it is segregating
at low allele frequencies, making it difficult to confidently link it
to phenotypic effects.

Furthermore, it remains questionable how transferable any
phenotypic associations are between modern and archaic
humans, given the difficulties of transferring associations
between present-day populations (Martin et al., 2017a; Duncan
et al., 2019). All of the above studies have used gene-trait
association information from analyses carried out in modern
humans. It remains undetermined if the phenotypic effects of
archaic DNA in present-day populations are a reliable proxy for
phenotypic effects in archaic humans themselves.

Recent studies have also aimed to predict the phenotypic
effects of archaic DNA without relying on introgression in
present-day populations (see Figure 1). Colbran et al. (2019)
used a machine learning algorithm, trained on genetic variation
in present-day humans, to infer putative regulatory effects
on variation present only in Neandertal genomes. Gokhman
et al. (2020a,b) used aDNA damage patterns to infer a DNA
methylation map of the Denisovan genome, and linked the
inferred regulatory patterns to loss-of-function phenotypes,
in order to predict their skeletal morphology and vocal
and facial anatomy. It remains to be seen how successful
these approaches are at predicting archaic human phenotypes.
A possible inroad into validation could rest on functional assays
for testing and evaluating the phenotypic impact of archaic DNA
(Dannemann et al., 2020; Dannemann and Gallego Romero,
2021; Trujillo et al., 2021).

THE CHALLENGE OF DETECTING
POLYGENIC ADAPTATION IN ANCIENT
POPULATIONS

Perhaps the most fascinating question about the evolution
of complex traits in humans is whether they were subject
to natural selection. Current methods to detect polygenic
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FIGURE 1 | (A) Schematic illustration of the prediction method used by Gokhman et al. (2020a) to infer archaic human phenotypes based on methylation maps.
(B) Schematic illustration of the method by Colbran et al. (2019) to predict regulatory effects of non-introgressed archaic human DNA.

adaptation have mainly focused on present-day populations;
using either differences between populations, or variation within
them, to identify polygenic adaptation. For example, Berg and
Coop (2014) developed a method that identifies over-dispersion
of genetic values among populations, compared to a null
distribution expected under a model of drift; which Racimo
et al. (2018) extended to work with admixture graphs. Field
et al. (2016) used the distribution of singletons around trait-
associated SNPs, and Uricchio et al. (2019) used the joint
distribution of variant effect sizes and derived allele frequencies
(DAF). Whichever method is used, significant caveats must
be addressed before attributing differences in such scores to
polygenic adaptation (Novembre and Barton, 2018; Coop, 2019;
Rosenberg et al., 2019). Most of these issues affect both present-
day and ancient populations, but many are especially problematic
when working with ancient genomes.

A prominently reported example of polygenic adaptation
is that of selection for increasing height across a north-south
gradient in Europe (Turchin et al., 2012; Berg and Coop, 2014;
Robinson et al., 2015; Zoledziewska et al., 2015; Guo et al.,
2018; Racimo et al., 2018; Berg et al., 2019b; Chen et al., 2020).
Most studies which described this signal based their analyses
on effect size estimates from the GIANT consortium, a GWAS
meta-analysis encompassing 79 separate studies (Wood et al.,
2014). Concerningly, follow-up work using the larger and more
homogeneous UK Biobank cohort failed to replicate the signal
of polygenic adaptation for height (Berg et al., 2019a; Sohail
et al., 2019). A recent systematic comparison across a range
of GWAS cohorts has further shown that the results of these
tests are highly dependent on the ancestry composition of the

cohort used to obtain the effect size estimates (Refoyo-Martínez
et al., 2021). These analyses showed that residual stratification in
GWAS meta- and mega-analyses can result in inflated effect size
estimates that, in turn, can lead to spurious signals of selection.
The effects of this residual stratification may be exacerbated for
ancient populations with non-uniform relatedness to present-day
GWAS cohorts (see Figure 2).

Residual stratification is a major concern for GWAS, even
among a relatively homogeneous cohort like the UK Biobank.
Zaidi and Mathieson (2020) used simulations to show that
fine-scale recent demography can confound GWAS which has
been corrected for stratification using common variants only.
Failure to adequately correct for localised population structure
can lead to spurious associations between a trait and low-
frequency variants that happen to be common in areas of
atypical environmental effect. This finding is problematic as most
GWAS have been conducted on either SNP array data, or on
genomes imputed from SNP array data (Visscher et al., 2017).
For example, GWAS summary statistics from the UK Biobank
are based on imputed genomes (Bycroft et al., 2018). A limitation
of this approach is that the accuracy of imputed genotypes are
inversely correlated with the minor allele frequencies (MAF) of
variants in the reference panel. Additionally, rare variants that
are not segregating in the reference panel cannot be imputed
at all. As a result, imputed genomes are specifically depleted
in the rare variants needed to adjust for stratification from
recent demography.

For large sample sizes, low-frequency variants (MAF ≤ 0.05)
make a significant contribution to the heritability of many
complex traits (Mancuso et al., 2016; Hartman et al., 2019), but
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FIGURE 2 | Potential effect of population stratification in GWAS. Two ancestral
populations, X and Y, have contributed differing ancestry proportions to
present-day individuals. Due to non-genetic environmental effects, individuals
with a larger proportion of population Y ancestry have higher values for a
measured trait. This may lead to biased GWAS effect size estimates, which
associate population Y ancestry with increasing values of the trait. When used
to make inferences about the past, this would lead to systematically inflated
polygenic scores for this trait in samples from population Y.

the role of rare variants is less well established. Both empirical
and simulation studies have shown that for traits under either
negative or stabilising selection, there is an inverse correlation
between effect size and MAF (Simons et al., 2018; Schoech et al.,
2019; Durvasula and Lohmueller, 2021). For the many traits
thought to be under negative selection (O’Connor et al., 2019),
large effect variants that are rare in present-day populations may
have had higher allele frequencies in ancient populations due to
selection. This makes polygenic scores for ancient individuals
especially sensitive to bias from GWAS effect size estimates

ascertained from common variants only. Conversely, where
present-day rare variants with large-effect sizes are known, higher
frequencies in ancient populations would result in more accurate
PRS predictions, due to their larger contribution to the overall
genetic variance.

A recent analysis indicated that a substantial component of
the unidentified heritability for anthropometric traits like height
and BMI lies within large effect rare variants, some with MAF as
low as 0.01% (Wainschtein et al., 2019). However, using GWAS
to recover variant associations for SNPs as rare as this would
require hundreds of thousands of whole-genomes, substantially
exceeding the largest whole-genome GWAS published to date
(e.g., Taliun et al., 2021). The consequence of this missing
heritability may be particularly acute for trait prediction in
ancient samples, as large-effect rare variants which contributed
to variability in the past may no longer be segregating in
present-day populations. Indeed, simulations suggest that the
genetic architecture of complex traits is highly specific to each
population, and that negative selection enriches for private
variants, which contribute to a substantial component of the
heritability of each trait (Durvasula and Lohmueller, 2021).
Empirical studies have also identified that functionally important
regions, including conserved and regulatory regions, are enriched
for population-specific effect sizes, and that this pattern may have
been driven by directional selection (Shi et al., 2021).

In addition to these issues, the majority of SNP associations
inferred from GWAS are likely not the causal alleles. Instead,
GWAS predominantly identifies SNPs which are in high linkage
disequilibrium (LD) with causal alleles. Most GWAS also assume
a model in which all complex trait heritability is additive and
well tagged by SNPs segregating in the cohort; although some
GWAS do include non-additive models (e.g., Guindo-Martínez
et al., 2021). Consequently, effect size estimates are contingent on
the LD structure of the cohort in which they were ascertained.
Due to recombination, this LD structure decays through time,
and is reshaped by the population history in which selection
processes are embedded.

Over the last decade, paleogenomic studies have repeatedly
demonstrated that the evolutionary histories of human
populations are characterized by recurrent episodes of
divergence, expansion, migration and admixture (reviewed
in Pickrell and Reich, 2014; Skoglund and Mathieson, 2018).
For example, in West Eurasia, four major ancestry groups have
contributed to the majority of present-day genetic variation
(Jones et al., 2015). As such, the LD structure of present-day
British individuals—which underpins effect size estimates
from the UK Biobank—was substantially different prior to the
Bronze Age, when the most recent of these major admixture
episodes occurred (Allentoft et al., 2015; Haak et al., 2015). To
improve ancestral trait prediction, new methods which explicitly
model the haplotype structure of both ancient populations and
present-day GWAS cohorts are needed.

In aggregate, these issues combine to substantially diminish
the portability of polygenic scores between populations. Indeed,
in present-day populations, the predictive accuracy of PRS
degrades approximately linearly with increasing genetic distance
from the cohort used to ascertain the GWAS (Scutari et al., 2016;
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Martin et al., 2017a, 2019; Kim et al., 2018; Bitarello and
Mathieson, 2020; Mostafavi et al., 2020; Majara et al., 2021).
Even within a single ancestry group, the correlation between PRS
calculated from different discovery GWAS shows considerable
variance (Schultz et al., 2021). However, the extent to which the
issue of PRS portability also affects ancient populations, which are
either partially or directly ancestral to the GWAS cohort, are yet
to be determined.

In cases where a robust signal of polygenic adaptation can
be identified, care must still be taken when interpreting which
trait was actually subject to directional selection. Due to the
highly polygenic nature of most complex traits, there is a high
rate of genetic correlation between phenotypes (Shi et al., 2017;
Ning et al., 2020). This can occur when correlated traits share
causal alleles (i.e., pleiotropy) or where casual alleles are in
high LD with each other. Consequently, selection acting on
one specific trait can generate a spurious signal of polygenic
adaptation for multiple genetically correlated traits. Recently,
Stern et al. (2021) developed a method for conditional testing of
polygenic adaptation to address this problem. When considered
in a joint test, previously identified signals of selection for
educational attainment and hair colour in British individuals
were significantly attenuated by the signal of selection for skin
pigmentation (Stern et al., 2021). However, this approach can
only untangle genetic correlations between traits which have
been measured in GWAS cohorts, leaving open the possibility
that selection is acting on an unobserved yet correlated trait.
Indeed, many GWAS traits are either coarse proxy measures
with substantial socio-economic confounding (e.g., educational
attainment), or narrow physiological measurements (e.g., levels
of potassium in urine); neither of which are likely to have
been direct targets of polygenic adaptation. In practice, the
truly adaptive phenotype is rarely directly observable, and all
measured traits are genetically correlated proxies at various
levels of abstraction.

LIMITATIONS AND CAVEATS SPECIFIC
TO ANCIENT DNA

In addition to all of the general issues and caveats discussed
above, working with ancient DNA also involves a range of issues
that are particular to the degraded nature of the data; such as
post-mortem damage, generally low average sequence coverage,
short fragment lengths, reference bias, and microbial and human
contamination (Gilbert et al., 2005; Dabney et al., 2013; Renaud
et al., 2019; Peyrégne and Prüfer, 2020). All of these factors affect
our ability to correctly infer ancient genotypes; and therefore, to
construct accurate polygenic scores or infer polygenic adaptation.

A common strategy for dealing with the low endogenous
fraction of aDNA libraries is to use in-solution hybridisation
capture to retrieve specific loci, or a set of predetermined
SNPs (Avila-Arcos et al., 2011; Cruz-Dávalos et al., 2017). This
approach has substantial advantages in on-target efficiency,
at the cost of ascertainment bias. For example, in the case
of the popular “1240k” capture array, targeted SNPs were
predominantly ascertained in present-day individuals (Fu et al.,

2015; Haak et al., 2015). Consequently, an unknown fraction
of the true ancestral variation is lost during capture. This is
further exacerbated by the generally low coverage of most aDNA
libraries; for which a common practice is to draw a read at
random along each position in the genome, to infer “pseudo-
haploid” genotypes. When used to compute polygenic scores for
ancient populations, only a subset of GWAS variants can be
used, which substantially reduces predictive accuracy. Cox et al.
(2021) estimate that the combined effect of low-coverage and
pseudo-haploid genotypes reduced their predictive accuracy by
approximately 75%, when compared to present-day data.

An alternative approach is to perform low-coverage
shotgun sequencing, followed by imputation, using a large
reference panel (Ausmees et al., 2019; Hui et al., 2020).
This has the dual advantages of reducing ascertainment
bias and increasing the number of GWAS variants available
to calculate polygenic scores. However, imputation itself
introduces a new source of bias, particularly if the reference
panel is not representative of the ancestries found in the
low-coverage samples. Nevertheless, the level of imputation
bias can be empirically estimated by downsampling high-
coverage aDNA libraries and testing imputed genotypes against
direct observations (e.g., Margaryan et al., 2020). Where a
suitable reference panel exists, recently developed methods for
imputation from low-coverage sequencing data (Davies et al.,
2021; Rubinacci et al., 2021) show great promise for ancient
DNA studies (e.g., Clemente et al., 2021).

Even under ideal conditions, in which exact polygenic
scores for ancient populations are known a priori, interpreting
differences in mean PRS between groups still requires careful
consideration. For many polygenic traits, the variance between
population means is lower than the variance within populations.
As a result, differences in population level polygenic scores
have limited predictive value for inferring the physiology or
behaviour of individual people in the past. Genetics plays only
a partial role in shaping phenotypic diversity, and differences
in polygenic scores between individuals, or populations, does
not automatically translate into differences in the expressed
phenotype. Indeed, for some complex traits, an inverse
correlation has been observed; in which polygenic scores have
been steadily decreasing over recent decades, whilst the measured
phenotype has been increasing [e.g., educational attainment
(Kong et al., 2017; Abdellaoui et al., 2019)]. This highlights the
substantial role of environmental variation in shaping phenotypic
diversity. For ancient populations, we must also consider the wide
variation in culture, diet, health, social organisation and climate
which will have mediated any potential differences in population
level polygenic scores. Furthermore, ancient populations are
likely to have experienced a heterogeneous range of selective
pressures. What we observe in present-day populations is not
the result of a single directional process, but instead represents
a mosaic of haplotypes which were shaped by different fitness
landscapes, at varying levels of temporal depth.

Lastly, in most cases, we cannot directly observe phenotypes
in the ancient individuals whose genomes have been studied.
This greatly limits our ability to compare the genetically
predicted value of a trait to its expressed phenotype, raising the
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question: are predictions of most ancient phenotypes inherently
unverifiable? For well-preserved traits, like standing height, there
is considerable variability in estimates produced from different
skeletal elements and between different studies (Cox et al., 2021;
Marciniak et al., 2021). For traits that do not preserve well in
the archaeological record, the prospects of validation are much
poorer. These include not only soft tissue measurements (e.g.,
pigmentation or haemoglobin counts), but also personality and
mental health traits that require an individual to be alive to be
properly measured or diagnosed. Furthermore, some phenotypes
are non-sensical outside of a modern context. Whilst it is possible
to build a polygenic score for “time spent watching television”
(UK Biobank code: 1070), it is not clear how to interpret any
potential differences one might find between Mesolithic hunter-
gatherers and Neolithic farmers. This problem extends more
generally to all phenotypes which have strong gene–environment
interactions, in which the expression of the trait may have been
substantively different in the past due to diverse environmental
conditions (e.g., the interplay between BMI and diet).

PROSPECTS FOR THE FUTURE

The growth in the number of ancient genomes currently shows
little signs of slowing, nor does the increasing availability of
gene-trait association data. Predictably, efforts to perform trait
predictions in ancient individuals will also continue to grow. We
believe that increased emphasis on limitations and caveats in
the way we study and communicate these findings will enable
a better understanding of what we can and cannot predict with
existing models.

As a working assumption, polygenic scores from any single
GWAS should be considered unreliable in an ancient trait
reconstruction analysis. Researchers should only trust observed
signals of trait evolution if those patterns hold across multiple
independent GWAS (e.g., Chen et al., 2020), and preferably where
each of these GWAS has been performed on a large cohort with
homogeneous ancestry (Refoyo-Martínez et al., 2021).

We also need to better understand how well GWAS effect size
estimates, ascertained in present-day populations, generalise to
ancient populations that are only partially ancestral to the GWAS
cohort. One approach to this would be to use simulations, under
a plausible demographic scenario, to explore how the predictive
accuracy of PRS degrades through time and across the boundaries
of major ancestral migrations.

Traits that are preserved in the fossil record can provide a
degree of partial benchmarking (Cox et al., 2019, 2021); however,
the genetic components of variation are often only partially
explained by polygenic scores, and environmental components
almost always play large roles in expressed trait variation, often
dwarfing the contribution of polygenic scores. Furthermore, only
a few—largely osteological—traits are well preserved over time,
so these comparisons will always be limited in scope.

That being said, there are several promising avenues of
research that could serve to improve genetic trait prediction
in ancient populations. An existing approach to improve the
portability of PRS across ancestries is to prioritise variants with

predicted functional roles (Amariuta et al., 2020; Weissbrod
et al., 2020). This approach aims to improve PRS portability
in present-day populations by reducing the fraction of spurious
associations due to the cohort specific LD structure of the GWAS
reference panel. Another promising approach is to jointly model
PRS using GWAS summary statistics from multiple populations
(Márquez-Luna et al., 2017; Ruan et al., 2021; Turley et al.,
2021). By including information from genetically distant groups,
these methods can account for the variance in effect sizes
inferred between GWAS cohorts. This multi-ancestry approach
holds particular promise for ancient populations, as it may
help to identify variant associations which are segregating in
only a subset of present-day populations, but which were more
widespread in the past.

These studies also underscore the importance of studying
the ancestral haplotype backgrounds on which beneficial,
deleterious or neutral alleles spread. Recent studies have shown
that tests of selection on individual loci can gain power by
explicitly modelling patterns of ancestry across the genome
(Pierron et al., 2018; Hamid et al., 2021). Strong selective
signals might be masked by post-selection admixture processes,
but might become evident once the ancestry of the selected
haplotypes is explicitly modelled (Souilmi et al., 2020). This
phenomenon is also likely to affect polygenic adaptation studies,
particularly when the degree of correlation between genetic score
differences and differences in ancestral haplotype backgrounds
is expected to be high, for example, after admixture between
populations that have been evolving in isolation for long
periods of time.

A promising avenue of research is developing around new
methods for approximately inferring ancestral recombination
graphs (ARG) via the construction of tree sequences (Kelleher
et al., 2019; Speidel et al., 2019), which have recently
been extended to incorporate non-contemporaneous sampling
(Speidel et al., 2021; Wohns et al., 2021). An ARG is a
model which contains a detailed description of the genealogical
relationships in a set of samples, including the full history
of gene trees, ancestral haplotypes and recombination events
which relate the samples to each other at every site in the
genome (Griffiths and Marjoram, 1997). One potential advantage
of an ARG is that it may be used to help mitigate issues
with the portability of polygenic scores. By building an ARG
composed of both ancient samples and the present-day cohorts
used to ascertain the GWAS associations, one could potentially
determine which haplotypes are shared between the GWAS
cohort and the ancient populations; thereby reducing effect
size bias in populations that are only partially ancestral to the
GWAS cohort.

Another area in which ancient genomes offer unique
potential is in detecting polygenic adaptation in response
to environmental change. The time-series nature of ancient
genomes provides the potential for the incorporation of
paleoclimate reconstructions (e.g., Brown et al., 2018) into tests
of polygenic adaptation, in a manner that is not possible with
present-day data alone.

Ultimately, the ancient genomics community must come
to terms with the limitations of genetic hindcasting. Ancient
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genomes provide an unprecedented window into our past,
but this window is often blurry and distorted. There is still
a lot of information waiting to be obtained from ancient
DNA, and some of the blurriness might ultimately come
into focus as computational methods continue to improve.
But we must also accept the fact that many aspects of
past human biology—including physical characteristics and
disease susceptibility—might be irrevocably lost to the tides
of history. Ancient genome sequences are, after all, molecular
fossils: imperfect and degraded records of lives that ceased
to exist long ago.
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