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Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied
to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal
epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may
strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence
of the selected head model on the localization precision of IED in a large number of patients with known focus
localization has not yet been performed.
We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who
have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We
compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints
(LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from
the individual MRI of the patient and ESI was performed on averaged IED.
We found that all head models provided very similar source locations. In patients having a positive post-
operative outcome, at least 74% of the source maxima were within the resection. The median distance from
the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC,
BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated
and difficult to implement head models is not a crucial factor for an accurate ESIL
© 2014 The Authors. The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

directly measure the neuroelectrical alterations that are the hallmark
of epileptic activity. Compared to intracranial recordings, scalp electrical

In pharmacoresistant focal epilepsy the surgical resection of the
epileptogenic area is a therapy of choice for reducing the frequency of
seizures. During the presurgical evaluation, the precise identification
of the epileptogenic zone is crucial in order to guide the removal of
the epileptic foci and spare as much as possible the functionally relevant
areas of the cortex. Several techniques are considered together to get
a trustworthy estimation of the epileptogenic areas. Among them,
electrophysiological investigations are particularly suited as they
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potentials are easy to acquire but they measure remote effects of electri-
cal currents generated within the brain. As such, they do not allow a
precise localization of the origin of electrophysiological abnormalities.
The electrical source imaging (ESI) attempts to overcome this drawback
by reconstructing the activity in the brain from a map of scalp potentials.
Reviews (Kaiboriboon et al., 2012; Plummer et al., 2008) recently con-
firmed that ESI is a valuable tool for estimating the source of interictal
epileptic discharges (IEDs) and clinical validation studies showed that
these generators are reliable estimates of the seizure onset zone
(Coutin-Churchman et al., 2012; Megevand et al., 2014) and the epilep-
togenic zone (Brodbeck et al., 2011).

ESI involves two steps. The first one, called resolution of the forward
problem, consists in modeling how electrical currents generated in the
brain propagate to the scalp electrodes, where their consequences
are actually recorded. The second step, called resolution of the inverse
problem, consists in inverting the forward model in order to get brain
activity from scalp potential. The resolution of the forward problem

2213-1582/© 2014 The Authors. The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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highly depends on the head model (head geometry and tissue conduc-
tivity) and is eventually achieved by solving the Maxwell's equations ac-
cordingly, producing the forward operator called the leadfield matrix.
Regardless of the ability of a method to invert the leadfield matrix, an in-
accurate leadfield model will produce a bad inverse solution, and conse-
quently will lead to an inaccurate ESI. More than thirty years ago, when
the EEG inverse problem was first considered, the head model was a sin-
gle semi-sphere with homogenous and isotropic electrical conductivity.
Since then, head models have been greatly improved (Grech et al.,
2008) and they can now account for multiple types of tissue and aniso-
tropic conductivities. Most important in the context of presurgical eval-
uation is the use of realistic head models based on the individual MRI of
the patient. The most commonly used realistic models are the Boundary
Element Models (BEM) and the Finite Element Models (FEM). The supe-
riority of BEM and FEM over 3-shell spherical head models has been
proved using simulated data (Akalin Acar and Makeig, 2013; Fuchs
et al., 2007) as well as small group of patients (Guggisberg et al.,
2011; Wang et al., 2011). The downside of these sophisticated head
models is an increased computational load. The Locally Spherical
Model with Anatomical Constraints (LSMAC) (Brunet et al., 2011) tries
to compensate this computational cost by using analytical equations
while keeping the realistic aspect of the head geometry. In this model
the leadfield is calculated iteratively using a spherical model with a dif-
ferent radius for each electrode. It is an improved version of the SMAC
model (Spinelli et al., 2000) and has been successfully applied in recent
experimental studies (Avanzini et al., 2013; Becker et al., 2013; Berchio
et al., 2014) but, to our knowledge, has not been validated in patients
with known focus localization and has not been compared to the well-
established BEM and FEM. Besides, BEM and FEM themselves have not
been evaluated on a large set of real data. We here present such a vali-
dation and comparison study on data of 38 epileptic patients in whom
the irritative zone was known from intracranial recordings and in the
majority of whom the epileptogenic area was surgically removed,
allowing comparison of the ESI source maximum with the intracranial
electrode positions and the resected zone.

2. Material and methods
2.1. Patients

The patient dataset (Megevand et al,, 2014) included n = 38 patients
(age at evaluation 24 &+ 12 years, range 3-51 years, 21 male, 17 female)
matching following inclusion criteria: i) they suffered from drug resis-
tant partial epilepsy, ii) they had high-density scalp EEG (128 or 256
channels) showing interictal spikes, iii) they underwent intracranial
EEG showing interictal spikes. 32 of them also had a surgical resection
of supposed epileptic areas of the brain. The retrospective study
presented here is part of a larger neuroimaging program in epilepsy
approved by the local ethics committee.

2.2. Scalp EEG

Fourteen patients were recorded using the 128-electrode Geodesic
Sensor Net and 24 using the 256 electrode Geodesic Sensor Net. Elec-
trode impedances were kept below 20 kQ (Ferree et al.,, 2001) and sig-
nal was 0.1-100 Hz band-pass filtered. We recorded at least 30 minutes
of continuous EEG at 256-1000 Hz sampling frequency. Peaks of 20-50
interictal spikes with similar scalp distribution were marked by expert
neurologists (SV, MS) and averaged within a window of 1s centered
on the marked peaks. For further analysis, electrodes on the cheek and
the neck were systematically removed from the EEG because they
were too noisy and artifact-laden. If other channels exhibited strong
and repetitive artifacts, they were also removed and the corresponding
signal rebuilt by interpolating neighboring electrodes using a spherical
spline. Hence, 204 electrodes from the 256-electrode recordings were
used for the analysis, and 125 were kept from the 128-electrode cap.

2.3. Irritative zone

The estimation of the irritative zone (IZ) was based on intracranial
EEG recordings. Thirteen patients were implanted with only subdural
grids and strips, 12 patients had only depth electrodes, and 13 had
both subdural and depth electrodes. Positions of intracranial electrodes
were calculated using the post-implantation imaging (CT for 36 patients
and MRI for 2 patients) and coregistered with solution points of ESI.
Interictal recordings were reviewed by board certified EEG experts
(MS, SV). Contacts showing interictal spikes formed the irritative zone.
Contacts involved only in the propagation of interictal spikes were not
included in the IZ. In IZ the electrode showing in average the highest
peak amplitude was considered as the centroid of IZ. The location of
this electrode will be denoted by max-IZ in the following.

24. Surgery

Surgical resection of the supposed epileptogenic area of the brain
was performed on 32 patients. Post-operative follow-up of at least one
year allowed neurologists to determine outcome of surgery. 15 patients
had an Engel class I outcome (seizure free), 8 had Engel class II
(decrease of seizure frequency of more than 80%), 7 had Engel class III
(decrease of seizure frequency 50-80%) and 2 had Engel class IV (no
change). Engel class I and II were considered as positive outcome
while Engel class III and IV were considered as negative outcome. All
operated patients had post-operative MRI acquired at 1.5 or 3 Tesla
with T1 weighting. We used these images to precisely determine the
resected areas and coregistered them with the solution points used in
the ESL

2.5. Inverse solution

We used the inverse method LORETA (Pascual-Marqui et al., 1994)
implemented in Cartool (Brunet et al., 2011). This method basically pro-
vides a pseudo-inverse matrix of the leadfield matrix using a least
square Tikhonov-regularized solution under a smoothness constraint.
The pseudo-inverse applied on the peak of averaged spikes gave us an
estimation of the underlying brain activity. More precisely, strength of
dipoles associated with each solution point was obtained. While several
studies suggested that source localization at the peak of the spikes may
be contaminated by spike propagations (Alarcon et al., 1994; Lantz et al.,
2003a; Ray et al., 2007), we wanted to ensure that the SNR was suffi-
ciently high for all patients, which was not the case when performing
the ESI at the half of the rising-phase. The source of surface spikes is
known to be spatially extended (Tao et al., 2005). As LORETA is not
able to determine the extension, we took into account only the solution
point with maximal source strength. This point will be denoted ESI-max
in the following.

2.6. Leadfield matrix and head models

The leadfield matrix is a linear operator that transforms current
generated at solution points in the brain into scalp potentials. It depends
on i) the position of the solution points, ii) the position of the scalp
electrodes, and iii) the volume conductor model.

We constrained the solution points in the gray matter using the indi-
vidual pre-implantation T1 MRI and placed them on a regular grid of
6 mm resolution (yielding 3000 to 5000 solution points). Scalp elec-
trodes were coregistered with the individual T1 pre-implantation MRI
performing a 9-parameter transformation of a template cap’ such that
T9, T10 and Cz were placed according to the 10-20 system. Electrodes
of the transformed template cap were then projected onto the head
surface. Solution point generation and electrode coregistration

1 Available at https://sites.google.com/site/cartoolcommunity/files.
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Table 1

Main characteristics of the LSMAC, BEM and FEM head models as used in the study.
Head Type of Modeled Skull Solver
model geometry tissues anisotropy
LSMAC Surface Brain/skull/scalp No Analytical
BEM Surface Brain/skull/scalp No Numerical
FEM Volume Brain/CSF/skull/scalp No Numerical

were performed in Cartool (D. Brunet, Geneva University Hospital and
Medical School, Center for Biomedical Imaging (CIBM), Geneva,
Switzerland http://sites.google.com/site/fbmlab/cartool).

The volume conductor model describes the head geometry (head
model) and assigns an electrical conductivity to each type of tissue of
the head. We used conductivities of 0.33 S/m for the scalp and the
brain. The brain to scalp conductivity ratio was constrained by BESA
and therefore set to 1/80. When the cerebrospinal fluid (CSF) was
taken into account in the model, its conductivity was 1.79 S/m. For our
study we considered three different head models: the Locally Spherical
Model with Anatomical Constraints (LSMAC), the Boundary Element
Model (BEM), and the Finite Element Model (FEM). Main features of
these head models are recalled in Table 1.

In the LSMAC (Brunet et al., 2011), the thicknesses of the scalp, skull
and brain are estimated sequentially at each electrode location. These
thicknesses are then used in a 3-shell spherical model with the local
radiuses, providing a realistic geometry between solution points and
electrodes to be accounted for. The electrical conductivity of each tissue
was homogenous and isotropic. The LSMAC could be classified between
the 3-shell spherical head model and the BEM, because the head geo-
metry is realistic but the forward solution remains analytical. Also,
contrary to the BEM, it does not need an explicit global segmentation
of the brain tissues, skipping an otherwise delicate step when the
available MRIs are not of good quality.

The BEM defines only interfaces between each tissue of the head.
Here we used a three layer model accounting for air/scalp, scalp/skull,
and skull/brain interfaces. They were modeled by triangular meshes
made of 1800, 1000 and 800 triangles respectively using the pre-
implantation T1 MRI and the Fieldtrip toolbox (Oostenveld et al.,
2011). Each type of tissue was considered electrically homogenous
and isotropic. Adding solution points and electrodes to the head

model, the leadfield matrix was finally computed with the boundary
element numerical solver implemented in the OpenMEEG library
(Gramfort et al., 2010).

In the FEM, the head is separated into a large amount of elementary
volume elements. Each element is labeled as a certain type of tissue with
isotropic and homogeneous conductivity. The segmentation algorithm
as implemented in BESA MRI 2.0 (BESA GmbH, Grdéfelfing, Germany)
yielded the classification into four different types of tissue on a 1 mm
cubic voxel grid: scalp, skull, CSF and brain. Next, a 2 mm geometry-
adapted, cubic mesh is constructed for the FEM computation by inte-
grating over the 1 mm voxels (Wolters et al., 2007). Finally, by adding
the gray matter solution points and electrodes we computed the FEM
leadfield matrix in BESA MRI.

We emphasize that for each head model we used the exact same
solution points, electrode position and head conductivities.

2.7. Outcome measure of ESI

As a first measure we investigated how ESI varies with respect to the
considered head model without using any ground truth. Thus we calcu-
lated the mutual Cartesian distances between ESI-max resulting from
LSMAC, BEM and FEM. Eventually we got three measures: LSMAC to
BEM, LSMAC to FEM, and BEM to FEM distances. We also calculated
the percentage of ESI-max that was at the exact same solution points
for two or all head models. This value is denoted by the rate of
superimposed ESI-max in the following.

In order to validate ESI accuracy with respect to the choice of head
model, we considered two gold standards: the resected area and the ir-
ritative zone based on intracranial recordings. First, we estimated the
sensitivity, the specificity, the false negative distance and the positive
predictive value (PPV) of the ESI with respect to the resected area. The
sensitivity is the ability of ESI to detect the region responsible of the
epileptic seizures. It is the rate of ESI-max in the resected area when sur-
gery outcome was positive. The specificity is the ability of ESI to reject
non-epileptic regions. This is the rate of ESI-max outside the resected
area when surgery outcome was negative. Due to lack of information,
the term “upper bound of the specificity” is more accurate, because for
negative post-operative outcome we did not know the actual epileptic
region and consequently, in this situation, and when ESI-max did not
coincide with the resected area, we had no way to know whether or

Fig. 1. Distance from ESI-max to irritative zone (IZ). White dots represent intracranial electrodes showing interictal spikes, thus they define IZ. The white dot delimited by a black line
represents the electrode showing interictal spikes with the maximum amplitude, it defines max-IZ. The distance from ESI-max (cross) to max-IZ is denoted by dcenter and the distance
from ESI-max to the nearest electrode belonging to IZ is denoted by dp,. IZ: irritative zone, ESI-max: maximum activation of electrical source imaging.
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Table 2
Distances between ESI-max produced by LSMAC, BEM and FEM, in millimeters.
LSMAC/BEM LSMAC/FEM BEM/FEM
Median distance 12.0 134 8.4
Max distance 46.0 85.9 771

not the ESI-max was inside the true epileptic focus. When ESI-max was
outside the resected area and surgery outcome was positive (i.e. a false
negative occurred), we calculated the so-called “false negative distance”
defined as the minimal Cartesian distance between ESI-max and the
resected zone. The PPV is the probability of having a positive post-
operative outcome when the ESI-max was in the resection. It is a mea-
sure of confidence of the ESL

Concerning the IZ defined by intracranial recordings, we defined two
distances (Fig. 1). Firstly, dm, is the minimal distance between estimat-
ed source and IZ. It is formally defined as the Cartesian distance from
ESI-max to the nearest electrode in IZ. Secondly, deper i the distance
between the estimated source and the centroid of IZ. It is formally
defined as the Cartesian distance from ESI-max to max-IZ. For both
distributions of distance, we calculated the median value, the mean
value, the standard deviation with respect to the mean (denoted by
std), the 1st quartile (Q1) and 3rd quartile (Q3). All these values will
be represented in the results as box-and-whisker plots. We also calcu-
lated the interquartile range (defined by IQR = Q3 — Q1) which
reflects the spread of the distribution.

3. Results
3.1. Distance between head models

Table 2 and Fig. 2 show how ESI differ from each other with respect
to the head model. Table 2 reveals that ESI-max was in general very
close from each other (median distance is at most 13.4 mm) but can
be large in some rare cases (up to 85.9 mm). Similarity was most
pronounced for BEM and FEM (median distance is 8.4 mm and rate of
superimposed ESI-max is 32%). In 4 cases out of 38 (10%) the ESI-max
was at the exact same solution point for all head models.

3.2. ESI and resection

Sensitivity, specificity, PPV and median false negative distance are
given in Table 3. Generally speaking LSMAC and BEM had slightly better
performance than FEM. All sensitivities were similar ranging from 0.74
(17/23) to 0.78 (18/23). Differences in specificity were more pro-
nounced but were based on very few patients (5 or 6): the LSMAC spec-
ificity and FEM specificity are 0.44 (4/9) while that of the BEM was 0.67
(6/9). The PPV ranged from 0.77 (17/22) for the FEM to 0.85 for BEM
(17/20). When false negatives occurred, ESI-max of the LSMAC was
the closest from the resection with a median distance of 13.7 mm (5

LSMAC
10%
18%//>21%
32%
BEM FEM

Fig. 2. Percentage rate of superimposed ESI-max with respect to the head model.

Table 3

Results of ESI with respect to the head model using resection as ground truth. The LSMAC
has the best sensitivity and median false negative distance while the BEM has the best
specificity and PPV. Overall, the FEM is slightly less than or as efficient as the LSMAC and
the BEM. Distances are in millimeters.

LSMAC BEM FEM
Sensitivity (n = 23) 0.78 0.74 0.74
Specificity (n = 9) 0.44 0.67 0.44
Positive predictive value (PPV) 0.78 0.85 0.77
Median false negative distance 13.7 16.1 232

patients). Those of BEM and FEM were 16.1 mm and 23.2 mm respec-
tively (6 patients for both).

3.3. ESI and irritative zone

Fig. 3A shows the distribution of the minimum distances from ESI-
max to IZ (dmin) and Fig. 3B shows the distance from ESI-max to the
centroid of IZ (dcenter). As defined in Subsection 2.7, dp, is the minimal
ESI-max/IZ distance and dcenter is the ESI-max/max-IZ distance. Overall,
the LSMAC had slightly better performance than BEM and FEM. Its
resulting median minimal distance to IZ (13.2 mm) is 18% shorter
than that of the FEM and 17% than that of the BEM. These values drop
respectively to 6% and 2% for the distance to the centroid of IZ. FEMs
dmax values are more spread (std = 19.8 mm, IQR = 23.9 mm) than
LSMAC and BEM (std = 15.7 mm, IQR = 18.8 mm and std =
14.4 mm, IQR = 18.7 mm, respectively). The same assessment is true
for dp;, and particularly pronounced for the standard deviation.

We also performed a t-test in order to test whether the distributions
of distance were statistically different across head models. No p-value
was less than 0.05. Distributions are therefore not statistically different.

3.4. Influence of MRI segmentation on ESI

In the FEM pipeline the segmentation was sometimes inaccurate due
to large lesions in the brain or to the difficulty of differentiating brain tis-
sues in children. Fig. 4 shows an example of this situation for a patient
with successfully operated right mesial temporal lobe epilepsy. The
MRI reveals a large lesion in the left frontal lobe. The brain defect is filled
by CSF but the segmentation algorithm classified it as bone tissue (yel-
low outlines), which has a much lower conductivity than that of the CSF.
As a consequence, the FEM ESI-max was located in the medial frontal
lobe while it should be in the right temporal mesial region. LSMAC
and BEM seemed to ignore the lesion and included it within the brain.
As brain and CSF have similar conductivities, LSMAC and BEM ESI were
more accurate showing a maximum activation in the resected area.
Table 4 and Fig. 5 show the same type of results as in Subsections 3.2
and 3.3 but excluding the six patients for whom the segmentation was
obviously inaccurate. Performance of the FEM improved significantly
without these patients, and was now better or closer to those of
LSMAC and BEM.

For each head model, we also performed a t-test between distribu-
tions of distances including accurate segmentation only and inaccurate
segmentation only. Segmentation inaccuracies have a significant in-
fluence on the FEM as the p-value is lower than 0.05 for both dpn,
(p = 0.002) and dcepeer (p = 0.003) distances. It has a limited influence
on the BEM, the p-value is slightly lower than 0.05 for dp;, (p = 0.041)
but greater than 0.05 for dcenger. The LSMAC is not statistically influenced
by segmentation inaccuracies.

4. Discussion
Our study investigated the influence of the head model on the ESI in

epilepsy. Three widely used head models were compared: the LSMAC,
the BEM and the FEM. Localization errors were calculated with respect
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Fig. 3. Distance from ESI-max to IZ. The black dots represent the mean distance, and the whiskers the standard deviation with respect to the mean. The horizontal line within the box is the
median value, the top line of the box is the 3rd quartile while the bottom line is the 1st quartile. In panel A the minimum distance from ESI-max to IZ (dy,;,) is represented. In panel

B distance from ESI-max to the centroid of IZ (dcenter) is represented.

to the intracranial recordings of 38 epileptic patients and with respect to
the resected area of 32 patients.

Our results showed that the ESI was influenced by the head model to
a moderate and non-significant degree. The median distance between
the maximum ESI obtained by LSMAC and FEM was at most 14 mm. In
4 cases out of 38, ESI-max was at the exact same location for all head
models and in 50% of cases at least two head models gave the same
ESI-max. This small distance between ESI results (few millimeters)
will not significantly influence clinical decision making after the
presurgical evaluation. This was confirmed by the fact that there was
no significant difference between head models with respect to valida-
tion with intracranial recordings. The median minimal distance from
ESI to IZ was between 13 and 16 mm while that of ESI to max-IZ was
25-27 mm. Although we noted a slightly reduced overall accuracy for
the FEM pipeline, this was not significant. Indeed, when patients with
poor segmentation or lesions were removed from the dataset, FEM
performance reached or overtook that of LSMAC and BEM, though
again the difference to the other pipelines is not statistically significant.
This discrepancy is due to the high sensitivity of the segmentation
algorithm of the FEM pipeline to MRI quality when trying to separate
CSF and skull tissues (Lanfer et al., 2012). Since complementary T2
data were lacking, CSF could not be identified adequately and, thus,
lesion tissue could be mislabeled as bone by the automated FEM

brain lesion marked

: -+ ESI-max
as bone tissue

(B) LSMAC ESI

(A) segmentation

segmentation algorithm of BESA MRI. The option to manually correct
the segmentation results was not used because it was still in develop-
ment and consequently a cumbersome process impracticable in a clini-
cal context. Thus, the limited performance of FEM in these cases with
problematic segmentation was not due to the method as such but to
limitations in input.

The relative insensitivity of ESI to the head model in a clinical
context probably occurs because the potential benefit of a given head
model is too small compared to the confounding effect of other factors
such as inaccurate conductivities, segmentation inaccuracies, low reso-
lution of the grid of solution points, noisy data (EEG and MRI), approx-
imate ground truth and inverse method blurring. The most recent head
models now take into account white matter anisotropy, and divide the
skull in several layers. This fine degree of modeling is of course out-
standing and the effort for improving head models must keep going,
but, for really impacting ESI in clinical context, this effort has to be
done together with enhancing inputs to the model, especially by
improving acquisition protocols and the segmentation of MRI. For
now, our results suggest that it is not necessary to use these elaborate
and time-consuming head models in epilepsy due to the aforemen-
tioned issues.

The best gold standard for validating ESI would be the simultaneous
recording of both intracranial and scalp EEG. Ideally, controlled events-

(C) BEM ESI

(D) FEM ESI

Fig. 4. Example of ESI when the segmentation was inaccurate. The patient was operated in the right temporal lobe and was seizure-free after the resection. In panel A, the pre-resection MRI
shows a large lesion in the left frontal region containing CSF. The segmentation algorithm marked this part as bone (outlined by yellow lines). Thus these voxels are labeled as skull tissue in
the FEM and the resulting ESI (D) shows a maximum in the mesial frontal region. In contrast, LSMAC and BEM ESI (B and C) show accurate localization of the ESI-max in the right mesial

temporal lobe.
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Table 4

ESI with respect to resection for different head models and after removing patients with
inaccurate segmentation. All values have improved compared to those including
inaccurate segmentation. FEM values are now very similar to those of the LSMAC.

LSMAC BEM FEM
Sensitivity (n = 20) 0.80 0.75 0.80
Specificity (n = 6) 0.5 0.67 0.5
Positive predictive value (PPV) 0.84 0.88 0.84
Median false negative distance 111 13.2 14.7

of-interest should be emitted from a contact itself in order to know ex-
actly the origin of the events observed on scalp EEG. Getting this kind of
data for a number of patients sufficient to allow statistical estimation is a
real challenge. Thus, in this study, we used intracranial EEG recorded
non-simultaneously with scalp EEG. We assumed that IED visible on
scalp EEG at the time of its recording originated from the same location
as IED marked on intracranial EEG. This assumption may not hold in all
cases, since not all intracranial spikes are seen on the surface (Yamazaki
et al., 2013). Another limitation is the limited spatial sampling of the
brain by intracranial electrodes resulting in the possibility to miss part
or all of IZ by intracranial recordings, especially when depth electrodes
were used. In addition, even if the IZ was well-covered, the distance be-
tween contacts was about 10 mm, thus we do not have a very precise
spatial resolution of max-IZ. Concerning subdural recordings with
grids or strips placed on the brain surface, the true focus might lay
deeper inside the brain, requiring source localization algorithms to
properly localize it (Acar et al., 2011). All this brings some uncertainty
to our results, but we believe that intracranial EEG remains an excellent
gold standard to estimate the yield of ESI because it measures directly
the phenomena we want to localize. On the contrary, other commonly
used comparisons such as resected area or brain lesion visible on MRI
are indirect measures that add even larger uncertainty than the intra-
cranial recordings. The finding of a brain lesion is not a sufficient formal
proof of the localization of epileptic activity as the epileptic activity usu-
ally arises at the neighborhood or margins of the lesion rather than in
the lesion itself and some lesion could be incidental findings unrelated
to the epileptic activity (e.g. as in some MRI findings of cavernoma). Re-
garding the validation using resection areas, the hole left by a successful
surgical resection does not directly reflect the origin of IED but a region
embracing the seizure onset zone (SOZ). In epilepsy, ESI is applied
almost exclusively on IED because this type of event occurs more fre-
quently and with a better signal-to-noise ratio than seizures. Therefore,

LSMAC BEM FEM

the origin of our events-of-interest is the 1Z, not the SOZ. Nevertheless,
these two regions usually overlap as shown in a recent intracranial
EEG study (Megevand et al., 2014). Taking the resected area as a gold
standard is thus a valuable clinically motivated gold standard allowing
the study of the relationship between ESI and post-operative outcome,
and more generally of the benefit of ESI in the pre-surgical process of
epilepsy.

An important factor influencing the forward modeling is the electri-
cal conductivity of the different layers of the head. The ratio between
skull and brain conductivity was constrained to a default value of 1/80
in the BESA MRI version we used for FEM. This ratio is one of those
used in the literature (Geddes and Baker, 1967; Goncalves et al., 2003;
Gutierrez et al., 2004; Lai et al., 2005; Oostendorp et al., 2000) but it
does not correspond to current recommendations that tend to rather
be between 1/15 and 1/40 (Ryynanen et al., 2006). However, its influ-
ence on ESI seems limited (Stenroos and Hauk, 2013) and we used the
same for all head models to ensure a fair comparison.

We did not test the influence of the head models for low-density
EEG usually used at the first examination in clinical routine. Numerous
studies have shown that high-density EEG greatly improves ESI
(Holmes et al., 2010; Lantz et al., 2003b; Yamazaki et al., 2012), and
that consequently EEG source analysis should be performed only with
high-density recordings.

In summary, we showed that the choice between LSMAC, BEM and
FEM head models had no significant influence on ESI outcome. Although
LSMAC showed slightly better accuracy than BEM and FEM (few milli-
meters at best), this non-significant advantage was not present when
removing the cases with problematic segmentation. The influence of
segmentation inaccuracies affected all models. However, our results
showed that the segmentation used in FEM was significantly more sen-
sitive to the quality of the MRI input data. For more accurate head
modeling, clinical MRI protocols will need to be improved to acquire
T1-weighted images without fat shift artifacts as well as T2-weighted
images to improve skull and CSF rendering. Based on current MRI proto-
cols and segmentation, however, the choice between the presented
head models does not significantly influence clinical decision making
following pre-surgical evaluation in epilepsy. Our study suggests that
sophisticated and time-consuming head models have currently no
clear benefit in a clinical context as long as other sources of error
influencing ESI persist: spatial resolution of the grid of solution points,
blurring of the inverse solution, noise in data and limitations in MRI
segmentation.

(B)

50

; -

E 35
E
> 30 ;
£ = 5 B
v
< 25 -
20
15 ' 1
10
LSMAC BEM FEM

Fig. 5. Distance from ESI-max to IZ without patients with inaccurate segmentations (32 patients remaining). The black dots represent the mean distance, and the whiskers the standard
deviation with respect to the mean. The horizontal line within the box is the median value, the top line of the box is the 3rd quartile while the bottom line is the 1st quartile. Median
distances without removing inaccurate segmentations (see Section 3.3) are recalled by the gray dashes. Minimum distance from ESI-max to IZ (dmin) is displayed in panel A, distance
from ESI-max to the center of IZ is displayed in panel B (dcenter)- All values but dcenter of LSMAC have improved compared to those including inaccurate segmentation (Fig. 3). This behavior

is more pronounced for the FEM.
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