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How a life-like system emerges 
from a simple particle motion law
Thomas Schmickl, Martin Stefanec & Karl Crailsheim

Self-structuring patterns can be observed all over the universe, from galaxies to molecules to living 
matter, yet their emergence is waiting for full understanding. We discovered a simple motion law for 
moving and interacting self-propelled particles leading to a self-structuring, self-reproducing and self-
sustaining life-like system. The patterns emerging within this system resemble patterns found in living 
organisms. The emergent cells we found show a distinct life cycle and even create their own ecosystem 
from scratch. These structures grow and reproduce on their own, show self-driven behavior and interact 
with each other. Here we analyze the macroscopic properties of the emerging ecology, as well as the 
microscopic properties of the mechanism that leads to it. Basic properties of the emerging structures 
(size distributions, longevity) are analyzed as well as their resilience against sensor or actuation noise. 
Finally, we explore parameter space for potential other candidates of life. The generality and simplicity 
of the motion law provokes the thought that one fundamental rule, described by one simple equation 
yields various structures in nature: it may work on different time- and size scales, ranging from the 
self-structuring universe, to emergence of living beings, down to the emergent subatomic formation of 
matter. 

The emergence of order from chaos is one of the key phenomena in morphogenesis across spatiotemporal scales1. 
Key singularities, in which order emerges and self-sustains from chaotic substrates, still wait for full understanding2:  
Our universe is self-structuring, self-replicating life-forms emerged from simple molecules and simple chemical 
interaction patterns produce persistent complex thoughts in our brains3–6. These structures reside at equilib-
rium of growth and decay, in which unordered particles are self-ordering and - after some time - fall back to 
unorderedness1,7, as living systems manage to reside far from a thermodynamic equilibrium8. No general simple 
proximate model yields such dynamic complex structures, and it is undecided whether there was “gene first” or 
“metabolism (cell) first”9,10 at the origin of life. We discovered a simple motion law for self-propelled particles 
(SPP)11 allowing spontaneous emergence of self-sustaining and self-reproducing protocells12 from populations of 
homogeneous reactive particles. These structures show distinct lifecycles with morphogenesis and reproduction. 
Thus we consider those structures to be protocells12 as they encapsulate the basic properties of very early life 
forms in the primordial soup13,14. We named this class of systems “Primordial Particle Systems” (PPS), as they 
model a spontaneous emergence of life-like structures. In contrast to existing protocell models12,15 PPS are sig-
nificantly simpler without impairing their dynamics, thus they are more general and fundamental. Unlike other 
simple models, most prominently Conway’s “Game of Life”16, PPS produce natural-like structures (cells, spores) 
and dynamics (emergent ecology, emergent life cycles) without any restriction to unnatural modeling constraints 
like spatial discretization or time synchronization of agents. Thus, we claim that our PPS represents the simplest 
model capable of predicting the emergence of ordered structures that behave, interact, grow, heal, replicate, and 
die without showing high sensitivity on parameters (particle connectivity, speed, density), as we show by our 
results.

We aim for an as-simple-as-possible system that builds a life-like ecosystem from (random) scratch that is 
self-organizing in an emergent way based solely on local interaction (forces) without any global information 
available to the involved components. These restrictions make the system interesting for designing artificial 
“active matter” systems17: The simpler the microscopic rules are, and the more localized interaction is, and the 
more resilient and pluripotent the resulting emergent macroscopic system is against error/noise, the higher will 
be the system’s potential to produce interesting, maybe even life-like, artificial systems18.

Besides that, the generality and simplicity of the motion law provokes the thought that such structures 
observed on multiple size scales (from cosmic to sub-atomic) may emerge due to one fundamental rule described 
by a simple equation, like the one we present here.
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Method
The model. A PPS models a population of particles moving deterministically and asynchronously in a 
continuous toroidal wrapped space. Each particle is defined by its position pt =  (xt, yt), by its heading φt, and 
by its movement with constant velocity v, assuming an open system allowing steady energy influx for motion. 
Particles react to other particles within radius r by changing their heading: Turn directionality depends on par-
ticle numbers left (Lt,r) and right (Rt,r) of them. Turn angles depend on the total number of surrounding particles 
(Nt,r =  Lt,r + Rt,r). This yields the final motion law for PPS:

∆Φ
∆
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where a positive change of φ is a turn to the right. The parameter α represents a fixed rotation, β models a 
rotation proportional to local neighborhood size. Neighborhood configuration affects φt in each time step, in 
turn changing a particle’s position, ultimately yielding new local configurations. This feedback loop governs the 
self-organization of the PPS system.

With α =  180°, isolated particles hold position within 2 time steps. Only when other particles enter their 
neighborhood they start to move away: PPS with α =  180° ‘mirror’ the behavior of particles in PPS with α =  0° 
on the microscopic level.

In our PPS each particle holds position pt =  (xt, yt) and heading φt at every time step t. The change of 
this heading (Δφ) is modeled in our model equation 1. Every positive heading change is considered to be a 
turn to the right (first person view), every negative Δφ is a left turn (first person view), respectively counter 
clockwise (third person view). The positional update is modeled according to pt+1 =  pt +  ((cos φt), (sin φt)) ∙ v, 
where v is the constant velocity of each particle. Figure 1 shows a pseudo-code describing the algorithmic 
implementation.

We discovered an exceptionally interesting system with the parameter set PPS =  〈 r =  5, α =  180°, β =  17°, 
v =  0.67〉 , used as default PPS parameters here. Cell-like structures emerge spontaneously with around 0.08 
particles/space unit (p/su) initially randomly distributed in a space of 250 ×  250 units. For visualization we 
color-code particles by their local neighborhood size: colort =  if 15 <  Nt,r=5 ≤  35 blue else if Nt,r=5 >  35 yellow else if 
13 ≤  Nt,r=5 ≤  15 brown else if Nt,r=1.3 >  15 magenta else green.

The movement of particles was calculated in discrete time steps in continuous space (64 bit floating point 
positions and orientations of particles). Initially all particles were randomly distributed and randomly oriented 
(both uniform random distributions). All particles were moving in a randomized order within every time step 
of acting. They act asynchronously by our model of sensing and moving, which is performed within the same 
algorithmic loop, particle by particle. Local densities were indicated by particle colors following this set of rules 
based on local neighborhood within a specific radius: colort =  if 15 <  Nt,r=5 ≤  35 blue else if Nt,r=5 >  35 yellow else if 
13 ≤  Nt,r=5 ≤  15 brown else if Nt,r=1.3 >  15 magenta else green. The subscripts t denotes the time step and r denotes 
the radius.

For Fig. 2 we started first (Fig. 2A,B) a small group (Nparticles ∈  {12, 14} particles) of particles randomly spread 
within 2.5 space units around the center of the habitat and ran it for 150 time steps. The first 149 positions of 
the particles were stamped semi-transparently in grey color to the ground to show the particles trajectories. The 
darker the grey color is there, the more often a particle was located there, and thus we also generated a “map of 
occupancy of space”. For the other subfigures (Fig. 2C,D) we kept this principle but filled the whole habitat space 
with certain Densities of Particles in the surrounding Environment (DPE ∈  {0.04, 0.07} p/su) in a uniform ran-
dom way concerning position and heading of particles. For Fig. 2E–I, we made snapshots at various time steps 
(t ∈  {60, 90, 180, 400, 700}) after starting with a randomized distribution of particles with a DPE =  0.09 p/su. Each 
subgraph also holds a histogram of initial nearest-neighbor distances of particles and the final nearest-neighbor 
distance distribution at the end of the run in distance classes which are 1 space unit wide (1st class: 0.00–0.99, 2nd 
class: 1.00–1.99, … , 10th class: 9.00–9.99).

For the analysis shown in Fig. 3, we conducted 16 independent runs throughout 100,000 time steps (shown 
in Supplementary Figures S1 and S2) in a flat torus plane with 250 ×  250 space units, containing 5000 particles 
(DPE =  0.08 p/su). One of these runs was selected randomly and continued until 1,000,000 time steps to investi-
gate the long-term stability of population dynamics. These data were used for Fig. 3H–J.

Figure 1. Explanatory implementation of a PPS as pseudo-code. Each particle determines the number of its 
neighbors on the left side (Lt, all other particles in a semicircle with radius r) and on the right side (Rt, all other 
particles in a semicircle with radius r). The change of its heading (Δφ) in each time step t is the left-hand side 
result of equation 1. After rotating, each particle moves forward with a fixed velocity (v).
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We modeled a classical Verhulst-like-model19 of a density-dependent growth (ΔX/Δt =  a·(1 −  X/K)·X) to the 
population of cells and spores (X models the population size) observed in this long run, as well as for all 15 
short runs in which populations of emergent structures survived to the end of the run. We fitted the models by 
adapting the parameters a (maximum reproduction rate) and K (carrying capacity of the habitat) by applying the 
method of minimum squared residuals and applying an evolutionary algorithm to find minimum configurations 
(Fig. 3H). To estimate the number of cells and spores in all simulation runs, we assumed a typical size of a cell 
with 48 particles/cell and a typical size of a spore with 18 particles/spore, based on the analysis of those structures 
shown in Supplementary Figure S4. For the analysis in Figs 3I,J we recorded all transitions of particles from each 
color to all other colors, as well as numbers of particles in each color. Based on those recordings we identified the 
average cohort size of those particles as well as their average rates of change between colors during the “growth 
phase” of the population (0 ≤  t <  25,000 steps; shown in Fig. 3I) and the “saturation phase” of the population 
dynamics (t ≥  25,000 steps; shown in Fig. 3J).

Figure 2. Collective behaviors of different particle numbers and densities. (A) 12 particles initially arranged 
around the habitat center. (B) 14 particles initially arranged around the habitat center. (C) Habitat filled with a 
density of DPE =  0.04 p/su. (D) Habitat filled with a density of DPE =  0.07 p/su. Subfigures (A–D) ran for 150 time 
steps. (E–I) Habitat filled with a density of DPE =  0.09 p/su at time steps t ∈ .{60, 90, 180, 400, 700}  Semi-
transparent grey background stamping shows older positions of particles, thus indicating trajectories of particles 
and (by their darkness) also past occupancy of areas. Other colors show local density of particles at the final time 
step, according to the color scheme indicated in the Method section and in Fig. 3. Each subgraph holds also a 
histogram of initial nearest-neighbor distances of particles and the final nearest-neighbor distance distribution at 
the end of the run in distance classes 1 space unit wide (1st class: 0.00–0.99, 2nd class: 1.00–1.99, … , 10th class:  
9.00–9.99).
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For the analysis in Fig. 4 we imported typical structures that emerge in PPS (spores, cells of various size/age 
were “captured” previously in free runs of the model and were then “injected” into our analysis worlds) into an 
otherwise empty world. We observed for 100 time steps the left (Lt,r) and right (Rt,r) neighborhood size within 

Figure 3. Spontaneous emergence and expansion of life-like structures into a density-regulated ecosystem. 
(A–G) Ordered structures appear, persist, replicate and spread from a randomly distributed and randomly 
oriented set of 5000 particles in 250 ×  250 space units (0.08 p/su), observed for 106 time steps. The emerging 
structures change the local density of particles, which is also expressed by particle colors. (H) Population 
dynamics of cells and spores follow a logistic (sigmoidal) growth pattern to which we modeled (minimum 
squared residuals) a classical macroscopic model of biological density-dependent growth19. Populations of cells 
and spores were analyzed from the number of blue/yellow and pink particles, based on the mean sizes of those 
structures (Supplementary Figure S3). (I–J) Observed rates of change of particles in the different local density 
states (color coded) during the growth phase of the sigmoidal growth (blue figure background) and during the 
saturated phase (yellow figure background). This represents a microscopic model of the emerging structures 
internal “physiological network”.
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radius r =  5 of every particle. For every particle in every time step this neighborhood configuration was looked up 
in a phase diagram of Lt,r:Rt,r and a counter variable for this specific configuration was incremented by one. Finally 
all counter values for all neighborhood configurations were printed as a “heat map” over the phase diagram: The 
more often each specific configuration was observed, the darker the shade of the particle color was printed there. 
Every combination of left to right neighbors determines a specific turning angle according to equation 1, therefore 
the resulting turning angle for each neighborhood configuration was indicated as a shade of gray in the back-
ground of the phase plot, where dark colors indicate left turns and bright colors indicate right turns. Naturally, 
angles flip at 180° and 360° from left to right and vice versa. This property leads to the characteristic complex 
pattern of the figure backgrounds in Fig. 4A–H.

For the analyses shown in Fig. 5 we used a 50 ×  50 torus world with one of two characteristic structures (“tri-
angle cell” and “mature spore”) initially placed within. The triangle cell used here consisted of 40 particles, the 

Figure 4. Heat maps in phase diagrams showing the time spent by particle in configurations with specific 
left-to-right (Lt,r:Rt,r) local neighborhood sizes within radius r =  5 (subfigures A–H). This determines particles’ 
rotation behavior (bright background: right turn, dark background: left turn) in our PPS. We observed particles 
building typical shapes in our PPS for 100 steps and display their overall turning regimes as a heat map so that 
the darker colors indicate higher frequency of these neighboring conditions, thus also higher frequency of this 
specific turning behavior. Characteristic structures reside for mostly in very specific neighborhood conditions. 
This suggests that the observed structures are self-stabilizing in a homeostatic way over long periods of time. 
Central subfigure (I): Resulting typical life-cycle of structures in PPS =  〈 r =  5, α =  180°, β =  17°, v =  0.67〉 .
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mature spore of 20 particles. All experiments were performed for 25,000 steps with 100 repetitions and varying 
densities of particles in the surrounding environment (DPE). We measured the time until cells replicate (divi-
sion into two new cells, which eventually can grow into two copies of the primary cell, Fig. 5A). Spores always 
grow into cells, hence cannot replicate directly into two spore-copies and thus are not displayed in Fig. 5. We 
determined a successful replication by estimating the number of cells via particle counting. To make sure, that 
a replication took place only a cell-number estimation higher than 2.1 cells (instead of 2 cells) was considered a 
replication. We then fitted a graph to the median pre-replication periods applying the minimum residuals method 
using least squares. We also measured the number of steps until an initial structure vanished at varying densities 
of particles in the surrounding environment (which happens either through cell division or decay). The survived 
experimental time of a structure was discretized into 30 groups (Fig. 5B: initial triangle cell, Fig. 5C: initial mature 
spore). Darker shades of color represent more events in each of these groups. Finally we measured the number of 
structures (cells and spores) emerging from a single initially placed mature spore after 25,000 time steps (Fig. 5D).

For the analyses shown in Fig. 6 a torus plane with 50 ×  50 space units and surrounding particles (three different 
particle density levels: DPE ∈  {0.03, 0.035, 0.04} p/su) randomly placed on this plane were used for 1000 simulation 
runs. At the beginning of each simulation run we injected the same triangle cell (consisting of initially 40 particles) 
to the habitat, as it was already used in the analyses shown in Fig. 5. All simulation runs were performed for 25,000 
time steps, measuring the cell size and the survived experimental time of each cell. In addition to our analyses of cell 
size distribution (Fig. 6A,B) and survivorship distribution (Fig. 6C), we investigated the impact of noise/errors to cell 
life expectancy (Fig. 6D). Therefore a normally distributed noise (η σ,t) was added to the change of turning angles of 
each particle in each time step, leading to the expression α β= + ⋅ ⋅ − + η∆Φ

∆ σ.N sign R L( )t t r t r t r t, , , , where we 
varied the standard deviation (σ ) of the noise η t in every time step t. This stability analysis was conducted with 1000 
repetitions for each level of noise (σ  ∈  {0°, 5°, … , 90°}).

For the analysis in Fig. 7 we used a 100 ×  100 torus world with a particle density of 0.12 p/su. We performed a 
parameter-sweep of −180° ≤  α ≤  180° with an increment of Δα =  3.0° and −60° ≤  β ≤  60° with an increment of 
Δβ =  1.0°, repeating it 10 times per combination.

We introduced the density-homogeneity-index (DHI; shown in Supplementary Figure S5), contrasting the 
emergence of a wide range of potential interesting patterns within the PPS. The DHI(t) is characterized by the 
ratio of space units exceeding a certain threshold of particles (Θthreshold =  14 particles) in their neighborhood 
(radius r =  5) to all space units at time step t. Parameter combinations resulting in a low DHI(t) form uniformly 
distributed patterns, while high DHI(t) values indicate local accumulations of particles, which were then manu-
ally screened by us for visually identify emergence of life-like structures or other interesting patterns.

Runs with α =  0° (symmetry-line) generate mirrored DHI(t) values and wrap at α =   180° and α =  −180°, 
thus mirrored and wrapped areas of the parameter space were marked by a pale overlay. Runs with β =  360° show 
wrapped DHI(t), as they do also at β =  −360° (not shown), however they have no symmetry at β =  0°.

Results
Figure 2 demonstrates the dependency of particle behaviors on their spatial density. A small group of 12 particles, 
which are started close to each other (see distance histogram), exhibit repellent forces and spread until they are 
separated from each other. However, they stay within interaction radius (r), thus are still actively sticking together 
as a group (Fig. 2A). In contrast to that, a group of 14 particles exhibits attractive forces that pull the group 
stronger together than they were initially placed. Then these forces move the whole group across the habitat as a 
hurricane-like premature spore (Fig. 2B). Filling the whole habitat with a low particle density (DPE =  0.04 p/su) 
makes all particles arrange in a hexagonal neighboring topology keeping contact with a median distance around 
3.5 space units (Fig. 2C), while at higher densities (DPE =  0.07 p/su) the particles cannot arrange in a stable 
way anymore. In consequence they stay in motion in a way that is best characterized as “deterministic chaos” 
(Fig. 2D), exhibiting a wider spread of inter-particle distances (see distance histogram). Further increasing the 
density of particles (DPE =  0.09 p/su) produces again a “deterministic random” motion that eventually allows the 
local density to be high enough to form a premature spore at a random place. This premature spore moves locally 
and this way quickly attracts more particles to form a “mature spore” (Fig. 2E). This spore then quickly grows to 
a small ring cell (Fig. 2F), which further grows (Fig. 2G), moves slowly, and finally divides into 2 cells (Fig. 2H). 
Those two cells repel each other and further move slowly apart from each other (Fig. 2I). As the development 
of the inter-particle distances from Figs 1I–2E indicates the motion law of particles drives the system towards a 
specific near-equilibrium condition: A fraction of the particles are close together within cells, while the remaining 
free particles spread to a similar hexagonal-arrangement distribution as is found in Fig. 2A and C.

PPS initialized with randomized population (0.08 p/su, Fig. 3A) start to structure the habitat within a few 
time steps (Fig. 3B,C): First, a formation of a spiraling structure called ‘premature spore’ (Fig. 4B) emerges, which 
consumes free particles (‘nutrients’, Fig. 4A) to grow into a ‘mature spore’ (Fig. 4C), which then can further grow 
through a distinct life-cycle (Fig. 4I) into a ‘cell’. A cell can further grow and self-replicate until cells cover the 
habitat (Fig. 3A–G). This population grows sigmoidally (Fig. 3H) up to the point where nutrient particle con-
sumption (growth) and release of particles through cell death (decay) are at equilibrium, as an ecological mate-
rial cycle emerges in the system: Particles get recycled and often transformed in the internal physiology of the 
cell structures (Fig. 3I,J). The emerging macroscopic system shows self-ordering, homeostasis, self-replication, 
substance recycling, life-cycles and a self-creating ecosystem (Supplementary Video 1). Fitting a logistic-growth 
model to our observed population dynamics yields a reproduction rates of aspores =  4.0 · 10−4 per time step and 
acells =  7.1 · 10−4 per time step and carrying capacities of Kspores =  18.21 spores and Kcells =  50.78 cells. Except the 
very beginning, populations of spores were found to be always smaller than populations of cells (Mann-Whitney 
U-test, N1 =  N2 =  15, p <  10−5, Fig. 3H) and early populations were found to be significantly smaller than later 
ones (Mann-Whitney U-test, N1 =  N2 =  15, p <  10−5, Fig. 3H).
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Figure 5. Microscopic parameters in dependence of environmental particle densities (DPE). (A) Time 
until replication of an initial triangle cell follows the regression function τpre-replication(DPE) = 1.3 · 10−17/DPE16.58 

(fit to the observed medians of the pre-replication periods per analyzed DPE setting). (B) Initial triangle cells 
start to survive throughout 25,000 steps in a region of (0.03 ≤  DPE), at lower environmental densities they 
lose particles and die. (C) Initial spore configurations survive for this time in environmental particle densities 
of (DPE ≤  0.032), at higher densities they grow out into cells. (D) Starting with a mature spore populations 
do not grow at densities below DPE =  0.032, with 0.032 ≤  DPE ≤  0.046 initial cells mostly unsuccessfully 
reproduce and die, while with DPE ≥  0.047 final populations (X) start to grow linear with increasing DPE: 
Xstructures(DPE) =  73.88 · DPE-2.44 for DPE ≥  0.047 (fit to the observed medians of the number of structures per 
analyzed DPE setting).
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A typical cell contains approx. 48 particles, a typical spore 18 particles. At the end of 15 experimental runs 
(t =  100,000 steps) we counted on average 50.54 ±  0.36 (mean ±  std.dev.) cells and 19.14 ±  1.32 spores prevalent. 
The Supplementary Figure S4 shows that spores start at 14 particles and contain up to 22 particles, yielding a 

Figure 6. Further analysis of cell properties in dependence of environmental nutrient particle density 
(DPE = density of green particles in the environment) and in dependence of actuation noise/error.  
(A) Histogram of median effects of environmental particle density on the resulting size-distribution of cells 
within individual simulation runs (which were stopped when cells died). (B) Histogram of absolute effects of 
environmental particle density on the resulting size-distribution of cells across all performed simulation runs. 
(C) Histogram of effects of environmental particle density on the absolute survival (maximum lifetime) of 
cells across all simulation runs that lasted for 25,000 time steps. Colored areas show histograms of observed 
distribution, vertical dashed lines the most common observation (modus). Horizontal box-blots indicate 
minimum, maximum, quartiles and medians of the observed distributions. (D) Median (solid line) and IQR 
(filled areas) of effect of environmental density and actuation error (noise) on the observed lifetime of cells.
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mean number of 18 particles, while cells start at 23 particles and contain up to 60 particles, yielding a mean of 
41.5 particles. However, we realized that cells grow fast and stay persistent for long, thus they exist longer in a 
grown-up state, and thus we used a particle-to-cell estimate of 48 particles/cell for our macroscopic cell popula-
tion model depicted in Fig. 3H and Supplementary Figure S3.

Particles building characteristic structures cover specific regions in the phase-diagram of left (Lt,r) versus right 
(Rt,r) neighbors (Fig. 4A–H), thus will exhibit specific turning angles Δφ according to equation (1). The resulting 
turning angle Δφ is color-coded in the background of Fig. 4A–H as grey color shades for all combinations of Lt,r 
to Rt,r in the phase diagrams: Green ‘nutrient’ particles cover the left corner in phase-diagrams (Fig. 4A), per-
forming mostly turns around ± 180°. ‘Premature spores’ (brown) cover a sharp line (Lt,r/Rt,r) =  [(14/0), (0/14)], 
see Fig. 4B. Particles (blue) of small ring cells cover mostly the triangular area between (Lt,r/Rt,r) =  [(16/0), (0/16), 
(14/14)], see Fig. 4D. The yellow particles in “premature cells” form a sharp line (Lt,r/Rt,r) =  [(13/23), (23/13)], 
see Fig. 4E. The most complex regime of particle configurations was found in “triangle cells”: The blue outer hull 
particles reside in a trapezoid region (Lt,r/Rt,r) =  [(15/3), (15/13), (13/15),(3/15)], while the inner yellow par-
ticles reside within (Lt,r/Rt,r) =  [(15/23), (16/26), (25/15), (26/18)], see Fig. 4F. Larger cell types show a prefer-
ence to reside closely around (Lt,r/Rt,r) =  (11/11). Spores (pink) exist in various types: Small spores reside on a 
sharp line (Lt,r/Rt,r) =  [(18/0), (0/18)] (Fig. 4C). Medium spores, (Lt,r/Rt,r) =  [(38/0), (0/38)], and large spores, 
(Lt,r/Rt,r) = [(58/0), (0/58)], show similar shapes (data not shown). We assume that there exist an endless number 
of such mega-spores and also other regimes for yellow particles in very high densities of particles, which allow no 
self-replicating cells to emerge anymore.

Besides investigating the microscopic processes of individual particles (Figs 3I–J, 4), we also studied character-
istic parameters of initially seeded structures (cell and spore) at various densities of particles in the surrounding 
environment (DPE). We found that there is a critical density of particles (Θreplication =  0.054 p/su, Fig. 5A) below 
which cells don’t replicate. The higher DPE gets above this threshold, the faster reproduction is (Fig. 5A). Cells in 
a DPE below 0.03 p/su rarely survive for 2500 steps (Fig. 5B), while spores above 0.032 p/su grow to cells (Fig. 5C). 
We found a critical threshold (Θinfertility =  0.032 p/su) below which initially seeded structures don’t try to reproduce 
(Fig. 5D). At DPE above Θreproduction =  0.046 p/su cells replicate successfully to populations that scale linearly with 
DPE (Fig. 5D). In DPE between Θinfertility and Θreproduction cells often die due to unsuccessful replication tries.

For further characterizing our cell populations we analyzed the size distribution and the survivorship-distribution  
of cells by starting a typical triangle cell of 40 particles into randomized habitats of varying environmental particle 
density (0.03 ≤  DPE ≤  0.04 p/su): Low environmental nutrient densities (DPE =  0.03 p/su) allow cells to survive  
mainly between 1,720 and 3,116 time steps as is characterized by the inter-quartile range (IQR), showing a 

Figure 7. Parameter sweeps of possible PPS configurations in <α, β> parameter space. Systematic sweeps 
of α and β  of PPS with v =  0.67, r =  5, density =  0.12 p/su. The central figure shows the resulting density-
homogeneity-index after t =  500 steps (DHI (500)), where =

Θ∑ ∑ ≥

∑
=DHI t( ) space units particles

space units
( ( )

( )
t r treshold, 5 . This 

scan shows a very distinctive set of regions in which particles are locally accumulated (yellow, red and black 
region), but only one specific region (“region of life”) was detected to produce self-replicating life-like 
structures.
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median lifetime of 2,346 time steps and most cells living for 1,888 (modus) time steps (Fig. 6C). With medium 
nutrient density (DPE =  0.035 p/su) cells survive between 3,006 and 6,016 time steps (IQR) with a median lifetime 
of 4,248 time steps and most cells surviving for 3,470 (modus) time steps (Fig. 6C). With high nutrient density 
(DPE =  0.04 p/su) cells survive between 7,037 and 25,000 time steps (IQR) with a median lifetime of 17,450 time 
steps and most cells surviving for 25,000 (modus) time steps (Fig. 6C).

With DPE =  0.03 p/su and DPE =  0.035 p/su, we found that the size distribution of cells to span between 36 
particles and 39 particles (Fig. 6A) when looking at median cell size per run, and between 35 particles to 41 parti-
cles per cell (Fig. 6B) when considering all cell sizes in all time steps in all simulation runs. This difference is due 
to the fact that with medium environmental particle density more cells are observed for more time steps than with 
low free particle density (Fig. 6B). In both environmental configurations the median size in both analyses is 37 
particles per cell (Fig. 6A,B) and the most common cell size (modus) is 36 particles. These size spans correspond 
to cell shapes ranging from small ring-shaped cells to small triangle-shaped cells (Supplementary Figure S4), the 
median observed cell size represents a large ring-shape cell (Supplementary Figure S4). With high environmental 
particle density (DPE =  0.04 p/su) we observe cell sizes to span between 40 and 44 particles (IQR, Fig. 6A), when 
looking at median cell sizes per run and 39 particles to 44 particles (IQR, Fig. 6B) when looking across all time 
steps in all runs. This size span corresponds to triangle-shaped cells of various sizes (Supplementary Figure S4). 
The median cell size at this condition is 41 particles and the most common cell size (modus) is 40 particles 
(Fig. 6A,B) for both analyses (medians of runs and across all time steps in all runs) what represents a large triangle 
(compare Supplementary Figure S4).

To analyze the stability of the emergent cell structures in our PPS we analyzed the survival period of an 
initially placed cell of 40 particles in initially randomized habitats of varying environmental particle density 
(0.03 ≤ DPE ≤ 0.04 p/su) by adding normal-distributed rotation noise to the second term of the right-hand 
side of equation 1. The noise was symmetrically distributed around 0°, with varying standard deviation (σ) and 
ceiled/floored between − 180° and + 180° for the extremes. Figure 6D shows that the density dependent-life times 
already observed in Fig. 6C for the 3 tested environmental situations (DPE levels) are slightly enhanced by noise 
up to σ =  30° (low and medium DPE setting) and σ =  40° (high DPE setting) and that cells can exist only for a few 
hundred time steps with higher noise levels.

To assess how ‘special’ the PPS =  〈 r =  5, α =  180°, β =  17°, v =  0.67〉  is, we analyzed the whole family of PPS =   
〈 r =  5, α =  *, β =  *, v =  0.67〉  at DPE =  0.12. Figure 7Q (center) shows that most resulting behaviors of those PPS 
are very distinctive from our focal PPS (and its close neighbors in 〈 α,β〉  parameter space). To quantitatively ana-
lyze each PPS we calculated how many units of space showed a Density Homogeneity Index above a specific 
threshold Θthreshold =  14 particles, thus =

Θ∑ ∑ ≥

∑
=DHI t( ) space units particles

space units
( ( )

( )
t r treshold, 5  to give an index of spatial 

homogeneity. PPS that showed high values in this density-homogeneity-index were then screened manually to 
qualitatively describe their behaviors (Fig. 7A–P).

Discussion
The simple motion law we present here (Fig. 1) enables the emergence of life-like structures (cells and spores) 
which self-reproduce and grow in a life-cycle (Figs 2, 3 and 4I). These structures build an emergent ecosystem 
(population) on the macroscopic system level purely based on the microscopic rule set described in equation 1. 
These populations of cells show dynamics that are well captured by the logistic growth model (Fig. 3H) known 
to describe also the growth of natural organism populations. We discovered another ecosystem property in the 
“nutrient cycle”: The emerging cells show a certain intake and loss of free “nutrient particles” while they sustain 
their presence in the habitat (Figs 2E–I and 3I,J). We show that growth, survival and reproduction depend on 
the environmental habitat situation (free particle density, Fig. 5), which also affects the size and the age distribu-
tion of cells, which is the ultimate consequence of density-dependent longevity of individual cells (Fig. 6A–C). 
Instability analysis showed that the observed life-like structures are not just very specific fragile mathematical 
artifacts (Fig. 6D). In contrast, they emerge and survive even in presence of high levels of noise in the individual 
conduction of the microscopic motion law.

It is unknown yet, why this specific PPS produces such an interesting and rich set of nature-like structures, 
thus we expect further analysis may yield fundamental understandings in mathematics and algorithmics, as it was 
also the case with specific cellular automata16 and fractals20. We identified a specific “region of life” (RoL) in the 
〈 α, β〉  parameter space containing such life-like structures (Fig. 7). However, it is neither understood why they 
appear especially there nor is it clear how the RoL changes with particle speed or interaction radius yet.

The primary aim of this article is to showcase this extremely interesting PPS in the configuration PPS =   
〈 r =  5, α =  180°, β =  17°, v =  0.67〉  to assess its key properties and highlight its internal mechanics. Although it is 
not fully understood yet why exactly this microscopic motion law produces such a rich and life-like macroscopic 
system we can already describe the main basic mechanisms and properties of the system here based on the obser-
vations and analyses we made in the study: In the PPS the most interesting structures, which are cells and spores, 
emerge by self-organization from a simple mechanistic microscopic motion law.

How do cells and spores emerge? How do they grow and reproduce? At locations of (randomly happening)  
higher density of particles (14 particles in each other’s interaction radius r, see Figs 2A,B and 4B and 
Supplementary Figure S4) a premature spore can form and further attract particles to grow into a spore. A spore 
is a compact assembly of particles (approx.16–21 particles in each other’s interaction radius r, see Figs 2E and 4C)  
that spiral around each other in close vicinity. Such an aggregate attracts additional free particles due to the 
motion law. At first, this is just a self-reinforcing process (positive feedback) that leads to the observed growth of 
the spore. At a certain size threshold of 23 particles (see Supplementary Figure S4) this positive feedback loop lets 
the spores “germinate” to cells (see Fig. 2F) as the newly attracted particles rotate more than 180° to the aggrega-
tion side (Fig. 4A–H), thus they start to turn away from the spore’s center. In fact, the positive feedback has turned 
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into a negative feedback at this point of growth. After that, the next stable state is the “cell” state, which can consist 
again of a rather dense core (yellow particles), an almost empty inner space region and a dense outer “membrane” 
layer (blue particles), see Fig. 2G. Further intake of particles makes the cells grow to a certain size, simultaneously 
increasing also the intrinsic pressure of particles, as particles repel each other at specific neighborhood sizes. At 
a certain size of approximately 61 particles, depending on the spatial configuration and internal pressure, the cell 
can break into 2 cells (see Fig. 2H,I) or produce one or two new spores that are thrown out of the compound or 
divide directly into 2 new cells (see Supplementary Figure S4). For successful replication the environment has to 
have a high enough density of available free nutrient particles (see Fig. 5D).

Do cells change their habitat? Can they be seen as a thermodynamic equilibrium configuration? A cell in a PPS 
consists of areas of high and areas of low particle density, thus they have a characteristic internal density inho-
mogeneity. The phase plots in Figs 4B–H show that the observed structures (spores and cells) steadily increase 
the overall local density of particles inside of them as it is also demonstrated by the analysis based on DHI(t) in 
Fig. 7 and by the histograms shown in Figs 2E–I. This indicates that cells consume free particles from their sur-
rounding during their initial growth and their later reproductive period which is most prominent in times when 
populations are on the rise (See Fig. 3I). The equilibrium size of cells depends on the density of environmental 
particles available to consume (Fig. 6A,B). This nutrient consumption ultimately decreases the free particle den-
sity in the environment, as thus particles represent a limited shared resource for cells. Over time, the free particle 
distances increase, as the pressure in the environment goes down, while pressure increases inside of the cells, as 
can be seen by the bimodal distribution in the histogram of Fig. 2I, Finally, the “life expectancy” of cells depends 
on the availability of free nutrient particles, what in turn limits the population growth and survival when those 
particles get scarce (Fig. 6A–C). However, cell death can replenish available free particles again which reshuffle 
in the environment over time and allow cells to prosper later at other regions of the habitat. This then closes the 
emergent nutrient cycle in the system.

In ecology, this would be considered to be a case of intra-specific competition for food. The fact that a species 
limits its own growth by depleting its environment of available food was found, as an exemplary case, in sea-
birds21. Such a self-limitation of available free particles finally creates another negative feedback in the system, 
which prevents a cell from further growth and reproduction. Thus, cells reside at the equilibrium of positive 
feedback (attraction), and negative feedback (scarcity of free particles and active expelling surplus particles due to 
high intrinsic pressure), as is shown in Fig. 3J. While spores represent a rather stable and simple steady state, cells 
represent a more complex and more dynamic steady state of the system. This system description is a high-level 
understanding of the functioning of cells we can deduct from the findings presented here. However, for a full 
understanding of the system, it requires to completely close the causal link between the microscopic parameters 
of the motion law and all observed macroscopic features of the system. Ultimately, as also Fig. 6 already partially 
demonstrates, all macroscopic properties of the system (size and age distribution of cells, shape of cells, ratio of 
cells to spores, population size/density and growth rate, speed of reproduction, etc.) depend on the 4 parameters 
α, β, r and v. Parameters-sweeps of α and β already indicate dramatic phase-transitions in those macroscopic 
properties with minimal changes of microscopic parameters (Fig. 7) while in other regions of parameter space 
there are large plateaus that keep macroscopic properties robust. A deep understanding and reasoning of this is 
calling for future studies, which are currently in the making.

How does the microscopic motion law rely to physical or chemical systems? On the first sight our motion 
law with α =  180° looks counterintuitive, as it leads to particles that steadily oscillate in their orientation in a 
back-and-forth way. However, this is not so counterintuitive as it first looks: This oscillatory behavior makes a 
particle stop in places without any neighbors and makes it rotate around a local spot with low density neighbor-
hood. All other possible configurations of any SPP that binds the particles’ turning angles purely to local neigh-
borhood density will yield similar behaviors, just for different local densities of particles, for any give value of α 
(even for α =  0°). A particle in a PPS =  < α =  180°, β =  17°>  behaves similar with a neighborhood size of Nt =  0 
particles compared to a particle in a PPS =  < α =  0°, β =  17°>  with a neighborhood condition of Nt =  180/17 
particles. Both particles will oscillate and thus stay in place. When we look at the emerging long-term behavior of 
a particle in our system, it shows that a particle stays in place when it is isolated, as it requires interaction (forces) 
with other local particles to be kept in motion. Thus, in the long-timescale view our system can be understood as 
a physical dissipative system. This makes our PPS comparable to e.g. a population of molecules that are dissolved 
in a fluid. Such molecules will also stop their motion without being kept in motion by interaction with nearby 
(e.g. water) molecules due to temperature (Brownian motion) or current flows. Thus, our PPS motion law uses a 
SPP system in a way that it is closer to the situation proposed for the origin of life than a more classical SPP system 
(that would have α =  0°), which models rather the trajectory of a photon moving through friction-less vacuum 
space. SPP models with α =  0° seem to be better suitable for modeling collective behaviors of agents (animals) 
that move actively by themselves and rather not for floating molecules in a primordial soup and hence call for a 
value of α =  180°.

How does the PPS observed here relate to the conditions assumed at the origin of life? There are several sig-
nificant resemblances between the PPS and the conditions that are thought to be valid for the origin of life on 
earth: We found that in the PPS spontaneous emergence of ordered self-replicating structures emerges only above 
a threshold density of components (pressure) and only above a certain speed threshold (temperature) starting 
from a randomized initial distribution. Similar properties were shown empirically to lead to the spontaneous 
emergence of the building blocks of life in chemical experiments mimicking earth’s condition at the time of the 
origin of life22. Such conditions are still found at hydrothermal deep-sea vents, which are discussed as promising 
candidates for the places of the origin of life23. Further aspects of the PPS (noise tolerance, continuous space, con-
tinuous asynchronous motion, local interaction) are furthermore very likely properties for the system in which 
real life emerged on earth.
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How does this study relate to other works in the field? Self-structuring and pattern formation arising from 
random initial states are often modelled by reaction-diffusion models (RDM)24 or particle models, such as 
self-propelled particle systems11. Morphogenesis in such systems was explored in more complex SPP systems25,26: 
These particles can sense a continuous potential field, linking the microscopic SPP system back to the macro-
scopic RDM. Our PPS works without such fields, thus it is fully microscopic, still yielding high macroscopic 
complexity like self-replication of structures. There are several outstanding differences of our PPS to existing SPP 
models: Direction-alignment happens in an emergent way without requiring that particles sense the orientation 
of their neighboring particles, compare11,27. Particles do not require blind spots in perception, compare28, and 
particles need not to sense the center of mass of the local structure they are a part of, compare29. Our PPS model 
does also not require particles to sense the distance to their neighbors, not even in discrete distance zones, com-
pare27,28,30. It is also not necessary to sense and compute any global field (e.g. potential fields) as they are often 
used in SPP, compare25,31,32. Still, PPS achieve comparable macroscopic system behaviors by forming emergent 
structures without requiring the sensor model usually found in classical published models of flocking, shoaling 
and swarming. Thus, PPS are simpler in their microscopic rules, yet still producing outstanding phenomena.

The common ancestor of life-forms is assumed not to be a “modern cell”33. This motivates minimal-cell models34  
and protocell models in mathematics35 and chemistry36. Simple embodied non-genetic cell-like structures exhibit 
behavior, interaction in vicinity, and even duplication37. Thus, such pre-biotic compounds might be interpreted 
as SPP systems, showing even self-assembly after adding ssDNA for selective anchoring. In relation to other pro-
tocell models that mimic certain properties of living cells, especially droplet systems37 share many characteristics 
with our primordial particle system. Oil-in-water droplets or camphor disks on water surfaces show not only 
self-movement, they can also alternate between rest and motion phases38. Similar to that, primordial particles are 
able to remain in a certain position by oscillating back and forth, as well as they are able to move directionally in 
a place with adequate neighborhood composition. Nitrobenzene droplets in aqueous environment seeded with 
CTAB (cetyl trimethylammonium bromide) can divide themselves into smaller stable aggregates without exter-
nal forces39. While primordial particles also exhibit this behavior, daughter cells even start absorbing nutrients, 
grow and finally divide themselves, leading to a potential infinite dispersal. Other oil droplets in water systems 
are known to generate spontaneous mode switching40, as do primordial particles in accordance to their neighbor-
hood). While all of these models show stunning properties separately, a droplet system that combines all these 
characteristics is to be discovered yet like the primordial particles system does.

What open questions call for further investigations? In this article we describe the novel PPS that is capable 
to exhibit life-like properties. We analyzed several microscopic and macroscopic system properties. Still many 
fundamental questions are waiting for further investigations, which are beyond the scope of this first article: 
We think it will be extremely interesting to find the exact causal linkage between the macroscopic phenomena 
and the microscopic rules. The system will be only fully understood if somebody can explain for example why 
a system with β =  17° (up to β =  25°) produces reproducing cells while a similar system with a β =  26° does not 
(Fig. 7) with our standard settings of DPE, α, r and v. For example, meta-models should predict how the five core 
parameters affect macroscopic properties like cell density or the equilibrium ratio of spores to cells. Obviously 
other values of α, β, r and v can yield other interesting systems (universes) that wait for their discovery and anal-
ysis (see Fig. 7). By allowing heterogeneous systems, which is mixtures of particles, more elaborate PPS can enter 
the field of artificial chemistries41 from a simple approach in which interactions are emergent instead of being 
pre-programmed. We predict such systems to produce even more fascinating collective systems.

What are the implications of these novel findings? We expect that the simplicity of the motion law and the 
system’s robustness against noise and error will allow physical manifestation, e.g. in active matter installations 
built by swarms of autonomous (likely nano-robotic) units. Such particles will also be quite limited in what they 
can sense about their local neighbors, they will not be able to actively communicate across distances, they will 
have limited computational power and they will be subject to sensory noise and actuation error. The fact that our 
PPS does not require much concerning individual capabilities of particles makes it an ideal candidate for novel 
“active matter” systems, especially on the microscopic scale. But also on the larger size scales the fields of swarm 
robotics42 and modular robotics43, self-reconfiguring robotics and self-healing robotics can profit from the power 
of this simple rule of interaction of the PPS. As self-reproduction is one of the key features of the PPS, also evolu-
tionary swarm robotics are expected to profit from these novel findings.

In PPS, particles resemble configurations and dynamics of physical matter states: Start from gas-like random 
configuration, the system self-organizes into a rather regular-spaced ordered regime, similar to solid crystals. Cells 
and spores show a median connectivity of particles and flow dynamics, thus resemble a liquid state of matter: In PPS, 
life-like structures emerge from a phase-transition. However, when looking at green particles in time-lapse on long 
time-scale they exhibit fluidic dynamics, like mineral soils appear solid on short but fluidic on long scales.

Here we present a self-complexifying system as a model of protocells. Comparable systems governed by simple 
interaction laws exist on various spatiotemporal scales: Runaway galaxies and stars, equivalent to our occasionally 
appearing moving spores, and black holes, like our stable spores44. Growing galaxies and their resulting ratio of 
galaxy-bound to halo-forming suns are comparable to our PPS, as are also animal swarms45, and, hypothetically, 
also molecular, atomic and subatomic entities46. Here we focus only on structures emerging in one specific PPS. 
However, there are endless configurations for PPS, thus other “PPS universes” might yield many more fascinating 
creatures and structures awaiting their discovery.
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In the original version of this Article, all instances of “simple” were incorrectly given as “simplistic”. This error has 
now been corrected in the PDF and HTML versions of the Article.
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