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Arf6 and its ZEB1-EPB41L5 mesenchymal axis are required for both mesenchymal-
and amoeboid-type invasion of cancer cells
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ABSTRACT
Modes of cancer invasion interchange between the mesenchymal type and amoeboid type in
response to the microenvironment, in which RhoA and Rac1 are selectively required to perform
different modes of actin-cytoskeletal remodeling. Membrane remodeling is another integral part of
invasion. Arf6 regulates the recycling of molecules at the cell periphery, and is often overexpressed
in malignant cancers together with its effector AMAP1/ASAP1/DDEF1. This pathway promotes
mesenchymal-type invasion when AMAP1 binds to EPB41L5, a mesenchymal-specific protein
induced by ZEB1. Here we show that the Arf6-AMAP1-EPB41L5 pathway, and ZEB1, are also crucial
for amoeboid-type invasion, via receptor tyrosine kinase and G-protein-coupled receptor signaling.
Thus, Arf6 appears to be necessary for both RhoA- and Rac1-driven cancer invasion. Moreover,
amoeboid-type cancer invasion may require the activation of some type of mesenchymal program
within the cancer cells.
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More than 2 decades ago, Ridley and Hall found that lyso-
phosphatidic acid (LPA) activates the small GTPase RhoA;
and that RhoA and other small-GTPases, such as Rac1, play
pivotal roles in the remodeling of actin-based cytoskeletal
architecture.1,2 Prompted by this finding, a substantial num-
ber of studies have been performed on the molecular bases
of cell migration, that is, understanding the precise roles of
small GTPases, as well as extracellular stimulations regulat-
ing small GTPases, in cytoskeletal remodeling and cell
migration, as well as in cancer invasion and metastasis. LPA
is a lipidmediator that is produced extracellularly from lyso-
phosphatidic choline, which is abundant in body fluids, by
the ectoenzyme autotaxin. Autotaxin was originally identi-
fied as a factor that promotes tumor cell motility,3 and is
also called ectonucleotide pyrophosphatase/phosphodiester-
ase family member 2, produced by different tissues and dif-
ferent types of cancers. This enzyme has a hydrophobic
pocket containing the catalytic domain, which also functions
as a hydrophobic channel to transfer de novo synthesized
LPAmolecules to their cognate G-protein coupled receptors
(GPCRs).4 This feature of autotaxin appears to ensure the
characteristic of LPA to only act locally upon its production.
We have recently demonstrated that LPA also directly
activates Arf6 (see below).5

RhoA, Rac1, and Arf6, are all critical to the
2-dimensional cell migration of adherent cells, such as

epithelial cells and fibroblasts.6,7 In 2-dimensional migra-
tion, RhoA is primarily involved in the formation of
robust bundled structures of actin fibers (i.e., actin stress
fibers) to generate a contractile force particularly at the
rear ends,8 whereas Rac1 is primarily involved in the
formation of actin-meshwork structures to promote
membrane ruffling and protrusions at the front ends.9

On the other hand, cell migration may also require the
active supplementation of membrane components to the
leading edges.10 Arf6 primarily regulates the recycling of
plasma membrane components at the cell periphery.11

Arf6 was demonstrated to be a prerequisite for
Rac1-mediated membrane ruffling and protrusion,
which thus emphasized the importance of membrane
remodeling in migration.12

Invasion (i.e., 3-dimensional cell migration penetrat-
ing into extracellular environments) is a very different
mode of cell motility compared with 2-dimensional
migration. Two different types of cancer cell invasion
have been described: mesenchymal-type invasion and
amoeboid-type invasion.13,14 Mesenchymal-type inva-
sion requires integrins and their binding to the cognate
extracellular matrixes (ECMs), as well as the degradation
of ECMs by specific matrix metalloproteinases, whereas
amoeboid-type invasion does not require either of these
activities. RhoA and Rac1 have been shown to be

CONTACT Hisataka Sabe sabeh@med.hokudai.ac.jp
© 2016 Haruka Handa, Ari Hashimoto, Shigeru Hashimoto, and Hisataka Sabe. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

SMALL GTPASES
2018, VOL. 9, NO. 5, 420–426
http://dx.doi.org/10.1080/21541248.2016.1249043

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1080/21541248.2016.1249043


differently required between mesenchymal invasion and
amoeboid invasion. It was demonstrated that a ROCK
inhibitor blocks the amoeboid invasion of HT1080 fibro-
sarcoma cells, which is induced by the treatment of cells
with protease inhibitors, although the ROCK inhibitor
does not block mesenchymal invasion of the same cells.15

Thus, RhoA appears to be preferentially required for
amoeboid invasion rather than mesenchymal invasion.15

It should be noted, however, that RhoA may also partici-
pate in mesenchymal invasion to some extent.16 Mecha-
nistically, it was reported that RhoA and ROCK-
dependent myosin light chain phosphorylation is crucial
for promoting amoeboid invasion.14,17,18 More recently,
it was shown that the increased hydrostatic pressure
induced at the moving ends by RhoA-ROCK-mediated
contractile forces drives the blebbing in membrane pro-
trusion (i.e., bleb-driven migration).7,19,20 On the other
hand, Rac1 and its guanine nucleotide exchange factor
DOCK3 may drive cancer mesenchymal invasion via
WAVE2, as has been demonstrated in melanomas.21

Interestingly, Rac1-WAVE2 signaling suppresses
actomyosin-based cell contractility and hence blocks
RhoA-mediated amoeboid invasion.21 On the other
hand, RhoA-ROCK signaling activates a GTPase-activat-
ing protein for Rac-GTPases, namely ARHGAP22, and
thereby suppresses Rac1-mediated mesenchymal inva-
sion.21 Therefore, RhoA and Rac1 appear to alternately
drive the 2 modes of invasion, by reciprocally blocking
each other. Recent studies have shown that not only
these intrinsic factors but also extracellular factors, such
as matrix stiffness and cell-ECM adhesion, may trigger
mesenchymal-amoeboid transition.22,23

The small GTPase Arf6 is essential for cell motility.6

Arf6 and its signaling proteins are often overexpressed in
different types of cancers, including those of the breast,
kidney, head and neck, and lung, and drive their mesen-
chymal invasion and metastasis.5,24-29 In breast cancer,
the overexpression of receptor tyrosine kinases (RTKs),
such as epidermal growth factor receptor (EGFR) and
hepatocyte growth factor receptor (HGFR/c-Met), are
risk factors of malignancy.30-32 We showed that these
RTKs activate Arf6, in which ligand-activated RTKs
directly recruit a guanine nucleotide exchanger, namely
guanine nucleotide-exchange protein 100 (GEP100).27

GTP-Arf6 then recruits a multiple-domain arf-GAP pro-
tein 1 (AMAP1), which is also called ASAP1/DDEF1, to
transmit the downstream signals.26 In invasion and
metastasis, AMAP1 binds to protein kinase D2 (PRKD2)
to promote the recycling of integrins,33 and also binds to
cortactin and paxillin to remodel the actin cytoskeleton
and focal adhesions.34 AMAP1 may also bind to erythro-
cyte membrane protein band 4.1-like 5 (EPB41L5),
which is a mesenchymal-specifc protein that is normally

induced during epithelial-mesenchymal transition
(EMT).35 EPB41L5 then binds to p120 catenin to seques-
ter this molecule from binding to E-cadherin, thus lead-
ing to E-cadherin internalization.35 EPB41L5 also binds
to paxillin to promote focal adhesion dynamics.35

Enhanced RTK signaling does not appear to be a
strong risk factor for renal cancer. In renal cancer cells,
we found that LPA is a potent activator of Arf6, and
thereby promotes invasion and metastasis.5 In this pro-
cess, GTP-Ga12, which is released from LPA-activated
GPCRs, binds EFA6 to activate Arf6 and its downstream
signaling involving AMAP1 and EPB41L5.5 We have
demonstrated that the Arf6-based pathway, activated by
either ligand, is crucial not only for invasion and metas-
tasis, but also for promoting the drug resistance of cancer
cells.5,36 On the other hand, there were reports that
EMT might not be necessary for cancer invasion and
metastasis, although it is crucial for drug resistance. Con-
trary to these reports, our results clearly illustrate that
EMT is crucial for both invasion/metastasis and drug
resistance.37,38

Mesenchymal invasion and amoeboid invasion are
interchangeable within a single cancer cell (i.e., mesen-
chymal-amoeboid transition), depending on the environ-
mental conditions. For example, the relatively low usage
of integrins with regard to their binding to ECMs
(i.e., low adhesion) may induce amoeboid-type invasion
of cancer cells.13 Moreover, the treatment of cancer cells
with protease inhibitors may switch cells from using
mesenchymal invasion to using amoeboid invasion.13

On the other hand, certain types of cancers, such as small
cell lung carcinomas, which demonstrate undifferenti-
ated, stem-cell like phenotypes rather than being mesen-
chymal-like, have been shown to utilize amoeboid-type
invasion even in the absence of protease inhibitors.39

Furthermore, it should be noted that cancer cells might
require the membrane-anchored metalloproteinase
MT1-MMP, even for their ‘classical’ amoeboid-type
invasion (i.e., invasiveness that is largely independent of
protease activity).40

We here examined whether the Arf6-based pathway
also drives amoeboid invasion. MDA-MB-231 cells
exhibit amoeboid invasion in the presence of protease
inhibitors (also see Fig. 1A).13 We found that the silenc-
ing of Arf6 and AMAP1 each effectively blocks
EGF-induced invasion of MDA-MB-231 cells into colla-
gen matrices, in the presence of protease inhibitors
(Fig. 1B-D). Moreover, the mesenchymal-specific
EPB41L5 was also found to be critically involved in the
protease-independent invasion of MDA-MB-231 cells
(Fig. 1 B-D). ZEB1, which is a EMT-related transcrip-
tional factor, is primarily responsible to induce the
EPB41L5 gene in human breast cancer, including
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Figure 1. Arf6-based mesenchymal pathway and ZEB1 promote amoeboid invasion of MDA-MB-231 cells in response to EGF or LPA.
(A) Morphologies of cells cultured on fibrillar collagen in the absence or presence of a protease inhibitor mix (PtdIns mix). Bars, 20 mm.
Ratios of MDA-MB-231 cells with an elongated or round shape, in the absence or presence of a PI mix, are shown in the graph on the
right. More than 300 cells were examined in each assay. (B) Invasion through fibrillar collagen in the presence of a PtdIns mix, in
response to EGF or LPA. Cells were pretreated with the indicated siRNAs. (C) Protein expression in the siRNA-treated cells was detected
by immunoblotting. (D) Cell viabilities of siRNA-treated cells.
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MDA-MB-231 cells.41 Silencing of ZEB1 also blocked the
EGF-induced invasion in the presence of protease inhibi-
tors (Fig. 1B-D). We have shown recently that LPA acti-
vates Arf6 to promote the mesenchymal invasion of
renal cancer cells, in which RhoA, but not Rac1, is dis-
pensable.5 In zebrafish germline cells, LPA induces the
cell polarization of bleb-driven cell migration.23 We
found that LPA also promotes the invasion of MDA-
MB-231 cells in the presence of protease inhibitors, in
which the silencing of EPB41L5 and ZEB1, as well as
Arf6 and AMAP1, each blocks invasion (Fig. 1B-D). As a
control, we confirmed that silencing GEP100, a product
of which activates Arf6 by binding to RTKs, did not at
all block the LPA-induced invasion, conducted in the
presence of protease inhibitors (Fig. 1B-D). Therefore,
collectively, these results demonstrated that the Arf6-
based mesenchymal program, which involves ZEB1, is
also pivotal to drive amoeboid-type invasion of some
cancer cells in response to RTK and GPCR signaling.

Our results described above and reports in the litera-
ture collectively indicated that Arf6 and its signaling
pathway promote both mesenchymal-type invasion and
amoeboid-type invasion, in which Arf6 can be activated
by RTKs or by LPA (Fig. 2). Our results moreover dem-
onstrate that amoeboid-type cancer invasion may require
the Arf6-based mesenchymal program. Therefore, it is
likely that EMT-like change is a prerequisite for both
mesenchymal-type invasion and amoeboid-type invasion
of some cancer cells. Amoeboid-type invasion may
require the anchorage-independent survival of cancer
cells. Closely associated with this, the acquisition of mes-
enchymal phenotypes by epithelial cells is coupled with
their resistance to anoikis to a certain extent.42,43 More-
over, resistance to anoikis might help to maintain cell
survival during the process of distant metastasis of can-
cer cells. We have shown that EPB41L5 is also necessary
for the distant metastasis of different cancer cells.5,41

Molecular mechanisms by which EPB41L5 plays a cru-
cial role in amoeboid-type invasion, as well as in anoikis
resistance, require further experimental scrutiny.

Different types of drugs, including protease inhibitors,
have been extensively developed with an aim to block
tumor invasion and metastasis. However, metalloprotei-
nase inhibitors have turned out to be ineffective and not
beneficial in cancer treatment.44 The plasticity of cancer
cells during tumor invasion between the mesenchymal
mode and the amoeboid mode appears to be the major
cause of the ineffectiveness of protease inhibitors. More-
over, each tumor might not express only a single type of
proteinase for invasion.45 We have shown recently that
enhancement of the cellular mevalonate pathway is
crucial for efficient activation of overexpressed Arf6 by
overexpressed RTKs, and demonstrated that inhibition

of this lipid metabolism, such as by statins, which inhibit
the rate-limiting enzyme HMG-CoA reductase, is very
effective for blocking the invasion and metastasis of
breast cancer cells, if cells overexpress Arf6 and its sig-
naling proteins.36 Moreover, in our in vitro experimental
system, 1 nM of statins was found to be sufficient to
improve the drug resistance of cancer cells by about
100-1000-fold, if cells overexpress the Arf6-based path-
way.36 We are currently investigating whether the use of
statins coupled with certain anti-cancer drugs in the clin-
ical setting is beneficial for patients with breast cancers
that overexpress Arf6 and its signaling pathway. We are
also investigating methods by which Arf6 activation by
GPCR-signaling can be blocked (Fig. 2).

Materials and methods

Cells

MDA-MB-231 cells were purchased from American
Type Cell Culture. The cells were cultured at 37�C in a
1:1 mixture of DMEM (Invitrogen) and RPMI 1640
(Invitrogen), with 10% fetal calf serum (HyClone) and
5% NU serum (BD Biosciences).

Cell viabilities were measured using a cell counting kit
(CCK-8; Dojindo) following themanufacturer’s instructions.
The protein concentration of cell lysates was measured using
a coomassie protein assay kit (Thermo Fisher Scientific).

Reagents

Bovine collagen solution, type-I, 3 mg/ml (PureCol) was
purchased from Advanced BioMatrix. The amoeboid
invasion assay was performed using the following prote-
ase inhibitor mix (PI mix)13: GM6001 (50 mM;
sc-203979, Santa Cruz Biotechnology), E64 (250 mM;
E3132, Sigma-Aldrich), pepstatin A (100 mM; P5318,
Sigma-Aldrich), leupeptin (2 mM; L9783, Sigma-Aldrich),
and aprotinin (2.2 mM; A4529, Sigma-Aldrich). Lyso-
phosphatidic acid was purchased from Santa Crus and
epithelial growth factor was from PeproTech.

Antibodies and immunoblotting

Rabbit polyclonal antibodies against AMAP1, GEP100,
and EPB41L5 were described previously.5,26,27 Other
antibodies were obtained from commercial sources, as
follows: ZEB1 (#3396, Cell Signaling Technology), and
b-actin (#A5441, Sigma-Aldrich). Donkey antibodies
against rabbit and mouse IgGs, each conjugated with
horseradish peroxidase, were from Jackson ImmunoRe-
search Laboratories. Immunoblotting analysis was
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performed using ECL Western Detection Reagents (GE
Healthcare) as described previously.29

siRNA

Gene silencing by siRNA was performed as described
previously.36 In brief, cells were transfected with 50 nM
of each siRNA duplex using Lipofectamine 2000 or Lipo-
fectamine RNAiMax (Invitrogen) according to the man-
ufacturer’s instructions, and incubated for 2 d before the
amoeboid invasion assay. Duplex oligonucleotides were
chemically synthesized and purified by Japan BioService.
Two different sequences were used for EPB41L5 and
ZEB1. For the silencing of ZEB1, ZEB1 stealth siRNAs
(ZEB1-HSS110548 and ZEB1-HSS110549) were used,
together with a negative control Stealth RNAi duplex
with medium GC content (Invitrogen).

Amoeboid invasion assay and quantification

The amoeboid invasion assay was performed according
to a previously described method.15 Briefly, 1 mg/ml

fibrillar type-I collagen gels were prepared using a
3 mg/ml collagen solution, 4 £ DMEM, 0.1 N NaOH,
and double-distilled water. For the morphology assay,
MDA-MB-231 cells were cultured on the top of fibrillar
collagen gels with or without a PI mix. After incubation
for 2 days, cells were observed using a microscope
(EVOS FL Cell Imaging System). MDA-MB-231 cells
(1.0 £ 105), pretreated with the indicated siRNAs, were
seeded onto the top of 3-dimensional fibrillar collagen
gels, which were set within the upper chamber of a
24-well Transwell plate (Corning) in the presence of a PI
mix. The lower chamber was filled with medium con-
taining LPA (2 ng/ml) or EGF (10 ng/ml). After incuba-
tion for 3 days, cells were stained with 4 mM calcein-AM
(Dojindo), and z-section images (5 mm intervals) from
the surface of fibrillar collagen gels down to 100 mm
were acquired using a confocal microscope equipped
with a Plan Fluor 10 objective, and analyzed by the
attached software (Nikon A1R with NIS-Elements). Cell
invasion activities were quantified as the percentage of
cells invading between 40 mm and 100 mm of the colla-
gen gels, in which 2 different fields were counted in

Figure 2. Requirement of the Arf6-based mesenchymal pathway in both mesenchymal-type and amoeboid-type cancer invasion.
Several receptor tyrosine kinases (RTKs), including those for epidermal growth factor (EGF) and hepatocyte growth factor (HGF), as well
as G-protein-coupled receptors (GPCRs) for lysophosphatidic acid (LPA), are known to activate RhoA and Rac1 to promote cancer inva-
siveness; in which RhoA is preferentially required for amoeboid-type invasion, whereas Rac1 is required for mesenchymal-type invasion.
We show that the Arf6-AMAP1-EPB41L5 pathway, activated either by EGF or by LPA, is essential for both mesenchymal-type and amoe-
boid-type invasion. EPB41L5 is a mesenchymal-specific protein primarily induced by ZEB1 in breast cancer. ZEB1, as well as EPB41L5,
are also necessary for both mesenchymal-type and amoeboid-type invasion. We propose that, for cancer therapeutics, blocking Arf6,
such as by inhibition of the mevalonate pathway, might be more effective than blocking RhoA or Rac1. It should be noted that blocking
Arf6 may also effectively decrease the drug resistance of cancer cells, if cells overexpress the Arf6-based pathway (see text).
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2 independent experiments. All data were analyzed by
the unpaired t-test, and p < 0.05 was considered to indi-
cate a statistically significant difference between
2 groups. All graphs were created using Prism 6.0
(GraphPad Software).
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