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Abstract

Discriminant Analysis, via 3-fold cross validation.

Background: Gene-expression companion diagnostic tests, such as the Oncotype DX test, assess the risk of early
stage Estrogen receptor (ER) positive (+) breast cancers, and guide clinicians in the decision of whether or not to
use chemotherapy. However, these tests are typically expensive, time consuming, and tissue-destructive.

Methods: In this paper, we evaluate the ability of computer-extracted nuclear morphology features from routine
hematoxylin and eosin (H&E) stained images of 178 early stage ER+ breast cancer patients to predict corresponding
risk categories derived using the Oncotype DX test. A total of 216 features corresponding to the nuclear shape and
architecture categories from each of the pathologic images were extracted and four feature selection schemes: Ranksum,
Principal Component Analysis with Variable Importance on Projection (PCA-VIP), Maximum-Relevance, Minimum
Redundancy Mutual Information Difference (MRMR MID), and Maximum-Relevance, Minimum Redundancy - Mutual
Information Quotient (MRMR MIQ), were employed to identify the most discriminating features. These features were
employed to train 4 machine learning classifiers: Random Forest, Neural Network, Support Vector Machine, and Linear

Results: The four sets of risk categories, and the top Area Under the receiver operating characteristic Curve (AUC)
machine classifier performances were: 1) Low ODx and Low mBR grade vs. High ODx and High mBR grade (Low-Low vs.
High-High) (AUC =0.83), 2) Low ODx vs. High ODx (AUC = 0.72), 3) Low ODx vs. Intermediate and High ODx (AUC = 0.58),
and 4) Low and Intermediate ODx vs. High ODx (AUC = 0.65). Trained models were tested independent validation set of
53 cases which comprised of Low and High ODx risk, and demonstrated per-patient accuracies ranging from 75 to 86%.

Conclusion: Our results suggest that computerized image analysis of digitized H&E pathology images of early stage ER+
breast cancer might be able predict the corresponding Oncotype DX risk categories.

Background

Estrogen Receptor positive (ER+) breast cancers are a
common subtype of breast cancer that can frequently be
effectively treated using hormonal therapy if deemed to
have a low risk of recurrence. However, early stage ER+
breast cancers that are at high risk of recurrence are
typically treated with adjuvant chemotherapy in addition
to hormonal therapy. While chemotherapy increases
survival rates by reducing rates of recurrence in these
high risk subgroups [1], there may be significant side
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effects including loss of hair, taste, cognitive function,
and additional extensive medical care [2]. As such, it is
critical to be able to determine the level of recurrence
risk to plan treatment effectively so that the toxic side
effects of chemotherapy can be avoided in low-risk
patients.

Several methods of assessing tumor risk have been
developed, including gene assays such as the Oncotype
DX (ODx) Recurrence score, that stratify patients based
on their risk of cancer recurrence [3]. The ODx test is
a 21 gene assay that is currently employed for separating
breast cancer patients into low and high risk of recurrence
categories to help a clinician decide whether or not to pre-
scribe adjuvant chemotherapy for early stage ER+ breast
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cancers [4]. The recurrence score is derived from the
expression levels of multiple cancer-related genes, and
ranges from 0 to 100 [4]. Patients with an ODx score of
17 or below are in the low-risk category, patients with
ODx scores between 18 and 30 were considered intermedi-
ate risk, and scores 31 and above are in the high ODx risk
category [5]. Unfortunately, Oncotype DX and similar com-
panion diagnostic tests (e.g. Mammaprint [6], PAM50 [7])
tend to be expensive and time consuming due to the need
for physical shipping of tissue samples to proprietary testing
facilities. They are also tissue-destructive, making additional
evaluation of other biomarkers or genes difficult.

The modified Bloom Richardson (mBR) grading scale is
based on measuring nuclear grade (variation in nuclear
shape and size), mitotic count, and tubule density. Each of
these individual histologic primitives are assigned a score
from 1 to 3 and then added to generate the cumulative
mBR grade. Mina et al. [8] showed that mBR grade was
also highly correlated the expression of proliferation genes
used in the determination of ODx risk categories, and
Flanagan et al. [9] identified a positive correlation between
ODx risk category and nuclear grade when creating a
predictive model of ODx based off clinical variables.
Unfortunately, pathologic assessments of tumor grade are
known to suffer from inter-observer variability [10].

Quantitative histomorphometry (QH) refers to the use
of computer-aided image analysis of digitized pathology
images to “unlock” more revealing sub-visual attributes
about tumor morphology, which can possibly be corre-
lated with disease recurrence independent of other clinical
and pathologic features. These features might also poten-
tially reveal the underlying biology or molecular phenotype
of the tumor. For example, Buchelli et al. showed that the
number of mitoses identified via a deep learning algorithm
was predictive of the ODx risk categories [11].

Nuclear architecture is another image attribute that
has been implicated in the prediction of overall cancer
grade and cancer aggressiveness [12, 13]. Additionally,
variations in nuclear shape could reflect genetic instability
[14] and may impact the ability of cancer cells to travel
through tissue and create metastases that lead to recur-
rence [15]. A number of recent studies have shown the
association of QH features of nuclear architecture and
morphology with disease progression in oropharyngeal
cancers [16], cancer recurrence in lung cancers [17],
biochemical recurrence in prostate cancers [18, 19] and
overall breast cancer survival [20].

There is also evidence that the performance of QH
analysis improves when done separately on different cell
types [20]. In the context of distinguishing breast cancers
with different degrees of risk, it is likely that these cancers
are characterized by different phenotypical changes in
different cell types. Breast cancers are predominantly
carcinomas —cancers which are derived from epithelial
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cells [21]. In addition, there is evidence that stromal cells
react to tumor growth over time, and stromal phenotype
can reflect a given cancer’s genetic profile [22, 23]. For
instance in [20], Beck et al. showed the importance of
stromal morphology in predicting overall breast cancer
survival. It is therefore useful to consider the behavior
of epithelial and stromal cells as distinct groups when
profiling breast cancer.

In this paper we evaluate the nuclear morphologic features
to distinguish digitized images of H&E sections from early
stage ER+ breast cancers into ODx risk categories using
supervised machine learning classifiers. ODx risk categories
are comprised of three groups to reflect distinctions based
off 5 year survival: low, intermediate, and high risk [5, 24].
However, there is both a high degree of correlation between
ODx risk categories and mBR grade [8], as well as overlap
between the intermediate and low and intermediate and
high risk categories, making accurate separation of inter-
mediate cases from other risk categories difficult [25]. We
have therefore selected four categories to distinguish using
computer extracted nuclear morphology features: 1) Low
ODx and Low mBR grade vs. High ODx and High mBR
grade (Low-Low vs. High-High) to evaluate whether nuclear
morphology features were able to predict risk category
when both the difficult to classify intermediate cases
and differences between mBR grade and ODx risk category
are removed. 2) Low ODx vs. High ODx to evaluate the
predictive ability of the nuclear morphology features when
difficult to classify intermediate cases are removed. 3) Low
ODx vs. Intermediate and High ODx to evaluate the ability
of the nuclear morphology features to identify the low
ODx cases specifically. 4) Low and Intermediate ODx
vs. High ODx to evaluate the ability of the nuclear
morphology features to identify high ODx cases specifically.

The approach presented in this paper comprises the
following main steps (Fig. 1). First, H&E slides of surgical
or biopsy specimens of breast tissue are scanned and digi-
tized (Fig. 1.1). Second, nuclear segmentation is performed
using deep learning models trained on manual breast
nuclei annotations, followed by watershed separation to
resolve overlapping nuclei (Fig. 1.2). Third, a deep learning
model was used to separate epithelial from stromal
regions, helping us identify which nuclei were stromal and
which were epithelial (Fig. 1.3). Fourth, we extracted nuclear
architectural and shape features from the epithelial and
stromal regions separately (Fig. 1.4). Fifth, we perform
feature selection on the resulting features using four
different feature ranking schemes - Ranksum, PCA-VIP,
MRMR MID, and MRMR MIQ. The predictive perform-
ance of these features was evaluated using four different
supervised machine learning classifiers - random forest,
support vector machine (SVM), linear discriminant
analysis (LDA), and a neural network — via a 3-fold
cross validation scheme (Fig. 1.5). The classifiers were
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Fig. 1 lllustration of the methodology used to classify whole slide images into ODx risk categories. 1) Image patches are extracted at 40x from
regions within whole slides identified by pathologists as containing invasive cancer. 2) Nuclei detection is performed on these image patches and 3)
combined with a Deep Leamning epithelial/stromal separation model. 4) Nuclear architecture and shape features are extracted from the detected
epithelial and stromal nuclei separately. These features are combined with (5) a trained classification model in order predict the ODx risk category for
each patch. Classification results from the image patches for each patient are (6) combined in a patch-based-voting method to (7) yield the final risk
prediction on a patient level

evaluated by their ability to distinguish between the by pathologists at each of the participating institutions. 9
four different classification tasks presented above using  cases in which the mBR score and ODx risk category were
the area (AUC) under the Receiver Operating Charac-  at opposite extremes (4 low mBR and High ODx, and 5
teristic (ROC) curve, which plots the true positive rate  high mBR and low ODx) were excluded from this study.
against the false positive rate. Finally, classifiers are

trained to create per-patch risk category predictions, Nuclei segmentation

identifying the optimal threshold of what percentage of = We employed the approach described in [26] by Janowczyk
positively classified patches should result in a positive et al. for segmenting individual nuclei. Two Deep Learning
prediction based on training data, and then applied and  (DL) models were employed. The first model identified the
evaluated on testing folds to create a final prediction of likelihood that a given pixel was part of a nucleus and the

the ODx risk category for each patient (Fig. 1.6, 1.7). second model identified the likelihood that a pixel was part

of the epithelium or stroma. Both models were trained
Methods using manual segmentations of the tissue primitives of
Dataset description interest (i.e. nucleus or stroma or epithelium). DL was exe-

Our study comprised of 178 H&E stained whole tissue cuted using Caffe, a popular open-source DL framework
slides of ER+ Lymph node negative breast cancer patients  [27]. The DL models were trained using 32 x 32 sized
(Table 1). These whole slide breast cancer samples dataset ~ image patches on a Titan XGPU running CUDA 7.5, and a
was selected to include 1) early stage ER+ breast cancers, 9-layer convolutional neural network framework.

2) surgically resected tissue specimens, and 3) the avail- The nuclear segmentation model was trained on a
ability of a corresponding Oncotype DX risk score. These  dataset of 141 manually annotated ER+ breast cancer
slides were obtained from patients treated between 2004  tissue images, each patch sized 2000 x 2000 pixels and at
and 2009 at the Cancer Institute of New Jersey and the 40x magnification. The epithelium/stroma separation
University of Pennsylvania, and between 2008 and 2013 at  model was trained on a dataset of 236 ER+ breast cancer
Case Western Reserve University. Slides were locally digi-  tissue image patches, each sized at 1000 x 1000 pixels
tized at their originating institutions using Aperio, Leica, and at 10x magnification. Lower magnification in the
and Philips scanners. The Modified Bloom-Richardson epithelial/stromal separation model allowed for more con-
Grade for each of the pathologic specimens was determined  textual information to be included in the image patches
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Table 1 Dataset characteristics — demographic and cancer subtype distribution in each risk category for the cases from the 3

different institutions considered in this study

Parameters
Oncotype DX Risk Category Low (< 18) Intermediate (> 18, <30) High(> 30)
No. of Patients (N = 125) 66 (53%) 44 (35%) 15 (12%)
Age 20-77 25-70 45-70
Sex
Female 66 (53%) 43 (34%) 15 (12%)
Male 0 (0%) 1 (1%) 0 (0%)
Patient Ethnicity
White 33 (26%) 23 (18%) 5 (5%)
African American 3 (2%) 2 (2%) 2 (2%)
Asian 1 (1%) 2 (2%) 1 (1%)
Unknown 22 (18%) 17 (14%) 7(6%)
PR Status
Positive 64 (51%) 39 (31%) 10 (8%)
Negative 2 (2%) 3 (2%) 5 (4%)
Unknown 0 (0%) 2 (2%) 0 (0%)
HER2 Status
Positive 0 (0%) 1(1%) 0 (0%)
Negative 66 (53%) 42 (34%) 15 (12%)
Unknown 0 (0%) 1 (1%) 0 (0%)
Histologic Tumor Grade
Low (4, 5) 10 (8%) 14 (11%) 0 (0%)
Moderate (6, 7) 48 (38%) 24 (19%) 4 (3%)
High (8, 9) 8 (6%) 6 (5%) 11 (9%)
Tumor Type
Ductal 53 (42%) 37 (30%) 14 (11%)
Ductal With Lobular Features 9 (7%) 3 (2%) 1 (1%)
Ductal with Mucinous Features 1 (1%) 2 (2%) 0 (0%)
Mixed 3 (2%) 2 (2%) 0 (0%)

during model training, improving accuracy and speed. This
patch-based approach allowed for multiple identically-
sized image patches to be used, increasing the size of the
training set. In addition, the patch size was selected to use
the field of view identified as being optimal for extracting
nuclear architecture features of the tumor [28].

Feature extraction

A total of 216 nuclear features were extracted from epi-
thelial and stromal nuclei separately, resulting in a total
of 432 features per patch. These features consisted of
architecture and shape features.

Architectural features were obtained by performing
quantitative analysis of nuclear graphs, such as Delaunay
Triangles, Voronoi Diagrams, Minimum Spanning Trees
(MST), and Cell Cluster Graphs (CCG) [29] (Fig. 2).
These nuclear graphs were constructed using the individual

nuclei as the vertices of the graph. The choice of vertex
connectivity determines the type of nuclear graph (i.e.
Delaunay, Voronoi, MST, CCG) constructed. Features
extracted from the graphs included changes in the lengths
of edges and distance between nearest vertices. Cellular
disorder can be measured using features derived from Cell
Orientation Graphs [19]. Shape features included Invariant
Moment, Fourier Descriptor, and Length/Width ratios. A
comprehensive enumeration of all the image features
extracted is presented in the Additional file 1.

Feature ranking

Feature ranking was used to identify the most relevant
image features for predicting the corresponding ODx
risk category. Features were ranked in order of highest
relevance to the classification problem. The most relevant
features identified were subsequently used in conjunction
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with machine learning classifiers. A number of popular fea-
ture ranking methods were evaluated including Wilcoxon
Ranksum [30], PCA-VIP [31], and Maximum-Relevance
Minimum-Redundancy (MRMR) [32] with two variants —
Mutual Information Difference, and Mutual Information
Quotient (MRMR-MID and MRMR-MIQ) [33]. Each of
these feature ranking methods takes a slightly different
approach to identifying the most relevant features, and
simultaneously suppressing features that are highly
correlated with each other. The Ranksum method identi-
fies feature relevance to classification without explicitly
considering the correlation between highly-ranked features
[30]. PCA-VIP uses a combination criteria of both how
each of the principle component vectors relate to the
outcome to be predicted, and which features most highly
contribute to those principle component vectors (effect-
ively measuring to what extent a given feature provides
unique information in a dataset) [31]. MRMR-MID and
MRMR-MIQ both use maximal relevance criteria which
use the mean mutual information values between features
and the relevant output class, while minimizing the redun-
dancy (mutual information between any feature and the
other features in the dataset) [32].

Classifier construction

A total of four different classifiers was tested in conjunction
with each of the four different feature selection methods.
The classifiers employed included a bagged C4.5 Random
Forest [34], a ten-node four-layer Neural Network [35], a 3
kernel Support Vector Machine [36], and a pseudolinear
discriminant Linear Discriminant Analysis [37]. Machine
learning classifiers were trained using 100 iterations of
randomly initialized 3-fold cross-validation. 3-fold cross-
validation was employed to divide the entire dataset of
image patches into three equal groups by patient ID, thus
ensuring that patches from each patient were not

simultaneously present in the training and hold-out
groups. Two of these groups were used for model training,
while the third group was used to test the trained
model. Machine learning classifiers were trained on a per-
patch basis. This allowed for a simple patch-based voting
method, in which the classification of the patient as being
in the low or high-risk category was based on if the number
of class labels predicted for a given class surpassed a patch
percentage threshold. The optimal threshold was deter-
mined from the training data in each iteration. This
method can also be used to classify individual patches
spatially in an H&E slide, providing a spatially distributed
assessment of cancer aggression across a given sample
(Fig. 3).

Experiments
The four experiments were as follows

1) Low ODx and Low mBR grade vs. High ODx and
High mBR grade (Low-Low vs. High-High). This
experiment was used to look at the cases reflecting
the extremes in terms of tumor morphology and
ODx risk. While grade and ODx risk scores are
correlated for the most part [8], in this experiment we
chose to ignore conflicting cases (i.e. cases with a low
mBR grade but a high ODx score and vice-versa).

2) Low ODx vs. High ODx. This experiment looks at
cases of high distinction in terms of ODx risk
category, but does not exclude cases with
conflicting grade categories.

3) Low ODx vs. Intermediate and High ODx. This is
the hypothesis that is closest to the question a
clinician is interested in answering: identifying cases
that are low ODx risk score from all others so that
low ODx risk patients can avoid aggressive
chemotherapies.
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Blue squares are predicted to be High ODx

Fig. 3 Example of the Low-Low vs. High-High random forest classifier using ranksum feature selection applied to patches from whole slide image.
Machine classification uses the top ranked epithelial and stromal features. Green squares indicate patches that are predicted to be Low ODx while
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4) Low and Intermediate ODx vs. High ODx. This
experiment considers the possibility that high ODx
risk patients are histologically distinct from both
other ODx risk categories.

We also quantitatively assessed the performance of
each of four different feature ranking methods over stromal
and epithelial features in conjunction with four different
machine learning classification schemes to determine
which combination of classification and feature ranking
approaches resulted in the highest per-patient patch voting
accuracy for each of the four experiments. Per-patient
patch voting simply means that the classifier was applied
to each patch extracted from a patient, thus generating an
ODx risk category prediction for each patch. A simple
majority of the per-patch risk category predictions for each
patient is then used to determine the predicted patient
ODx risk category. The per-patient patch voting accuracy
is defined as the percentage of patients whose ODx risk
category was correctly predicted using this method.

Feature evaluation via supervised classification

For each of the 4 classification experiments described above,
we identified 1) the most highly ranked and predictive
epithelial and stromal nuclear morphologic features which
were evaluated via violin plots (Figs. 4), and 2) classification
accuracy for the machine learning classifiers in conjunction
with the top ranked features in the form of AUC.

Violin plots illustrate the distribution of normalized
feature values for the top performing features between
the two risk categories. Thus, high degrees of separation
between the two distributions indicate a high level of
discrimination from that feature. AUC curves indicate

the true positive rate as a function of the false positive rate
at varying confidence thresholds. The higher the area
under the curve (indicated by the curve extending into the
upper left quadrant), the more frequently the classifier is
able to correctly identify the class, and the less frequently
it is to falsely classify a case as positive. For comparison, a
diagonal line extending from the bottom left to the upper
right corner would indicate an AUC of 0.5, which is
considered to be the equivalent of guessing.

In order to demonstrate the significance of epithelial/
stromal separation, we ran two sets of features using the
optimized machine learning classifier and feature ranking
algorithm. The two feature sets were: 1) nuclei features
extracted from all nuclei, 2) nuclei features extracted from
epithelial and stromal nuclei separately. The utility of
separating epithelial and stromal nuclei prior to feature
extraction was measured by comparing the AUCs between
models trained from features with no epithelial/stromal
separation, and epithelial stromal separation prior to fea-
ture extraction.

Evaluation of models on external validation set

In order to fully assess the effectiveness of the models
generated, the models with the highest performance were
used on an external validation set. Models were trained
over the entire primary cohort before being applied without
any retraining to the external validation set.

Results
The results for the four primary experiments are as follows

1) Low ODx and Low mBR grade vs. High ODx and
High mBR grade (Low-Low vs. High-High) (Fig. 5,



Whitney et al. BMC Cancer (2018) 18:610 Page 7 of 15

EP: CCG: Clustering Coefficient E . ST: Shape: Median Area Ratio
al
g2 3
< 5 ?
R0 2
. " T g of
Low Low vs. High High £ 5
c c
-2 2l
4 -4 .
Low-Low High-High Low-Low High-High
Imaging Features Imaging Features

ST: Shape: Mean Perimeter Ratio
EP: CCG: standard deviation edge length

4 z 4

Low vs. High O ‘ ‘ 0
- A

N 2

N W

normalized value

normalized value

" -3
Low High -
Imaging Features Low High
Imaging Features
EP:BArch: Disorder of Nearest Neighbors in a 40 Pixel Radius ST: Shape: Mean Invariant Moment 2
4] |
4t | 3t
2 1
3 3 2|
> 2r >
3 3
Low vs. Intermediate & High : , 2 o}
E £ ?
2 S -1}
€
2 21
3t
Low Intermediate andHigh Low Intermediate and High
Imaging Features
Imaging Features
& EP: CCG: standard deviation edge length \ ST: Shape: Median Invariant Moment 2
41 ) 6 \
E g
g 5| s 4
3" =
. . @
Low & Intermediatevs. High = g 2
2 0} 3
E° E
2 g0
2t
-2
|
4! . . 4 . .
LowandIntermediate  High Low and Intermediate  High
Imaging Features Imaging Features

Fig. 4 Feature Distributions for the top ranked epithelial (left) and stromal (right) features using PCA-VIP feature ranking for each experiment. Green lines
indicate the mean of each population, and red lines indicate the 25th and 75th percentiles of the distribution. Width of the plot indicates the relative
number of data points at each normalized feature value along the y-axis

top left). In this experiment, the top ranked epithelial perimeter, area ratios, and invariant moment (Table 3).
features were cell cluster graphs, and the top ranked The SVM classifier using the PCA-VIP feature ranking
stromal features were shape features related to nuclear scheme yielded the highest classification accuracy with
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2)

an AUC of 0.83, and a patch voting accuracy of
86% (Table 2). AUC results using the same
classifier and feature ranking methodology
improved from 0.71 to 0.83 with the inclusion of
stromal features (Table 4).

Low ODx vs. High ODx (Fig. 5, top right) (Fig. 5,
top right): The top ranked epithelial features were
the cell cluster graph and disorder of nearest
neighbors features, while the highest ranked
stromal features were similar to those identified for
the low-low vs. high-high discrimination problem,
namely perimeter ratio, area ratio, and invariant
moment (Table 3). The SVM classifier using the
PCA-VIP feature ranking scheme yielded a
classification AUC of 0.72, and a patch voting
accuracy of 76% (Table 2). AUC results using the
same classifier and feature ranking methodology
improved from 0.61 to 0.72 with the separation of
epithelial and stromal nuclei (Table 4).

3)

4)

Low ODx vs. Intermediate and High ODx (Fig. 5,
bottom left): The top ranked epithelial features
were primarily disorder and number of nearest
neighbors features, while the highest ranked
stromal features were primarily metrics regarding
the invariant moment (Table 3). The random forest
classifier using the PCA-VIP feature ranking scheme
yielded a classification AUC of 0.58, and a patch
voting accuracy of 64% (Table 2). AUC results using
the same classifier and feature ranking methodology
improved from 0.55 to 0.58 with the separation of
epithelial and stromal nuclei (Table 4).

Low and Intermediate ODx vs. High ODx (Fig. 5,
bottom right):: The top ranked epithelial features
were metrics concerning the mean and variation in
edge length associated with cell cluster graphs,
while the highest ranked stromal features were the
invariant moment and standard deviation of the
Fourier descriptor (Table 3). The SVM classifier
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Table 2 Classification accuracy metrics for each of the four experiments. From left to right: Low ODx Low mBR vs. High ODx Low
mBR, Low ODx vs. High ODx, Low ODx vs. Intermediate and High ODx, and Low and Intermediate ODx vs. High ODx. Data for each
experiment includes the AUC, best patch Voting Accuracy results, and the optimal feature ranking and classifier used to achieve the
optimized patch voting accuracy results. All experiments conducted with 3-fold cross-validation

Experiment LL vs. HH Lvs. H L vs. Int.and H L and Int. vs. H
Number of Patients 37 75 125 1

AUC 0.81 0.69 0.58 0.6

AUC STDev 0.08 0.05 0.03 0.06

Patch Voting Accuracy 82% 80% 60% 86%

Best Feat. Ranking for Patch voting MRMR-MID PCA-VIP Ranksum MRMR-MID
Best Classifier for Patch voting LDA Random Forest Random Forest Random Forest

and PCA-VIP feature ranking scheme yielded an
AUC of 0.65, and a patch voting accuracy of 74%
(Table 2). AUC results using the same classifier and
feature ranking methodology improved from 0.55 to
0.65 with the separation of epithelial and stromal

nuclei (Table 4).

Of the epithelial features considered, the most discrimin-
ating features identified across all 4 classification problems
were those pertaining to epithelial architecture of nuclei
(Table 3). Of the stromal features, the most significant
tended to be those related to measuring changes in the
shape of the stromal nuclei. In each experiment, the

Table 3 Top three Epithelial and Stromal features for each of the four experiments: Low ODx and Low mBR grade vs. High ODx and
High mBR grade (Low-Low vs. High-High), Low ODx vs. High ODx, Low ODx vs. Intermediate and High ODx, and Low and Intermediate

ODx vs. High ODx

Experiments

Epithelial Features (EP)

Low Low vs. High High

Low vs. High

Low vs. Intermediate and High

Low and Intermediate vs. High

Low Low vs. High High

Low vs. High

Low vs. Intermediate and High

Low and Intermediate vs. High
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CCG
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Table 4 Improvements in classification accuracy based on features extracted from all nuclei together (No Ep/St. Sep.) vs. features
extracted from epithelial nuclei and stromal nuclei separately (Ep/St Sep.), ranked via the PCA-VIP feature selection scheme, and used
to train an SVM classifier. All AUC scores were generated using 3-fold cross validation

Experiment

No Ep/St Separation

Ep/St Separation

AUC Improvement

High-High vs. Low-Low

High vs. Low

Low vs. Intermediate and High
Low and Intermediate vs. High

Average

0.71
061
0.55
0.55
061

0.83
0.72
058
0.65
0.7

0.12
0.1
003
0.1

0.09

epithelial features were identified to be more significant in
separating the different risk categories compared to the
stromal nuclei features (Fig. 6). The classification AUC for
the machine learning classifier was highest for the problems
involving the extreme risk or grade categories (i.e. Low-Low
vs High-High and Low ODx vs High ODx). Unsurprisingly,
the AUC values were lower when the intermediate risk cat-
egory was also included (i.e. Low ODx vs. Intermediate and
High ODx and Low and Intermediate ODx vs. High ODx).

In addition, while each of the feature ranking methods
had very comparable performance, the PCA-VIP feature
ranking scheme yielded slightly better performance, with
a peak AUC of 0.71 using a Support Vector Machine
(Fig. 6).

Comparisons between the classification efficacy with
and without the use of epithelial/stromal separation across
the four experiments yielded an average improvement of
0.09 (Table 4).
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Validation results

We tested the results of the model on an external valid-
ation set. The model was trained using Ranksum feature
ranking and a Random forest classifier using 100 iterations
of 3-fold cross-validation to determine the top-performing
features. These features were then trained over the entire
training set before being evaluated on the validation set.
The validation set was obtained from the University of
Pennsylvania and contained 53 cases comprised of Low
and High ODx risk cases of primarily Low and High mBR
grade (Table 5). As described previously, the accuracy of
each model was determined using per-patient patch
voting, where pathologist selected ROIs were divided into
sub-ROI patches, and each patch was then classified as
belonging to either low or high risk using each of the four
models. The classification of the patient into high or low
risk was determined by the percentage of sample patches
predicted to belong to either category. Because it is
possible that the optimal percentage threshold for distin-
guishing between high and low risk may not be a simple
majority, the ideal percentage of patches that were need to
be identified as low for the patient to be categorized as
low ODx risk was determined from the training set. Per-
patient accuracies ranged between 76 and 85% across all
hypotheses evaluated. Improvements in classification ac-
curacy of low vs. high over low-low vs high-high may be
explained by the fact that the validation set was composed
exclusively of low and high ODx samples. In addition, the
larger number of samples which were low ODx as com-
pared to high ODx samples may explain why the model
trained to distinguish between low and intermediate vs
high had slightly improved performance over the model
trained to distinguish between low vs. intermediate and
high. It may also reflect the fact that the low and inter-
mediate risk patients are more alike from a histomorpho-
metric perspective compared to the intermediate and high
risk patients. The accuracies were highest using models
trained to distinguish between Low vs. High and Low vs
(Intermediate and High ODx) cases (Table 6).

Discussion

In this work, we evaluated the effectiveness of computer-
extracted measurements of size, shape, and architectural
features of epithelial and stromal nuclei in separating early

Table 5 Validation dataset characteristics — ODx and grade
distribution

Validation Set (N =53)

mBR Tumor Grade\ODx Low (< 18) Intermediate High (> 30)
Category (> 18, leg30)

Low (4, 5) 40 (75%) 0 (0%) 0 (0%)
Moderate (6, 7) 0 (0%) 0 (0%) 1(2%)

High (8, 9) 0(0%) 0 (0%) 12 (23%)
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Table 6 Validation dataset — Classification accuracy using
Ranksum feature ranking and a SVM classifier for each of four
classification separations

Ranksum - SVM & Classification Accuracy

Low-Low vs. High-High 76%
Low vs. High 79%
Low and Intermediate vs. High 85%
Low vs. Intermediate and High 84%

stage ER+ breast cancer histology samples into different
Oncotype DX determined risk categories. Nuclear feature
extraction was accomplished by 1) obtaining nuclear
segmentations with a deep learning algorithm, 2) using
deep learning epithelial/stromal separation of nuclei, and
3) extracting nuclei shape and architectural features from
those segmentations. Those features were then given to a
series of machine based classifiers and feature ranking
methods using 3-fold cross-validation to test the effective-
ness of each machine based classifier. These features were
then employed in the context of discriminating the following
4 different grade-ODx risk categories: 1) Low ODx and Low
mBR grade vs. High ODx and High mBR grade (Low-Low
vs. High-High). 2) Low ODx vs. High ODx. 3) Low ODx vs.
Intermediate and High ODx. 4) Low and Intermediate ODx
vs. High ODx.

We found that the best classifier accuracy (AUC = 0.83)
was obtained for the Low-Low vs. High-High classification
problem. Since the ODx risk category is strongly correlated
with tumor grade [9], by choosing to leave out conflicting
cases (i.e. where the grade and ODx risk categories are not
aligned), the Low-Low vs High-High categories represent
the extreme risk cases. The next highest accuracy was
obtained for the Low ODx vs. High ODx categories, where
all intermediate risk cases were left out. The best classifier
AUC obtained in this experiment (AUC = 0.72) was lower
compared to the AUC obtained for the Low-Low vs High-
High problem, possibly due to presence of 64 cases (55
Intermediate mBR and Low ODx, and 9 Intermediate
mBR High ODx) where the grade and ODx risk categories
did not align. This most likely adversely affected the train-
ing and the evaluation of the machine learning classifiers.
When evaluating the classifiers in distinguishing the Low
vs. Intermediate and High and the Low and Intermediate
vs. High ODx risk categories, the Low and Intermediate vs.
High ODx distinction had slightly improved performance
as compared to distinguishing Low vs. Intermediate and
High ODx risk categories. This may be due to the fact that
the intermediate cases identified by ODx were primarily
low risk cases [38].

Classifier models trained on Low vs. High and the Low
with Intermediate vs. High ODx cases yielded the highest
classification accuracy on the validation set. These results
appear to suggest that histomorphometrically the low
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ODx and intermediate ODx appeared more similar
compared to the high ODx cases. Clearly this will need
to be validated in additional, larger independent validation
studies, but if confirmed might suggest that a number of
the patients currently classified as intermediate risk by
Oncotype DX might actually be low risk and should be
classified as such.

Tumor grade is determined by tubule formation, nuclear
pleomorphism, and mitotic count [39]. These same
features are found to strongly correlate breast cancer
outcome [40]. The state of tubule formation is reflected
in features such as the ratio of tubule nuclei to total
nuclei [41]. The architecture of tubule formation is also
reflected in features used in the presented work, such
as Cell Cluster Graphs [29], Cell Orientation Entropy
[19], and Disorder of Nearest Neighbors [19]. Nuclear
pleomorphism may be reflected in features such as the
Mean Invariant Moment [42], and Area Ratio [43].
Thus, the features used in this work are implicitly
reflective of the histomorphometric measurements used
by pathologists to assess grade and breast cancer outcome.
However, the method presented can also identify complex
and sub-visual (i.e. information which is present, but not
easily discernable by a human, such as higher-order nuclei
architectural characteristics, or difficult to recognize chro-
matin patterns [44, 45]) relationships between quantitative
features and ODx categories that are difficult for patholo-
gists to visually identify. The Oncotype gene expression
test aims to capture changes in genetic expression in
genes that have been tied with specific cancer-related
traits [46]. For example, Ki-67, STK15, Survivin, Cyclin
Bl, and MYBL2 have all been associated with breast
cancer proliferation; Stromelysin 3 and Cathepsin L2 have
been associated with invasion; and ER, PR, Bcl2, and
SCUBE2 have been associated with responsiveness to
Estrogen [47]. Variations in these genes could potentially
lead to changes in visual presentation of the cancer, and
thus affect the features previously described. For example,
increases in Ki-67 activity resulting in increased unregu-
lated cell proliferation may increase the density of cell
nuclei, resulting in an increase in the Disorder of Nearest
Neighbors, or decreased distance between nuclei in Cell
Cluster Graphs. Tumor invasion resulting from activation
of Stromelysin 3 could result in either a loss of tissue
differentiation, or the presence of large epithelial nuclei
invading into the surrounding stroma [48]. These types of
phenotypic changes might be captured by architectural
features, or size and shape variation amongst stromal nuclei
features. For example, variation in stromal nuclei shape
could also be related to the connection between spindle-cell
and round stromal nuclei contact and breast cancer patient
survival discovered by Beck et al. [20].

Previous groups have been able to duplicate ODx
results using equations drawing from genetic expression
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and pathologist grading information, such as the Magee
Equation [9]. Using these methods, low grade and low ER
and PR (<150) can be correctly categorized as being low
ODx 89% of the time; and when ignoring intermediate
ODx cases, low and high ODx samples can be correctly
identified with concordance rates between 96.9 and 100%
[25, 49]. However, these methods have between 54.3 and
59.4% concordance when considering intermediate cases
as well as low and high, and require pathologist-generated
data [25]. When considering the intermediate risk categor-
ies, our classification AUC ranged from 0.58 and 0.6 which
appears to be in alignment with the findings in [25].

Several different groups have previously explored the use
of QH for predicting ODx risk categories. For example,
Basavanhally et al. was able to separate high from low
grade breast cancer patients, with top performing architec-
tural features such as Delaunay Triangle metrics, nuclei
density, and Voronoi Diagram architectural information
[12]. Romo-Bucheli et al. was able to separate high-high
from low-low cases with an AUC of 0.76 using a single
feature: the ratio of tubule nuclei to non-tubule nuclei [41].
This approach used Deep Learning to identify biologically
relevant structures (separating tubule nuclei from non-
tubule nuclei), while the presented approach used a much
larger number of nuclei-specific features for classification
purposes.

While related to these previous approaches [12], our
focus was on quantitatively evaluating the role of
computer extracted features of nuclear morphology in
the stroma and epithelium with the Oncotype Dx risk
categories. Additionally, unlike previous related studies
[13] our study looked at the most discriminating features
to distinguish not just the extreme risk categories (low
vs. high) but also looked at the ability of computer
extracted nuclear morphologic features to distinguish
the intermediate risk categories from the low and high
risk categories.

We do however acknowledge the several limitations of
this work. Firstly, the validation set used only included
high and low ODx cases, without any intermediate cases.
Secondly, the focus of this work was on finding features
that were associated with ODx risk categories and not
patient outcome. Oncotype DX is a companion diagnostic
test, and while the risk categories have been validated
against outcome, it is not perfectly correlated [50]. Unfor-
tunately, long-term disease recurrence or patient outcome
information was not available for the cases considered in
this study. We also did not conduct a detailed study of the
influence of staining and scanning variations on the
features identified as predictive and the influence of
these parameters on the subsequent classification results.
Finally, we focused solely on the role of nuclear morph-
ology in this work, there are clearly other features that are
known to have a prognostic role in early stage ER+ breast
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cancers, features relating to number and distribution of
tumor infiltrating lymphocytes, mitoses [11], and tubules
[41]. These features have shown to be independently
useful in determining ODx risk categories in ER+ breast
cancer, and would likely improve the classification results
when combined with the nuclear histomorphometric
features presented in this work. Another potential future
avenue is the integration of histomorphometric approaches
such as this with genomic based tests to determine if the
integration of morphologic and molecular measurements
enables more accurate risk assessment, especially for the
patients currently identified as intermediate risk. We hope
to address these limitations in future work.

Conclusions

In this work we evaluated the role of computer extracted
features relating to spatial architecture and shape within
the epithelium and stroma and showed that these features
could distinguish early stage ER+ breast cancers into
different ODx risk categories. Our results suggest that
with additional validation, these features could be used
to create an inexpensive, rapid, and nondestructive pre-
dictor of low and high ODx risk categories for early stage
ER+ breast cancer based off digitized images of H&E slides
alone.

Additional file
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