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performance of metabonomic 
serum analysis for diagnostics in 
paediatric tuberculosis
nicholas J. Andreas  1,2,7, Robindra Basu Roy1,5,6,7, Maria Gomez-Romero2,3,4, 
Verena Horneffer-van der Sluis2,3, Matthew R. Lewis2,3,4, Stephane S. M. camuzeaux  3,  
Beatriz Jiménez2,3,4, Joram M. posma2, Leopold tientcheu  5, Uzochukwu egere5, 
Abdou Sillah  5, Toyin togun5,6, Elaine Holmes2 & Beate Kampmann 1,5,6 ✉

We applied a metabonomic strategy to identify host biomarkers in serum to diagnose paediatric 
tuberculosis (TB) disease. 112 symptomatic children with presumptive TB were recruited in The Gambia 
and classified as bacteriologically-confirmed TB, clinically diagnosed TB, or other diseases. Sera were 
analysed using 1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). 
Multivariate data analysis was used to distinguish patients with TB from other diseases. Diagnostic 
accuracy was evaluated using Receiver Operating Characteristic (ROC) curves. Model performance was 
tested in a validation cohort of 36 children from the UK. Data acquired using 1H NMR demonstrated a 
sensitivity, specificity and Area Under the Curve (AUC) of 69% (95% confidence interval [CI], 56–73%), 
83% (95% CI, 73–93%), and 0.78 respectively, and correctly classified 20% of the validation cohort from 
the UK. The most discriminatory MS data showed a sensitivity of 67% (95% CI, 60–71%), specificity of 
86% (95% CI, 75–93%) and an AUC of 0.78, correctly classifying 83% of the validation cohort. Amongst 
children with presumptive TB, metabolic profiling of sera distinguished bacteriologically-confirmed and 
clinical tB from other diseases. this novel approach yielded a diagnostic performance for paediatric tB 
comparable to that of Xpert MTB/RIF and interferon gamma release assays.

Diagnosis of tuberculosis (TB) in children remains challenging, and developing better diagnostics is a priority1–3. 
Diagnostic tools based on detecting Mycobacterium tuberculosis (M.tb), including smear microscopy, culture, 
and Xpert MTB/RIF perform well in adults. However, they fail to diagnose two-thirds of children with suspected 
TB, due to the paucibacillary nature of paediatric disease2–6. Age, as well as the development of the immune 
system, further complicates assessment, as the performance of tests for latent TB infection varies with age2,7,8. 
The non-specific clinical presentation of TB in children presents a further diagnostic challenge3,9. In low-and 
middle income countries, where the majority of the burden of TB disease lies, approximately 40% of patients are 
incorrectly diagnosed10. Consequently, many children are not appropriately treated, and over 210,000 children 
are estimated to die every year11.

Developing novel diagnostics is a key component of the global End TB Strategy, and the goal of zero childhood 
TB deaths1,12. Host-based biomarkers of TB show promise, with gene expression signatures and flow cytometry 
techniques potentially capable of distinguishing TB cases from controls, including in children, but published 
studies are often small and prone to bias13–17. While these data provide confidence in the concept of a host-derived 
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diagnostic signature, both gene expression profiling and flow cytometric measurements currently remain far 
removed from a point-of-care test. Protein-based diagnostics could be easier to translate into a point-of-care test, 
although paediatric data is sparse18. A recent systematic review of TB biomarker data published since 2010 in 
over 400 scientific papers shows the overall activity in the field but contained only 6% of data relating to studies 
in children19.

Here, we report the application of 1H Nuclear Magnetic Resonance (NMR) spectroscopy and untargeted 
Ultra-performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) based assays, to identify diagnostic 
biomarkers of TB disease amongst children with presumptive TB in The Gambia. We validated our findings in 
a distinct cohort of children with TB from the UK. Novel host biomarkers of paediatric TB were detected and 
specific metabolites identified, showing promising diagnostic potential on a readily available biofluid.

Results
Discovery cohort patient characteristics. The demographic characteristics, case classification, and 
number of samples analysed on each analytical platform are shown in Table 1. 22 children had bacteriologically 
confirmed TB and 33 fulfilled the category of clinically diagnosed TB. There were no significant differences in 
weight and age between the different case classifications. All children were HIV negative.

Combining clinically diagnosed and bacteriologically-confirmed TB participants. The met-
abolic profiles of the 33 participants with clinically diagnosed TB were compared to the 22 participants with 
bacteriologically-confirmed TB. Unsupervised (blinded) Principal Component Analyses (PCA) was used to iden-
tify the source of the greatest variation in the data, and to establish whether there were obvious groupings in the 
scores plot of participants (similar profiles are closer together).

Supervised (unblinded) orthogonal partial least squares-discriminant analysis (OPLS-DA) was then used to 
establish whether there were systematic differences in the metabolic profiles between the two groups. The met-
abolic profiles of children with clinical TB compared to microbiologically-confirmed TB were indistinguish-
able, reflected by the OPLS-DA models’ low or negative predictive ability (Q2Y scores) (model values given in 
Supplementary Table 1, Supplementary statistical analysis methods). Therefore, the clinically diagnosed and 
bacteriologically-confirmed TB patients were grouped together in further analyses to enable greater analytical 
power, and are subsequently referred to as the ‘TB disease’ group.

Metabonomic analysis. PCA models were produced using the data acquired from each of the four ana-
lytical platforms to identify contributors to variance in the metabolic profiles amongst all participants. The PCA 
scores plots are shown in Supplementary Fig. 1.

OPLS modelling identified weight as a factor influencing the metabolic profiles obtained (SI, Table 2) and 
therefore subsequent OPLS-DA models were adjusted for weight.

Characteristic

Discovery Cohort Validation cohort

Other 
Diseases 
(n = 57)

Bacteriologically 
confirmed TB 
(n = 22)

Clinically 
diagnosed 
TB (n = 33)

Bacteriologically 
confirmed TB 
(n = 14)

Clinically 
diagnosed TB 
(n = 22)

Age (years) 6.29 
(0.7–14) 5.4 (0.4–13) 5.3 (0.3–12) 8 (1–15) 6.0 (1–13)

Sex
M F M F M F M F M F

29 28 7 15 15 18 7 7 11 11

Mean Weight53 18.8 
(7–42) 18.7 (5.1–52.2) 16.9 

(5.1–34.7) 32.4 (5.0–64.1) 23.5 (9.2–57.8)

Positive tuberculin skin test — no. (%)* 10 (18%) 14/21 (66%) 11 (33%) 11 (79%) 17 (77%)

Positive IGRA — no/total no. (%) 28 (49%) 13/15 (87%) 23/32 (72%) 11/12 (92%)** 16/21 (76%)**

Culture-positive TB — no. (%) 0 19 (86%) 0 14 (100%) 0

Sputum positive TB — no. (%) 0 4 (18%) 0 3/13 (23%) 0

Xpert MTB/RIF positive TB — no. (%) 0 10 (45%) 0 — —

Direct referrals to paediatric TB clinic in The Gambia 18 (32%) 8 (36%) 8/32 (25%) — —

Identified as symptomatic through contact tracing in 
The Gambia 39 (68%) 14 (64%) 24/32 (75%) — —

Samples analysed by lipidomics ESI+ (total 112) 57/57 22/22 33/33 14/14 22/22

Samples analysed by lipidomics ESI− (total 112) 57/57 22/22 33/33 14/14 22/22

Samples analysed by NMR (total 95) 49/57 17/22 29/33 9/14 19/22

Samples analysed by HILIC (total 108) 56/57 21/22 31/33 13/14 22/22

Table 1. The mean weight, age, and sex of participants as well as number for each patient diagnosis is given, 
range in brackets. Data refers to samples analysed using lipidomics. *A positive result on the tuberculin skin test 
was defined according to guidelines from the World Health Organization as an induration of 10 mm or more. 
**One result was indeterminate in the clinically diagnosed group and two in the bacteriologically-confirmed 
group.
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1H NMR characterisation of the TB phenotype. Figure 1 displays the mean values of a 500 model iter-
ation of the OPLS-DA model comparing the 1H NMR metabolic profiles of the TB disease and other diseases 
groups. Spectral regions discriminating between other diseases and TB disease samples, and corresponding puta-
tive metabolite identifications, are shown in Table 2. The OPLS-DA model values are shown in Table 3, and scores 
plots in Supplementary Fig. 2a (PCA) and 3a (OPLS-DA).

TB disease sera showed increased concentrations of glutamate, N and O-acetyl glycoproteins (GlycA) and 
phenylalanine, and lower concentrations of alanine, compared to the other diseases group, shown in Fig. 1 and 
Table 2.

UPLC-MS characterisation of the TB phenotype. To maximize the metabolic phenotype coverage, 
three complementary chromatographic separations were utilised (lipidomic profiling method with positive and 

Figure 1. OPLS-DA model based on 1H NMR spectroscopy data, with 500 model iterations, separating 
Gambian infants at enrolment based on diagnosis, R2Y = 0.78, Q2Y = 0.30, n = 93 (one sample was excluded 
as there was no information on the participant’s weight, and another was excluded as it was an outlier). (A) 
The upper panel shows the median 1H spectra of the serum, with peaks which were statistically significantly 
different between the two groups highlighted. Peaks in red were found in higher concentrations in the TB 
disease group, while peaks in blue were found in increased concentrations in the other diseases group. This was 
plotted for easier identification of the peaks and their corresponding metabolites. The lower panel displays a 
skyline significance plot of significant variables discriminating between the groups. Variables in red above the 
dashed line are statistically significantly increased in samples from the TB disease group, the strength of the 
correlation is displayed by the distance from the dashed line, with variables further away being more strongly 
associated with that group. Variables in blue below the dashed line are the variables increased in the other 
diseases group (or found in lower concentrations than in the TB disease group). (B) OPLS-DA scores plot, 
displaying the correlations in the 1H spectra between the participants (the closer the scores are the more similar 
these participants 1H NMR spectra are to one another). Red squares represent the TB disease group, blue circles 
represent the other diseases group, and green crosses represent the validation group samples.T orthogonal 
signal correction, TOSC; T cross validation, TCV.
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negative electrospray ionization (ESI) - for the detection of complex lipid species (lipidomics ESI+ and lipidom-
ics ESI−, respectively); and hydrophilic interaction liquid chromatography (HILIC) - for the detection of polar 
molecules).

OPLS-DA models were produced for the UPLC-MS data, comparing the TB disease group against other dis-
eases, to identify systematic distinguishing metabolic variations. Model values are given in Table 3 and Fig. 2, SI. 
Scores plots for these models are shown in Fig. 3, SI. The OPLS-DA models for all three chromatographic separa-
tion methods showed similar predictive abilities.

Lipidomics ESI+ identified ganglioside GM3 (d18:1/16:0), triacylglycerides (16:0/18:1/18:1 and 54:2), and 
hexose ceramide (d18:1/16:0) as important metabolites distinguishing between the two groups, all of which were 
increased in the TB disease group relative to other diseases. Lipidomics ESI− showed elevated levels of ceramides 
(d18:1/16:0, d18:1/20:0, and d18:1/22:0) in the TB disease group. Additional metabolites increased in the TB 
disease group included lactosylceramide (d18:1/16:0), and HEX-ceramide (d18:1/16:0). Variables identified as 
distinguishing between the groups are given in Fig. 4, SI, and SI Tables 3–5.

The discriminant features did not share their molecular mass, retention time, or fragmentation patterns with 
molecules of mycobacterial origin and were therefore presumably of host rather than pathogen origin.

1H ppm
Carbon 
ppm

r (CI lower and 
upper bound) P value

Q value 
FDR Increased in

1H NMR peak 
multiplicity Potential metabolite

1 1.427 19.07 0.36
(0.26–0.44) <0.001 0.03 TB Doublet Unknown

2 1.498 19 −0.38
(−0.47– −0.29) <0.001 0.02 Other diseases Doublet Alanine

3 2.044 29.68 0.36
(0.24–0.45) <0.001 0.03 TB Multiplet Glutamate

4 2.054 24.83 0.50
(0.40–0.58) <0.001 0.004 TB Broad resonance N-acetyl glycoprotein

(Glyc-A)

5 2.076 0.41
(0.30–0.50) <0.001 0.01 TB Broad resonance O-acetyl glycoprotein

6 2.106 25.14 0.45
(0.36–0.53) <0.001 0.01 TB Multiplet Glutamate

7 2.159 0.36
(0.25–0.44) <0.001 0.03 TB Multiplet Glutamate

8 2.489 −0.37
(−0.50– −0.24) <0.001 0.02 Other diseases Triplet Unknown

9 2.549 −0.41
(−0.51–−0.30) <0.001 0.01 Other diseases Doublet Unknown

10 2.715 0.38
(0.27–0.48) <0.001 0.02 TB Multiplet Glutamate

11 2.931 −0.44
(−0.53–−0.35) <0.001 0.01 Other diseases Broad resonance Unknown

12 2.963 −0.42
(−0.51– −0.33) <0.001 0.01 Other diseases Broad resonance Unknown

13 3.258 −0.41
(−0.51– −0.29) <0.001 0.01 Other diseases Undetermined Unknown

14 3.601 0.44
(0.35–0.52) <0.001 0.01 TB Undetermined Unknown

15 3.629 0.36
(0.26–0.44) <0.001 0.03 TB Undetermined Unknown

16 3.642 0.37
(0.27–0.46) <0.001 0.02 TB Undetermined Unknown

17 3.664 0.38
(0.26–0.48) <0.001 0.02 TB Undetermined Unknown

18 3.685 0.39
(0.28–0.50) <0.001 0.01 TB Undetermined Unknown

19 3.692 0.39
(0.29–0.48) <0.001 0.01 TB Doublet of doublets Unknown

20 3.702 0.40
(0.29–0.49) <0.001 0.01 TB Doublet of doublets Glyc-A

21 3.707 0.40
(0.29–0.49) <0.001 0.01 TB Singlet Leucine

22 3.900 68.94 0.43
(0.34–0.52) <0.001 0.01 TB Undetermined Unknown

23 3.925 0.42
(0.32–0.51) <0.001 0.01 TB Undetermined Glyc-A

24 7.342 0.35
(0.22–0.46) <0.001 0.03 TB Doublet Phenylalanine

Table 2. Chemical shifts discriminating between TB and other diseases in Gambian children at enrolment. 
Peaks without significant variables on either side were ignored.
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Analysis of bacteriologically confirmed TB compared with other diseases. To investigate whether 
comparing only bacteriologically confirmed TB cases against other diseases gave improved predictions of case 
classification, OPLS-DA models were produced. OPLS-DA model values for this comparison are given in Table 3. 
These models provide a similar predictive capability as the models including the clinically diagnosed participants 
in the TB disease group, further justifying our approach to combine the TB disease groups into one.

Diagnostic discrimination. Figure 2 displays the Receiver Operating Characteristic (ROC) curves for the 
1H NMR spectroscopy and mass spectrometry data, with sensitivity, specificity and AUC values summarised in 
Table 3.

The metabolic signature for TB disease acquired using 1H NMR data displayed a sensitivity of 69% (95% con-
fidence interval [CI], 56–73%) and a specificity of 83% (95% CI, 73–93%) with an overall AUC of 0.78.

The data acquired using HILIC, lipidomics ESI-, and lipidomics ESI+ displayed respective sensitivities for TB 
disease of 59% (95% CI, 49–67%) 58% (95% CI, 53–64%) and 67% (95% CI, 60–71%), and specificities of 89% 
(95% CI, 75–92%), 89% (95% CI, 80–96%) and 86% (95% CI, 75–93%). The AUC for HILIC, lipidomic ESI−, and 
lipidomic ESI+ data were 0.76, 0.78, and 0.78, respectively.

Table 4 provides sensitivity and specificity values for other diagnostic tests already in routine use for the diag-
nosis of paediatric TB.

Confusion matrices for 1H NMR, HILIC and lipidomics ESI− mode are shown in SI Tables 6–9.

UK validation cohort. Data acquired from the Gambian samples were used to predict the TB disease status 
of a validation cohort of UK samples, which equally included bacteriologically-confirmed and clinically diag-
nosed TB cases recruited from household contacts 1H NMR spectroscopy correctly classified 6/30 (20%) of the 
validation cohort. HILIC, lipidomics ESI− and lipidomics ESI+ mass spectrometry data correctly classified 15/35 
(43%), 20/36 (56%) and 30/36 (83%) of the UK validation cohort, respectively.

Using the model built from data comparing only bacteriologically confirmed TB against the other diseases 
groups from the Gambian samples, 1H NMR spectroscopy was able to correctly classify 26/30 (87%) of the valida-
tion cohort. The HILIC, lipidomics ESI− and lipidomics ESI+ mass spectrometry data correctly classified 29/35 
(83%), 24/36 (68%) and 30/36 (83%) of the UK validation cohort, respectively.

Discussion
This study from The Gambia and the UK used metabolic profiling assays applied to the serum of children with 
presumptive TB to detect and validate novel diagnostic biomarkers and alterations in host metabolism due to TB 
disease. The most discriminatory MS data showed a sensitivity of 67%, specificity of 85% and correctly classified 
83% of the validation cohort.

1H NMR spectroscopy has previously been applied to paediatric plasma samples to assess the diagnostic 
potential in TB20. Sun et al. also recruited a validation cohort to test the model produced obtaining an AUC of 
0.795, a sensitivity of 82.4%, and a specificity of 83.9%20, similar to the values we obtained.

Target product profiles have been developed for new TB diagnostics by the WHO21. The WHO recom-
mends the sensitivity of a new diagnostic test for pulmonary TB in children to be equal or above 66% for 
bacteriologically-confirmed TB (equal to the sensitivity of the Xpert MTB/RIF assay), while recommending a 
specificity of 98% for childhood TB, compared to a microbiological reference standard21.

The tests described here hence pass the optimal requirements for the sensitivity for both 1NMR spectros-
copy and lipidomics ESI+ , but fail for HILIC and lipidomics ESI−. None of the analytical approaches met the 
WHO requirements for specificity, and therefore would require further development if to be used as a rule-out 

R2Y Q2Y Sensitivity False negative rate Specificity False positive rate Threshold AUC

TB disease Vs Other diseases
1H NMR
n = 93 0.78 0.30 0.69

(0.56, 0.73)
0.31
(0.27, 0.44)

0.83
(0.73, 0.93)

0.17
(0.07, 0.27) 1.78 0.78

HILIC
n = 107 0.49 0.23 0.59

(0.49, 0.67)
0.41
(0.33, 0.51)

0.89
(0.75, 0.92)

0.11
(0.08, 0.25) 3.69 0.76

Lipidomics ESI−
n = 112 0.47 0.27 0.58

(0.53, 0.64)
0.42
(0.36, 0.47)

0.89
(0.80, 0.96)

0.11
(0.04, 0.20) 3.28 0.78

Lipidomics ESI+
n = 112 0.48 0.23 0.67

(0.60, 0.71)
0.33
(0.29, 0.40)

0.86
(0.75, 0.93)

0.14
(0.07, 0.25) 0.65 0.78

Bacteriologically confirmed TB Vs Other diseases
1H NMR
n = 65 0.92 0.29 0.82

(0.59, 0.88)
0.18
(0.12, 0.41)

0.77
(0.59, 0.94)

0.23
(0.06, 0.41) −0.90 0.81

HILIC
n = 77 0.63 0.21 0.76

(0.52, 0.81)
0.24
(0.19, 0.48)

0.68
(0.57, 0.86)

0.32
(0.14, 0.43) −1.12 0.77

Lipidomics ESI−
n = 79 0.66 0.14 0.68

(0.55, 0.77)
0.32
(0.23, 0.45)

0.79
(0.64, 0.95)

0.21
(0.05, 0.36) −1.65 0.74

Lipidomics ESI+
n = 79 0.68 0.17 0.73

(0.59, 0.82)
0.27
(0.18, 0.41)

0.77
(0.59, 0.91)

0.23
(0.09, 0.41) −1.47 0.78

Table 3. Sensitivity, false positive rate, specificity and false negative rates for each of the analytical platforms 
employed and 95% CI.
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Figure 2. ROC curves displaying the sensitivity and specificity of the OPLS-DA model from data acquired 
by (A) 1H NMR spectroscopy, AUC = 0.78 (B) HILIC, AUC = 0.76 (C) Lipidomics ESI−, AUC = 0.78 (D) 
Lipidomics ESI+, AUC = 0.78. The red line is the line of no-discrimination and the green line gives the slope of 
the best result.

Diagnostic Test
Sensitivity (95% 
CI)

Specificity (95% 
CI)

AFB Smear microscopy5 26% (14–39) 100% (99–100)

Xpert MTB/Rif assay5 62% (51–73) 98% (97–99)

Urine lipoarabinomannan (LAM)54 48% (38–59) 61% (56–65)

TB-LAMP55 78% (71–83) 98% (96–99)

51 transcript RNA expression signature13 83% (67–94) 84% (75–93)

T-cell activation marker-TB assay (TAM-TB)16 83% (57–96) 97% (89–100)
1H NMR spectroscopy 69% (56–73) 83% (73–93)

HILIC 59% (49–67) 89% (75–92)

Lipidomics ESI− 58% (53–64) 89% (80–96)

Lipidomics ESI+ 67% (60–71) 86% (75–93)

Table 4. Diagnostic performances of routine and potential methods for TB in paediatric populations relative to 
the metabonomic signatures in this study.
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test. However, within a step-wise screening algorithm, sensitivity would rank higher than the requirement for 
specificity.

A strength of the current study is the inclusion of symptomatic children with other diseases as a control 
group, given the real life situation facing health care professionals in the field who have to be able to distinguish 
between these two entities in the presence of overlapping symptoms. One of the listed characteristics of an ideal 
paediatric TB biomarker is indeed the ability to discriminate children with TB disease from those infected with 
other pathogens22.

We also detected novel biomarkers in a readily available, non-sputum based biofluid, particularly impor-
tant for the diagnosis of paediatric TB, due to the difficulty of obtaining respiratory samples from children. 
Furthermore, the UK validation cohort confirmed that lipidomics ESI+ can detect TB in children from different 
environmental and genetic backgrounds, supporting this methodology.

Comparing between the metabonomic approaches, analysis using 1H NMR spectroscopy provides robust and 
reproducible data while MS has greater sensitivity. The complementary chromatographic methods used allow 
the detection of different classes of metabolites, including lipids and hydrophilic metabolites, including those of 
potentially mycobacterial origin. Detecting bacterial lipids in human tissue has been demonstrated previously23, 
but given the paucibacillary nature of TB in children, it is especially challenging in this context, and we did indeed 
not identify any compounds of mycobacterial origin.

In this study, phenylalanine was increased in children with TB disease. Phenylalanine levels are known to dif-
fer in serum during TB disease, although it has not previously been demonstrated in children. Che et al. observed 
lower levels of phenylalanine, decreasing 2.73 fold in the TB group24. However, Weiner et al. identified phenyla-
lanine as increasing in relative abundance in their TB group, while a further study by Zhou et al. also identified 
increased concentrations of phenylalanine in TB disease25, corroborating our results. Similarly, another study 
analysing urine samples identified dysregulated phenylalanine metabolism in TB patients, possibly due to altered 
gut microbiota26.

We also identified increased concentrations of glutamate in the serum of children with TB, in line with find-
ings by Zhou et al.25, and Frediani et al.27. TB is able to employ glutamate as an alternative carbon source under 
hypoxic conditions28, and Frediani et al. hypothesised that the increased concentrations of glutamate observed in 
TB patients’ blood may result from increased glutamate synthesis by M.tb as a sign of host-pathogen metabolic 
interactions27.

Another amino acid, alanine, has previously shown to be increased in paediatric TB disease20. However, Zhou 
et al. identified an opposite relationship, with alanine decreasing25, as we also describe. This may be a consequence 
of increased amino acid oxidation in comparison to protein anabolism, which contributes to the wasting associ-
ated with TB29.

1H NMR spectroscopy showed elevated levels of GlycA in the serum of TB patients in our study. This bio-
marker is associated which chronic inflammation and long-term risk of severe infection, such as septicaemia and 
pneumonia30.

We also identified increased concentrations of several ceramides in the serum of children with TB disease, 
particularly ceramide (d18:1/16:0), as well as several glycosylated species of ceramide (d18:1/16:0). This finding 
supports previous findings of increased concentrations of ceramide (d18:1/16:0) in adult TB patients in compar-
ison to healthy control patients, and patients with community-acquired pneumonia31. Raised levels of ceramide 
(d18:1/16:0) have also been reported in patients with TB in comparison to those with lung cancer32.

Ceramides are a type of sphingolipid (sphingosine plus a fatty acid), and are present in high concentrations 
in cell membranes. Ceramides are considered potent bioactive lipids, involved in multiple cellular signalling 
pathways33. Ceramide contributes to phagosome maturation in macrophages infected with M.tb, resulting in 
increased killing of pathogenic mycobacteria34. Furthermore, activation of natural killer T cells by the CD1d 
ligand α-galactosylceramide has been shown to protect mice against TB. Treatment with α-galactosylceramide 
has been shown to reduce the bacterial burden in the lungs, while diminishing tissue injury and prolonging sur-
vival35. They are also known to contribute to cellular invasion36, apoptosis37, and cell-cell signalling38, all of which 
relate intimately to microbial pathogenesis.

Similarly, ganglioside GM3 (d18:1/16:0), another sphingolipid, was increased in children with TB disease 
in this study. Gangliosides are degraded to ceramides by removal of the sugar units in the oligosaccharide head 
group, and similarly to ceramides, are present in cell membranes, being particularly concentrated in lipid rafts39. 
The oligosaccharide group found on gangliosides protrude from the cell membrane40, and are involved in cell-cell 
interactions, signal transduction and cell activation. Gangliosides have previously been shown to be involved in 
M. leprae infection41.

We hypothesise that ceramides and gangliosides are increased in serum of children with TB disease as a con-
sequence of the immune system’s attempt to kill M.tb through the maturation of phagosomes in macrophages, 
as well as the production of lipid rafts as signalling platforms, to internalise M.tb, induce apoptosis and regulate 
cytokine responses.

Our study has some clear limitations: our sample size was modest, and - as with many paediatric TB studies, 
a high proportion of cases were diagnosed using a clinical rather than microbiological case definition and there 
was no blinding for the reading of chest X rays, which nevertheless were read by two independent doctors. Data 
on nutritional status beyond weight are unfortunately not available as an analytical variable but we showed strong 
correlation with age. The validation cohort did not include an “other diseases” group, and therefore specificity in 
this UK population could not be evaluated.

We included symptomatic children in our study to address the “real-world” problem of assessing symptomatic 
children who have recently been exposed to TB. The model helps to discriminate between TB and other diseases. 
However, it is unknown if the model would discriminate between children with asymptomatic TB infection and 
symptomatic disease. This is a subject for a subsequent study.
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Additionally, not every laboratory method could be applied to all samples due to limited serum volumes. We 
are unsure why the model using only bacteriologically confirmed TB from the Gambia was so much better at 
predicting the disease status of the UK validation cohort than the combination of bacteriologically and clinically 
diagnosed TB cases. Children in the bacteriologically confirmed cohort in the UK were however older and more 
likely to be IGRA and TST-positive. We fully acknowledge that further validation will need to be undertaken to 
confirm the biomarkers identified in this study in a larger population, and in the context of HIV co-infection, as 
all of the children enrolled in the UK and The Gambia were HIV-negative.

In conclusion, we have demonstrated that alterations in host metabolism in paediatric TB are detectable using 
metabonomic techniques applied to small volume serum samples. The metabolic profiles provide insights into 
the metabolic processes associated with TB, but further validation is required to assess the clinical utility of this 
diagnostic approach in the context of screening algorithms.

Participants and Methods
Serum samples were obtained from prospectively recruited Gambian children with presumptive TB, who were 
identified by household TB contact tracing, or referred directly from community health centres, to a dedicated 
paediatric TB clinic at the MRC Unit The Gambia, as previously described4,6.

All children living in the same household as an adult with pulmonary TB in the Greater Banjul area were 
screened with a symptom questionnaire and tuberculin skin test (TST). Any child with symptoms compatible 
with TB was referred to the childhood TB clinic for further investigation, including CXR, microbiological inves-
tigations, and blood samples collected for immune profiling studies.

The TB disease status of participants was defined in accordance with the case definitions proposed by the 
World Health Organisation42, classified as either bacteriologically-confirmed or clinically diagnosed TB, given 
that the proposed NIH classification excludes children with a record of household exposure43.

The “other diseases” group included participants from the same household cohort whose symptoms were 
potentially compatible with pulmonary TB but resolved spontaneously, or with short-course conventional antibi-
otic treatment, and who had no radiological evidence of TB disease, no bacteriological confirmation and did not 
develop TB disease during the 12 months of regular follow up of the cohort.

Samples from all children consecutively diagnosed with TB disease between February 2012 and June 2014 
were included, together with a random selection of children with other diseases form the same setting and 
investigated during the same time period, at a ratio of 3:1 with TB cases. The selection criteria have been pre-
viously described44. The Supplementary Information (SI) provides further details on the case definitions used 
(Supplementary Methods).

Ethics approval was granted by The Gambia Government/Medical Research Council Joint Ethics Committee 
(ref L2012.E01).

Samples obtained from the UK were part of the NIHR-funded IGRA Kids Study (NIKS), a prospective mul-
ticentre collaborative study aiming to assess the negative predictive value of IGRA in children exposed to TB7,45. 
As part of the mandatory TB contact-tracing undertaken according to national guidelines in the UK, all chil-
dren (<15 years) with a history of household exposure to a source case, presenting to five paediatric TB clin-
ics in London, together with paediatric TB clinics in Southampton, Bristol, Birmingham, Manchester, Glasgow 
and Newcastle between 1 January 2011 and 31 December 2014 were recruited for screening and investigations. 
Evaluations included history, examination, TST and IGRA tests, chest radiography, microbiology and HIV testing 
where appropriate. Samples included from the NIKS study came from consecutively recruited participants with 
either clinically diagnosed or bacteriologically-confirmed TB. The NIKS study was approved by the National 
Research Ethics Service (REC: 11/11/11) and cohort details have previously been published All research was per-
formed in accordance with the relevant regulations and informed consent was obtained from the legal guardians 
of all participants.

Sample preparation and analysis. Serum was collected at the time of enrolment, separated within 
4 hours, aliquoted, and stored at −80 °C prior to shipping on dry ice to Imperial College London, where they were 
preserved at −80 °C until analysis at the Clinical Phenotyping Centre.

Sample handling and quality control procedures have been reported previously46 and details on sample prepa-
ration are included in the SI.

All UPLC-MS analyses were performed on Acquity UPLC instruments coupled to Xevo G2-XS oaTOF mass 
spectrometers (Waters Corp., Manchester, UK) via a Zspray ESI source.

Details of the system configuration and analytical methods used for HILIC profiling have been reported pre-
viously46, with the exception of the sample preparation procedure, which was modified for application to serum 
and is reported in the SI.

Lipidomic profiling was conducted using an Acquity 2.1 × 100 mm BEH C8 column thermostated at 55 °C. 
Solvent A consisted of a 50:25:25 mixture water/acetonitrile/isopropanol with 5 mM ammonium acetate, 0.05% 
acetic acid, and 20 µM phosphoric acid (which was added to improve the peak shape of some phospholipid spe-
cies47. Solvent B consisted of 50:50 acetonitrile/isopropanol with 5 mM ammonium acetate and 0.05% acetic acid. 
Initial conditions were 99:1 A:B with a flow rate of 0.6 mL/min. Additional chromatographic and spectrometric 
conditions for both ion modes can be found in the SI. Sample preparation for lipidomic profiling was performed 
as described previously48, with minor modifications described in the SI.

Significant features identified by lipidomics were compared to the MycoMass database to identify any matches 
relating to metabolites of potential bacterial origin49.

Samples were prepared for 1H NMR spectroscopic analysis in accordance with sample preparation protocols 
previously validated for serum in the section of Computational and Systems Medicine at Imperial College50. 
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Further details on the 1H NMR spectroscopic analysis can be found in the SI. Due to limited sample volumes, 
some samples could not be analysed using all four analytical assays.

Statistical analysis. Unsupervised Principal component analysis (PCA) models, which do not include 
knowledge of the results of the reference standard, were produced to investigate whether there were any hard 
outliers, due to either analytical error or biological deviation. PCA is a multivariate projection method, used to 
extract and display systematic variation in a data matrix. The scores plots of the PCA models display correlations 
between the participants metabolic profiles, with points closer together representing more similar profiles, allow-
ing groups and trends to be revealed51.

Orthogonal partial least squares-discriminant analysis (OPLS-DA) is an extension of PCA, also a multivariate 
modelling method, used to connect the metabonomic data to the class (diagnosis). It was used to predict the diag-
nosis of participants, identifying variables that discriminate between classes. OPLS-DA models were run using 
a Monte Carlo cross-validation strategy to avoid over-training and reliance on a single model52, with the average 
correlations of the projected scores and the data projected onto the spectrum for 1H NMR spectrometry data. MS 
data were treated in the same way.

To account for the influence of bodyweight in the metabolic profiles (Supplementary Table 2), a resampling 
strategy was implemented during the modelling process of the OPLS-DA models. Using the distribution of the 
body weights of the TB cases, samples from children with other diseases were sampled with probabilities of each 
being selected dependent on their weight. Further information on the statistical analysis and metabolite identifi-
cation can be found in the SI.
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