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1. Introduction 

Severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) recently emerged and spread to cause 

a pandemic of coronavirus disease 2019 (COVID-19). 

Given the failure to contain the initial outbreak, the 

global failure to restrain the pandemic, and the 

absence of an effective vaccine, we may need to 

identify existing drugs or develop new drugs to 

interrupt COVID-19 at a critical juncture. 

A number of targets may be of interest for the 

development of small molecule therapeutics for 

COVID-19: main protease (Mpro, 3CLpro), helicase 

(Nsp13), endoribonuclease (Nsp15), and 2’-O-

methyltransferase (Nsp10/16) are known viral 

protein drug targets for SARS-CoV-2. Small molecule 

drugs may target the substrate binding site of Mpro, 

the ADP binding site of Nsp13, the active site of 

Nsp15, or the S-adenosylmethionine (SAM) binding 

site of Nsp16.  

Water is essential to the description of interactions 

between drugs and their biomolecular targets 

because solvation is a key contributor to molecular 

recognition and binding. Energies, entropies, and 

structural features of water molecules can be used 

to identify waters that may produce favorable or 
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unfavorable contributions to the free energy of 

binding upon displacement and therefore aid in the 

identification of ligand interactions that may or may 

not be desirable. Water networks and tightly bound 

structural waters can affect ligand-receptor binding 

affinities. Information on water structure and 

thermodynamics may be useful to screen virtual 

compound databases, to identify new lead drug 

candidates, and inform rational lead modification to 

improve affinity and specificity for its target1,2,3,4. 

Ignoring water molecules in binding sites may reduce 

the chance that a drug design project will be 

successful. 

Solvation thermodynamic mapping (STM) is widely 

used in academic studies of drug-protein interactions 

and has been widely integrated into the workflow of 

drug discovery and rational design efforts at major 

pharmaceutical companies. The utility of STM spans 

a number of areas in early-stage drug development 

efforts including virtual screening1,2, formation or 

improvement of pharmacophores2,5, docking1,6, and 

rational lead modification3,4. While the utility of STM 

is apparent, there are significant obstacles to 

widespread use. Of particular concern is that many 

existing software packages for characterizing water 

properties are commercial and, hence, not available 

to all and/or they require computational expertise in 

molecular dynamics, computer modeling, and 

statistical mechanics in order to apply. This set of 

skills often does not exist in wet chemistry labs 

whose research is dedicated to discovering and 

optimizing new pharmaceutical compounds.   

The goal of this publication is to remove these 

obstacles and make publicly available solvation 

thermodynamic and structural maps of SARS-CoV-2 

targets as a resource to the academic and industrial 

drug design community to aid in their pursuit of 

identifying small molecule treatments for COVID-19. 

In order to aid in screening and modification of 

drugs, we offer a free public repository of solvation 

thermodynamic maps of significant small molecule 

COVID-19 drug targets. Here we present solvation 

maps of 7 targets that are likely viable for small 

molecule modulation. All maps and simulation data 

are publically available on the KurtzmanLab github 

(github): github.com/KurtzmanLab/COVID19_GIST_HSA. 

2. Methods  

2.1 Protein Preparation 

Protein monomer structures were prepared using 

the Protein Preparation Wizard7 in Maestro8 with 

default settings. ACE and NMA groups were used to 

cap the protein termini. Active sites were visually 

inspected and compared to ligand-bound structures 

to ensure that protonation states and conformations 

were consistent with known ligand-protein 

interactions. All proteins were left as-is except for 

6YB7, for which side chain rotamers were adjusted 

so as not to interfere with the binding of an aligned 

N3 ligand from 6LU79. His164 was changed from 

being protonated in the delta position (HID) to the 

epsilon position (HIE) to reproduce the known 

protein ligand interaction. The protein preparation 

wizard also suggested two conformations for 

Met166 in 6YB7 and both were used. No changes 

were made for other proteins. Energy minimization 

for hydrogen atoms was then performed in Maestro. 

A second set of structure models for SARS-CoV-2 
Mpro (PDB IDs: 6YB7 and 6W63) were manually 
prepared by one of the authors (McKay). All histidine 
side chains were assigned as either HIE or HID given 
the local environment. All asparagine and glutamine 
side chains were examined and found to be in 
reasonable rotameric states. For these systems, the 
PARM@FROSST small molecule extension to ff14SB10 
and AM1-BCC11 charges were used for the ligands. 

2.2 Molecular dynamics simulations 

Molecular dynamics simulations were performed in 

GPU accelerated AMBER 1612 using the ff14SB10 force 

field and the optimal point charge (OPC) model13 of 

water. Ligand force field parameters were assigned 

with the general AMBER force field (GAFF)14 using 

the Antechamber package15 in AmberTools. 

Antechamber assigns charges, missing bonds, angles, 

https://github.com/KurtzmanLab/COVID19_GIST_HSA
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dihedral angles and Lennard-Jones parameters for 

each atom. Ligand charges were assigned using AM1-

BCC11. 

For systems with a co-crystalized ligand, the ligand 

was removed from the protein, and then the protein 

was solvated in a box of OPC water molecules with 

dimensions that ensured there were at least 10 Å 

between any atom of the protein and the box edge.  

Sodium or chlorine counterions were added 

accordingly to neutralize the system. Each system 

was then energetically minimized in a two-step 

process. The first minimization step was performed 

with 1500 steps of steepest descent with all protein 

atoms restrained harmonically using a force constant 

of 100 kcal/mol·Å2. For the second minimization 

step, only main chain heavy atoms were restrained. 

Following minimization, the system was heated to 

300 K in a 240 ps NVT simulation with the main chain 

heavy atoms restrained; the temperature was 

regulated by Langevin thermostat with collision 

frequency of 1 ps. This was followed by a 20 ns NPT 

simulation with the atom restraints declining from 

100 Kcal/mol·Å2 to 2.5 Kcal/mol·Å2 in the first 10 ns. 

After that, a 50 ns NPT production simulation was 

conducted with the frames saved every 2 ps. In the 

production phase, the temperature was regulated 

via a Langevin thermostat set to 300 K with a 

collision frequency of 2 ps. The constant pressure (1 

atm) was maintained by isotropic position scaling 

with a relaxation time of 0.5 ps.   

 

2.3 GIST 

GIST maps were created using the GPU port16 of 

AmberTools cpptraj-GIST17. Analyses were 

performed on the complete 50 ns production 

trajectory for each system (25000 configurational 

snapshots). For each system, maps were created in a 

cubical region with 30 Å length sides centered on the 

geometric mean position of the co-crystalized ligand 

for the pdb (see Figure 1). The resolution of the grid 

was 0.5 Å (0.125 Å3 per voxel). For structures with no 

co-crystalized ligand for the pdb entry, a homologous 

protein with a co-crystalized ligand was structurally 

aligned to the pdb structure and the geometric 

center of that ligand was used to define the GIST 

analysis region. In the case of 6JYT, the region was 

defined for HSA by a partial set of the residues found 

in the active site (K288, S289, D374, E375, R567). For 

the GIST analysis of 6JYT, the geometric center of 

ADP from a structurally aligned 2XZL was used as the 

center of the box. The ligands used for defining the 

GIST region for each structure can be found in the 

repository.  

 
Figure 1: The co-crystalized structure of Mpro (cartoon) 
with ligand N3 from 6LU7. The GIST analysis was 
performed in the cubical region shaded in gray. 

2.4 Hydration Site Analysis 

Hydration Site Analysis (HSA)18 was performed using 

the publicly available SSTmap code19 with the default 

settings except for the region analysis which was set 

to within 10 Å of the ligand (-d 10). For each system, 

the analysis was per the first 20 ns (10,000 frames) 

of the MD production run for each protein. 

Briefly, the method analyzes all the water positions 

from an MD trajectory and identifies high-density 1 Å 

radius spherical regions called hydration sites. In 

each hydration site, average quantities of the water 

molecules found in the hydration site are calculated 

and provide estimates for the local IST 

thermodynamic quantities. A number of measures 
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that describe the local solvent structure and 

characterize the hydrogen-bonding environment of 

the water in each hydration site are also calculated. 

These measures can be used to characterize the 

enhancement or disruption of local water structure, 

describe the local enclosure, and describe the 

average hydrogen bonding interactions that water 

has in each hydration site with both its water 

neighbors and protein. Full details of the calculations 

are specified in a previous publication and the code 

is available on the github. 

We also use newly developed code to determine the 

most probable orientations for water molecules in 

each hydration site. To do this, the orientations of all 

water molecules in each hydration site are clustered 

using a quaternion distance metric and the centroid 

orientation of each high-density cluster (generally at 

least 10% of the population) is recorded. The code 

and complete details of the method are in the 

github. 

3 Repository contents 

Structures 1-5  (SARS-CoV-2 structures) 

Main Protease (Mpro, 3CLpro): 6LU79 (2.16 Å), 6YB7 

(1.25 Å), 6M03 (2.00 Å), 6Y84 (1.39 Å), 6W63 (2.10 

Å). Target the substrate binding site of Mpro.  

Structure 6  (SARS-CoV-1 structure) 

Helicase (Nsp13): 6JYT20 (2.80 Å). Target (1) the ADP 

binding site but discourage (2) the nucleic acids 

binding site. No SARS-CoV-2 structure exists for this 

protein. 

Structure 7 (SARS-CoV-2 structure) 

Nsp16 (2’-O-methyltransferase, nsp 10/16): 6W4H 

(1.80 Å). Target the S-adenosylmethionine (SAM) 

binding site. 

All files with prepared structures, topologies files, 

and molecular dynamics input and restart files are 

provided as well as solvation structural and 

thermodynamic maps described below. 

 

3.1 Solvation thermodynamic maps 

Inhomogeneous solvation theory (IST)21,22,23 provides 

the statistical mechanical framework for the 

solvation thermodynamic quantities from explicit 

solvent molecular dynamics simulations. Here, we 

use two methods: Grid-based Inhomogeneous 

Solvation Theory (GIST)24,25 and Hydration Site 

Analysis (HSA)18 to localize the IST thermodynamic 

quantities onto a three-dimensional grid and onto 

high density 1 Å radius spherical “hydration sites”, 

respectively. These localization approaches both 

process snapshots of the system configurations 

generated in molecular dynamics simulations to 

estimate local IST thermodynamic quantities 

including local energies, entropies, and number 

densities. 

3.1.1 Grid based solvation maps 

The repository contains grid-based solvation maps of 

calculated IST entropies, energies, and densities in 

Data Explorer (dx) format. The dx format enables 

visualization in standard graphics packages such as 

VMD and Pymol. For each target, energetic maps are 

provided for water’s interactions with the protein, 

with other water molecules, and the total 

interactions of the water in each voxel with the 

system as a whole. GIST provides entropy maps for 

the total entropy as well maps that separately 

include the translational and orientational 

contributions to the total entropy. Maps are 

provided for all of the entropy and energy quantities 

for both normalized (per water quantities) and 

density (per voxel) quantities. A complete list of 

quantities can be found in table 1. Detailed 

descriptions of these quantities can be found in our 

prior work17,25. 
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Table 1 Key GIST quantities 

Quantity Description Units 

[a]TStrans Translational entropy density kcal/mol/Å3 

[a]TSorient Orientational entropy density kcal/mol/Å3 

[a]TSsix Total entropy density kcal/mol/Å3 

[a]TStrans Translational entropy density kcal/mol/Å3 

[a]TSorient Orientational entropy density kcal/mol/Å3 

[a]Eww Water-water energy density kcal/mol/Å3 

[a]Esw Solute-water energy density kcal/mol/Å3 

Neighbor 

count 

Mean number of water 

neighbors[c] 
molecules 

[a] Corresponding normalized quantities also reported [b] Dipole 

moments are reported as time-averaged x,y, and z,components, along 

with the mean overall magnitude. [c] Neighbors are defined as two 

water molecules with an O-O distance of 3.5Å or less. 

 

3.1.2 Hydration site solvation maps 

For each target, the positions and calculated 

thermodynamic and structural quantities for the 

water in each hydration site are summarized in a 

space delimited spreadsheet file.   

The same energetic quantities as calculated for GIST 

(above) are calculated for each hydration site and 

reported in per water (normalized) units. 

Additionally, the HSA data includes a breakdown of 

the total energy into contributions from Lennard-

Jones, electrostatic, and first solvation shell water-

water interactions. 

SSTMap also calculates a number of quantities that 

are aimed at characterizing the local environment 

surrounding each hydration site. These are aimed at 

better describing local water structure and the 

interactions of the water in the hydration site with 

the protein surface.   

 

Table 2 HSA structural quantities 

Quantity Description Units 

Nnbr Average # first shell neighbors None 

Nww
HB 

Average # water-water hydrogen 

bonds 
None 

Nsw
HB # solute-water hydrogen bonds kcal/mol 

Enbr
ww 

Average water-water interaction 

energy by neighbor 
Kcal/nbr 

Nww
HB,don 

# water-water hydrogen bonds 

donated 
None 

Nww
HB,acc 

# water-water hydrogen bonds 

accepted 
None 

Nsw
HB,don 

# solute-water hydrogen bonds 

donated 
None 

Nsw
HB,acc 

# solute-water hydrogen bonds 

accepted 
None 

fww
HB 

Fraction of hydrogen-bonded 

neighbors 
None 

 

Quantities that provide a measure of local water 

structure include the average number of first shell 

neighbors each water has in its first solvation shell, 

the fraction of these neighbors to which the 

hydration site water is hydrogen bonded, and the 

average energy of interaction with each neighboring 

water. When compared to bulk water values, these 

quantities provide measures of whether the local 

water structure is enhanced or frustrated26. 

Additional quantities that characterize the 

interaction of the water in each hydration site with 

the protein include: (1) an enclosure parameter that 

describes how much of the region around the 

hydration site is protein and how much is water, (2) 

the average number of hydrogen bond donor and 

acceptor interactions that water molecules found in 

the hydration site have with the protein surface, and 

(3) lists of the protein residues that donate and 

accept hydrogen bonds to the water in the hydration 

site.   
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A list of thermodynamic and structural quantities can 

be found in Table 3. A text delimited spreadsheet file 

summarizing all calculated water properties is found 

in the HSA directory for each protein. 

In addition, to facilitate visualization, each HSA 

directory includes pdb files that feature (1) the 

hydration site centers, (2) water molecules located 

at the center of each hydration site that have the 

most probable orientation, and (3) water molecules 

located at the center of each hydration site that 

include all probable orientation clusters. 

4 Potential applications 

Solvation thermodynamic mapping has been used in 

a variety of applications aimed at aiding the 

discovery and design of new pharmaceutical 

compounds.  In docking, scoring terms have been 

added to explicitly account for solvent displacement 

upon ligand binding and the modified docking 

scoring functions have been used to help improve 

AUC, pose prediction, and identify novel binding 

ligands1,6,27. Solvation maps have also been used to 

create pharmacophores2 as well as provide criteria to 

prioritize the selection of pharmacophore sites5. 

Both water thermodynamics and water interactions 

with protein surfaces have been used to direct lead 

modification4,28. 

Here, we describe by example several potential 

applications for the solvation maps provided in this 

repository.  

4.1 Rational lead modification 

The properties of water in and around the binding 

site may be used to direct the design of chemical 

modifications to a lead compound or fragment. The 

physical principles of this are that the displacement 

of thermodynamically unfavorable surface water 

upon the binding of a ligand will lead to favorable 

contributions to the free energy as the water is 

displaced to the more thermodynamically favorable 

environment of bulk biological water.     

Here, we illustrate how solvation structural and 

thermodynamic solvation mapping in this repository 

can be used to provide insight into which 

modifications may lead to boosts in binding affinity.  

 

Figure 2: N3 bound to Mpro (PDB ID: 6LU7). Hydration 
sites that are located within 7.5 angstroms of N3 and have 
highly unfavorable energy (ΔE > 0.5 kcal/mol with respect to 
neat water) are shown as transparent red spheres. The most 
probable water orientation for each hydration site is 
represented by a water molecule at the center of each sphere. 
The protein surface proximal (within 11 Å) to N3 is shown in 
gray.   

The binding site of Mpro features a large number of 

energetically unfavorable hydration sites (see Figure 

2 ). Prior work29,30 suggests that the displacement of 

water from these hydration sites may be correlated 

with differences in binding affinities between 

congeneric pairs of ligands. Most of the hydration 

sites identified in figure 1 are displaced by N3. 

However, the two leftmost sites are not. We will 

focus on the upper left site, hydration site 7 (HS7), as 

it has an exceptionally unfavorable thermodynamic 

profile.           

HS7 occupies a small cleft on the surface of the 

protein, which is formed by 7 different residues (28, 

143, 119, 26, 118, and 145).  The water in this cleft is 

resolved the crystal structures of 6LU7, 6W63, 6Y84, 

and 6YB7.  However, this water is not reported in 

6M03. The water is highly enclosed by the protein 
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(81.7%) having slightly less than one (0.96) water 

neighbor, on average, in its first solvation shell.  

Despite the hydration site being highly occupied 

(84.5% occupancy), the water is exceptionally 

unfavorable energetically (+2.6 kcal/mol) and 

entropically (-TS of 4.45 kcal/mol) by IST estimates.  

Its low entropy result is based on the water’s highly 

restricted translational and orientational motion. The 

water’s high enclosure in the protein cleft and its 

formation of two hydrogen bonds with the protein 

surface severely restrict the water’s translational 

freedom leading to a translational entropic penalty 

of 2.11 kcals by IST estimates. The two hydrogen 

bonds it forms with the protein surface as well as 

forming a hydrogen bond 82 percent of the time 

with its water neighbor located above the cleft 

(HS56), further restrict its orientational freedom 

resulting in an entropic penalty of 2.33 kcals/mole.   

Despite being on a hydrophilic surface (forming on 

average 2.00 hydrogen bonds with the protein), the 

water in HS7 cannot form a full complement of 

hydrogen bonds, instead forming only 2.85 

geometric hydrogen bonds on average compared to 

a bulk OPC water which would form 3.62. This 

deficiency of more than three quarters of a hydrogen 

bond, on average, is a significant contribution to the 

unfavorable energetic profile (+2.6 kcals/mole 

overall) of HS7.  

Both the unfavorable IST energy and entropy suggest 

that displacing this HS7 water could lead to gains in 

binding affinity. In order to displace this water, an 

optimal chemical group must replace interactions 

that the water makes with the protein without 

disrupting the hydrogen bond network that the 

water is making with its neighbors. As the water in 

HS7 is located in a cleft, any chemical group would 

also need to displace its water neighbor (h-bonded 

water in figure 3). The optimal chemical group would 

need to both donate a hydrogen bond to the 

backbone carbonyl of Gly143 and accept a hydrogen 

bond from the backbone amine of Asn119. A 

hydroxy group seems ideal for this.   

All of the numerical data in the above analysis is 

located in the HSA summary spread sheet for 6LU7 

(6LU7_apo_flex_hsa_ summary.csv). All the data for 

the visualizations is likewise located in the 

repository. 

 

 

Figure 3: The most probable orientation of the water in 
HS7 donates a hydrogen bond (red dashed line) to the 
backbone carbonyl of Gly143, accepts a hydrogen bond 
(blue dashed line) from the backbone NH of Asn119, and 
donates a hydrogen bond to HS56 above the cleft wherein 
lies HS7.   

4.2 Scoring Solvation Displacement in Docking 

Four studies outline how solvation thermodynamic 

mapping can be used to aid in the discovery of new 

leads in docking. The first two of these studies are 

based on our prior work on Factor Xa29,30 in which a 

displaced solvent functional used high energy and 

high density voxels as functional inputs to correlate 

with experimental measurements of differences in 

binding free energies between congeneric pairs of 

ligands29,30. The third docking study6 by Uehara and 

Tanaka instead used a displaced solvent functional 

with free energetic maps created by GIST as input 

whereas the fourth study1 by Balius et al. used the 

displacement of voxels with high energy densities as 

input. The third study showed improvements in pose 

prediction and enrichment and the fourth showed 
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only nominal measurable improvements to docking 

enrichment and pose prediction, though the method 

was successfully used to prospectively identify new 

tightly binding compounds, including the tightest 

binding compound to cytochrome c peroxidase. A 

map showing related unfavorable and favorable 

energy density regions for Mpro is shown in figure 4.   

 

Figure 4: Unfavorable and Favorable Solvation Energy 
Density Map of Mpro. Regions of unfavorable energy 
density (Edens > 0.1 kcal/mole/ Å3) and favorable energy 
density ((Edens > 0.1 kcal/mole/ Å3) are shown in red or 
blue wireframe, respectively. The predicted score for a 
docked ligand would be penalized for displacing water 
from the favorable blue regions or given an affinity boost 
for displacing water from the red regions.   

The GIST maps in this repository provide the data to 

create the maps used in all three of the GIST-based 

studies. Necessary modifications of the provided 

GIST dx maps (e.g. creating a free energy density 

map from the energy and entropy density maps) can 

be easily created using the GIST Post-Processing 

(GISTPP) code provided on the github. 

4.3 Pharmacophore Creation  

Solvation mapping can be used to generate water-

based pharmacophore hypotheses2 and to prioritize 

ligand- or protein-based pharmacophore sites5. Here 

we combine several interesting hydration sites with 

ligand-based pharmacophore elements. 

Three pharmacophore sites were constructed using 

ligand-protein interactions based on analyses of co-

crystalized ligands found inside the binding sites of 

SARS-CoV-2 Mpro structures (PDB ID: 6W63, 6LU7, 

6Y2F, 6Y2G, and 6M2N). These ligand-based sites 

appear as dotted spheres in Figures 5 and 6. 

 

Figure 5: Hybrid ligand- and water-based pharmacophore 
within the binding site of Mpro (PDB ID: 6LU7). The ligand-
based sites are shown as dotted spheres and the water-
based sites are shaded spheres. Ligand-based sites have 
an NH group for donors or an oxygen for acceptors. The 
most probable water orientation is found at the center of 
each water-based pharmacophore site. Acceptor sites are 
red and donor sites are blue spheres. 

The leftmost ligand-acceptor site (figures 5 & 6) lies 

inside the oxyanion hole. All five of the co-crystalized 

ligands accept a hydrogen bond from the backbone 

amino group of Gly143 while three of five (6Y2F, 

6Y2G, and 6M2N) also accept a hydrogen bond from 

Cys146. The pharmacophore site shown in figure 6 

shows both of these interactions. The middle ligand-

based site donates a hydrogen bond to the backbone 

carbonyl of His164. Ligands from 6W63, 6Y2G and 

6Y2F make this contact. The rightmost ligand site, 

inside the S1 subsite, accepts a hydrogen bond from 

the backbone amino group of Glu166. Four of the 

five (all except 6M2N) co-crystallized ligands accept a 
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hydrogen bond from this group. Each ligand-based 

site is proximal to a hydration site and GIST high-

density group of voxels but none have any significant 

thermodynamic signal for use in prioritization. These 

ligand-based sites were chosen by the fact that they 

were well conserved across the limited number of 

structures available with co-crystallized ligands. 

 

 

Figure 6: The same hybrid pharmacophore hypothesis as 
shown in Figure 5, except the interactions with chemical 
groups on the surface are shown explicitly.  Blue dashed 
lines show the pharmacophore sites donation of 
hydrogen bonds and red dashed lines show acception.  

We used hydration site analysis to add three 

additional ligand-based pharmacophores sites. These 

sites are shown in shaded spheres in figures 5 and 6.  

While water-based pharmacophore sites can be 

chosen using other criteria (as outlined in Jung et 

al.2), here we simply chose water-based sites that are 

energetically unfavorable and categorized them 

based on their donor/acceptor interactions with the 

protein surface.  

The first site (on the far right of figures 5 and 6) is 

from HS9, which primarily accepts a hydrogen bond 

from the backbone amino group of residue Thr190 

and has an unfavorable energy of -11.28 kcals/mole 

(almost 1 kcal above the bulk energy of -12.26 

kcals/mole). The second site HS52 (middle left in 

Figures 5 & 6) has an energy of -10.46 kcals/mole 

(1.8 kcals above bulk energy) and donates a 

hydrogen bond to Thr26. The third site, HS56 has an 

energy of -11.69 kcals/mole (0.57 kcals less favorable 

than bulk) and donates a hydrogen bond to Thr25.    

Together, the conserved ligand sites and the water-

based sites create a pharmacophore hypothesis that 

can used to screen virtual compound databases.  

While we arbitrarily chose three conserved sites 

from the ligand and three proximal hydration sites to 

construct the hypothesis outlined here. This 

approach allows a drug designer flexibility to choose 

ligand and water sites on virtually any solvent 

exposed surface of the protein, allowing different 

regions of the active site or potential allosteric sites 

to be targeted.  

5. How to access data 

All hydration site and GIST data is available on github 

with a readme.md that details directory structure 

and the descriptive file naming convention.    

Briefly, each PDB structure has its own subdirectory 

named after its pdbid. Each pdbid subdirectory has 

further subdirectories for simulations with apo or 

complexed structures and different protein 

restraints. Additional subdirectories for each of these 

include the hydration site and GIST analyses, as well 

as the prepared protein input files and Amber MD 

restart files in case longer simulations are desired.    

All of the above can be found on the github: 

(github.com/KurtzmanLab/COVID19_GIST_HSA.) 

5.1 Code availability 

All water analysis code used to produce this data is 

open-source with extensive documentation and has 

been made available for download. These resources, 

combined with the provided prepared structures and 

input files, allow for all the data provided here to be 

reproduced.   

Three sets of code were used for the water analysis 

in the repository: SSTMap, GIST-cpptraj, and GISTPP.  

https://github.com/KurtzmanLab/COVID19_GIST_HSA
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SSTMap was used for hydration site analyses, GIST-

cpptraj was used for the GIST analyses, and GISTPP 

was used to make numerical manipulations to the 

GIST dx files. Usage tutorials and documentation can 

be found on the SSTMap project page (SSTMap.org) 

and on the AMBER website. GIST-cpptraj code is 

available on the Amber-MD github 

https://github.com/Amber-MD  

All other code is available on the github:  

https://github.com/KurtzmanLab 
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