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Abstract: Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new
genome constellations that allow RVA to expand its host range or evade immune responses. Reas-
sortment may also produce phylogenetic incongruities and weakly linked evolutionary histories
across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates.
To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic
trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and
compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied
significantly different tree spaces from each other and from the rest of the genome. By contrast,
segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting
strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7)
presenting the weakest association with host species. Bayesian Skyride plots were generated for each
segment to compare relative genetic diversity among segments over time. All segments showed a
dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To
assess selection pressures, codon adaptation indices and relative codon deoptimization indices were
calculated with respect to different host genomes. Codon usage varied by segment with segment 11
(NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage
patterns appeared optimized for expression in humans and birds relative to the other hosts examined,
suggesting that translational efficiency is not a barrier in RVA zoonosis.

Keywords: reassortment; phylogeny; virus evolution; genome constellations; genetic diversity;
codon bias

1. Introduction

The high mutation rates and large population sizes of RNA viruses allow them to
rapidly explore adaptive landscapes, expand host-ranges, and adapt to new environments.
Segmented RNA viruses also may undergo ‘reassortment’ whereby viruses swap entire
genome segments during coinfection [1]. Reassortment may allow rapid evolution of
specific viral traits such as, for example, the acquisition of novel spike glycoproteins
during the emergence of H1N1 influenza A in 2009 [2]. Similarly, reassortment among
segmented dsRNA rotaviruses may have significant implications for human health [3],
but it is challenging to determine the prevalence of rotavirus reassortment in nature.
Our motivation here is to elucidate apparent restrictions (or lack thereof) to RVA genetic
exchange in nature by comparing the relative linkage between each of the RVA segments
as shown by phylogeny. In addition, we parse the evolutionary constraints that may
contribute to the distinct phylogenies of each segment.

The rotavirus genome consists of 11 segments of double-stranded RNA, each pos-
sessing a single open reading frame, except for segment 11, which contains two genes.
Rotaviruses are classified based on the antigenicity of the VP6 protein into groups A
through I [4]. The consensus is that viruses from different groups cannot reassort with
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one another [5], though some rare cross-group reassortment events appear to have oc-
curred [6]. While mammalian RVA strains routinely reassort with other mammalian RVA
strains, reassortment between avian and mammalian RVA strains does not seem to occur
outside of laboratories [7]. Nevertheless, there have been cases of mammalian strains
transmitting between birds [8] (Figure 1), avian strains infecting mammals [9] (Figure 1)
and causing encephalitis [10], evidence of an avian RVA isolate with a mammalian VP4
gene [11], and some in vitro reassortment assays [7,12], most recently confirming that
mono-reassortments with avian segments 3 and 4 can be recovered using the SA11 reverse
genetics system [13]. Reassortment between RVA strains from different mammalian species
is also less common; however, it is not clear whether this lack of reassortment is due to
biological incompatibilities as opposed to genetic incompatibilities. Genotypes resulting
from interhost-species reassortment, while rare, have not only occurred but have fixed in
populations [14–22], indicating that reassortment between even distantly related strains is
potentially a significant driver of rotavirus evolution [23–26].

Figure 1. Phylogeny of segment 9 (VP7) of Rotavirus A colored by host species. Stars indicate avian-mammalian RVA
spillover events (avian RVA to fox, avian RVA to raccoon, bovine RVA to turkeys). The alignment for this tree was made
using complete VP7 sequences representing all known, available G types and hosts, to display the known-host range and
host-boundary patterns for RVA. The VP7 (G) genotypes are labeled by clade. The tree file is available (SI file S1) with
accession numbers for all sequences used. The phylogeny was run in BEAST v1.10.4 using a birth-death tree prior under
an uncorrelated relaxed clock and a GTR+I+G substitution model, and the alignment was partitioned by translated and
non-translated regions. Branch lengths correspond to substitutions.

1.1. Rotavirus A Genome and Proteins

While the RVA genome is double-stranded, RVA RNA is packaged into and exits
capsids as positive-sense, single-stranded RNA (+ssRNA). The RNA-dependent-RNA-
polymerase, VP1, and the capping enzyme, VP3, are anchored to VP2 pentamers to form the
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replicase complex. This complex is present at each of the rotavirus capsid vertices through
which +ssRNAs are released [27]. The inner VP2 layer is enclosed by an intermediate layer
composed of VP6 protein, and the outermost layer is composed of the glycoprotein (VP7)
and the multimeric spike protein (VP4) [28].

In addition to the six structural proteins, the RVA genome also encodes five to six
non-structural proteins on five separate segments. The NTPase (NSP2) is a +ssRNA bind-
ing protein that forms a doughnut-shaped octamer with a positively charged periphery,
allowing +ssRNA to wrap around and bind within its grooves during genome packag-
ing [29,30]. NSP2 protein interactions with the +ssRNA are therefore critical to stabilizing
+ssRNA contacts [31]. NSP2 also interacts with NSP5 to form viroplasms (along with
other viral proteins) [32], where genome packaging, replication, assembly of progeny cores,
and double-layered particles (DLPs) occurs [33–35]. To effect transmission, RVA encodes
NSP4, an endoplasmic reticulum associated viroporin and enterotoxin, which elevates
cytosolic Ca2+ in cells. This Ca2+ elevation ultimately results in diarrhea/vomiting in
hosts [36–40]. NSP4 also interacts with VP6 on DLPs during RVA production [41–44].
The non-structural protein encoded on segment 7, NSP3, hijacks cellular translation and
is a functional analog of the cellular poly (A)-binding protein [45–47]. NSP3 binds the
group-specific consensus tetranucleotide *UGACC [45,46,48] located at the 3′ end of RVA
ssRNA, which suggests inter-group reassortment does not occur. Lastly, NSP1 disrupts
cellular antiviral responses [49], so may also play a role in the host-range [50]. Both segment
5 (NSP1), as well as segment 11 (NSP5/6) are especially prone to genome insertions [51–53].

For reassortment to occur, +ssRNAs from two or more parents must be packaged into
the same virion. When reassortment occurs, the resulting reassortant virus must maintain
the many protein and RNA interactions required for efficient packaging and replication.
Even if the reassortment virus is functional, it may still be outcompeted by other genotypes,
go extinct due to transmission bottlenecks, or evolve compensatory mutations. These
factors, along with the high genetic diversity of RVA strains, make predicting reassortment
facility or barriers to reassortment difficult.

1.2. Selective Pressures on Synonymous Sites

RVA is the most common cause of diarrheal disease in young children and is also an
important agricultural pathogen, particularly for cows and pigs (Figure 1). RVA vaccines
RotaTeq and Rotarix have produced substantial selective pressure on circulating RVA
strains since they were first administered on a large scale in 2006 and 2008 respectively.
This selective pressure seems to have favored certain genome constellations. Strains
relevant to humans mostly consist of genogroup 1 (Wa-like) genes, genogroup 2 (DS-1-like)
genes, or genogroup 3 (AU-1-like) genes. Specific G and P types are also associated more
with specific genogroups [54,55].

Selective pressure on amino acid sequences to conserve protein interactions is a barrier
to reassortment compatibility, but segmented viruses are also under considerable selective
pressure on synonymous sites as RNA-protein and RNA-RNA interactions are critical in
virus packaging [30,39–42]. RVA genome assortment requires +ssRNA molecules from
each segment to form complexes with one another before being packaged, which relies on
packaging signals on each segment.

Synonymous sites may also be under selective pressure for certain codon usage
patterns. Codon usage bias results in varying levels of efficiency in translation, with highly
expressed genes showing stronger bias for codons abundantly available in the host tRNA
pool [56,57], and marginally expressed genes displaying less codon bias [58]. Codon usage
adaptation to the host is a well-documented phenomenon in DNA viruses [57,59,60] and
is observed in RNA viruses as well [61–67], though the constraints of a secondary RNA
structure, as well as the high rate of mutation in RNA viruses, may lower the relative
effects of translational selection in RNA viruses. Codon bias is also explained by drift and
mutational pressure (i.e., bias towards A/T/U or G/C mutations) as well as translational
selection [68]. Codon usage that is too similar to the host can also lower efficiency if viral
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proteins cannot fold properly [69], and differential codon adaptation can be a mechanism
of controlling viral gene expression [70,71].

Rotaviruses have been shown to exhibit codon bias [72,73], but have especially diver-
gent codon usage patterns from humans relative to other RNA viruses [74]. Codon usage
can be a potential hindrance to zoonosis if a virus infects a host that cannot efficiently trans-
late the virus’ proteins. RVA’s broad host range and ability to undergo genetic exchange
makes RVA’s zoonotic potential a cause for some concern.

We show that RVA’s segments have distinct evolutionary histories, demonstrating the
impact reassortment has had on mammalian RVA between the late 1950s to 2017. Because
each RVA segment is under different selective pressure, we also tested whether there was
evidence for translational selection on synonymous sites for each of the segments. To
assess whether certain segments showed more codon adaptation against different common
host genomes, indicating translational efficiency differences, we tested for neutrality in
codon position 3, as well as variations in codon adaptive indices and relative codon
deoptimization indices for each segment. To test whether RVA showed signs of codon
optimization to a particular host, we compared strains isolated from specific hosts against
their host genome and other RVA host genomes. We found differences in codon usage
patterns between segments, with segment 11 (NSP5) having significantly higher codon
adaptation to host genomes, however, our study indicates codon usage is not a barrier to
rotavirus zoonosis.

2. Materials and Methods
2.1. Sequence Alignment and Phylogenetic Analysis

From all complete RVA genomes in NCBI’s Virus Variation Resource, 789 complete
mammalian rotavirus A genomes isolated between 1974 and 2017 were chosen. To minimize
sampling bias, we excluded any isolates where three or more genomes shared the same
sequence identity for NSP4. To ensure that the analysis of each RVA segment employed the
same set of strains, we filtered out the selected strains from files containing all available
genomes for each segment in Python v3.9.2 (xml files available in SI files S2–S12). The
pooled sequences of each of the 11 RVA segments were independently aligned using
MUSCLE v3.8.31 [75] and visually inspected for obvious sequencing errors or low-quality
sequences. Sequences that were unusually long, short, or contained ‘N’ nucleotides were
all removed. We performed phylogenetic analyses using BEAST v1.10.4 [76]. We used tip
dating to calibrate molecular clocks and generate time-scaled phylogenies. We note that
divergence-date estimating in viruses using tip-date calibration can be especially erroneous
if there is a poor model fit to the data [77]. Genetic diversity, a contemporaneous bias of
available virus sequences, lineage-specific variation in rates over time, long-term purifying
selection, and inappropriate priors can result in substantial errors in the phylogeny and
divergence date estimates [78–80]. We excluded Avian RVA from the phylogenetic analyses
to minimize error in divergence-date estimates, which can be exacerbated with the inclusion
of deeper nodes. As Mammalian RVA is endemic in the population, and has been for quite
some time, this also somewhat minimizes the error associated with sampling bias.

The analyses were run under an uncorrelated relaxed clock model using a time-aware
Gaussian Markov random field Bayesian Skyride tree prior [81]. Segment alignments were
partitioned by coding sequence and untranslated region and run using a GTR + Γ + I
substitution model and partitioned by codon position for the coding sequence partition.
VP4 was partitioned by the VP5 * and VP8 * protein domains. Due to the large insertions in
segment 11 (NSP5/6), this segment required three partitions based on insertion locations.
Log files in Tracer v1.7.1 [82] were analyzed to confirm sufficient effective sample size (ESS)
values. The alignments were run for three chains with a 500,000,000 Markov chain Monte
Carlo (MCMC) chain length, analyzed on Tracer v1.7.1, and combined using LogCombiner
v1.10.4 [83]. Trees were annotated with a 10% burn-in using TreeAnnotator v1.10.4 [82].
The best trees were visualized using FigTree v1.4.4, with the nodes labeled with posterior
probabilities and node bars representing 95% confidence intervals for the divergence dates
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(annotated tree files available in SI files S13–S23). Bayesian Skyride plots were made
in Tracer v1.7.1 to compare each segment’s changes in effective population size (used
as a proxy for relative diversity) since the root of the tree (~50 years prior to 2017 for
most segments).

We used the R package ‘distory’ to calculate the geodesic distances between segments.
Geodesic distance uses topology and branch length to visualize the tree space of the 11 seg-
ments to determine which segments share a close evolutionary history. To account for
phylogenetic uncertainty, 350 post-burn-in, randomly chosen trees were sampled from
the BEAST v1.10.4 tree file for each segment. We applied multi-dimensional scaling using
the R package, ‘tree space’ to determine whether the ‘time to the most recent common
ancestor’ (TMRCA) was consistent between segments. The correlation coefficient of TM-
RCA estimates from all pairwise comparisons of the 11 segment trees was used to estimate
tree distance and then the matrix of tree distance was plotted. Variation in branch length
between different segment trees was visualized as a cloud of points where the center
represents the mean of several hundred trees. Segments that co-segregate overlapped in
three-dimensional space, while segments that did not co-segregate were isolated in space.

To compare the segments’ relative host boundary conservation, we calculated the as-
sociation index (AI) statistic [84] and parsimony score statistic (PS) [85] using the Bayesian
tip-association significance testing program, BaTS [86]. To account for phylogenetic un-
certainty 300 random post-burn-in trees for each segment were used for the analysis.
As complete RVA genomes from non-human hosts are relatively under-sampled, for the
11 phylogenies used in the distance analysis, we assigned states for each isolate as be-
ing either from human or nonhuman hosts. We also created two separate phylogenies
(SI files S24 and S25, SI Figures S1 and S2) using an additional, different set of isolates for
segments 4 and 9, in which an effort was made to lower host-sampling bias and maximize
the RVA genetic diversity captured. The phylogenies consisted of 127 non-human isolates
which had complete sequences available for at least segments 4 and 9. We calculated the
phylogenetic trait association for each of the two segments’ phylogenies with regards to
specific host species, to test if the same pattern of relative host-species association was still
observed between the two segments when using a less-biased host-sampling.

2.2. Codon Bias Analysis Comparison

The relative codon deoptimization index (RCDI) was used to assess if the codon usage
of a gene was similar to the codon usage of a reference genome (2953 coding sequences for
Sus scrofa (pig), 93,487 coding sequences for Homo sapiens (human), 6017 coding sequences
for Gallus gallus (chicken), 13,374 coding sequences from Bos taurus (cow), 1194 coding
sequences for Canis familiaris (dog), and 1115 coding sequences for Oryctolagus cuniculus
(rabbit)) [87]. RCDI values range from 0.0 to 1.0 with 1.0 indicating maximum codon
usage compatibility with a reference genome. Similarly, the codon adaptation index (CAI)
was used as a measure of codon usage adaptation to the most used synonymous codons
of a reference genome and was used to predict the expression levels of genes [87]. CAI
values range between 0.0 and 1.0, where higher CAI values for a particular reference set
indicate higher expression levels. To determine if there were significant differences in
CAI/RCDI values between the different segments, we calculated CAI and RCDI values
using the CAIcal server (http://genomes.urv.es/CAIcal/ (accessed on 15 August 2020))
for each segment using a subset of RVA isolates containing multiple representatives of
common mammalian RVA genotypes [88]. Statistical analyses were performed to assess
whether RVA was genetically compatible in its codon usage patterns with a set of RVA host
reference genomes. To reduce bias that would result from analyzing a small number of
genes, the RVA host reference genomes were chosen based on the availability of a large
number of genes analyzed for their codon usage tables in the Codon Usage Database
(http://www.kazusa.or.jp/codon/ (accessed on 15 August 2020)). Reference sets for
chicken, human, pig, dog, rabbit, and cow genomes were used for the analysis. We
performed Tukey’s Honest Significant Difference (HSD) test to compare mean CAI and
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RCDI values between segments. We also used Tukey’s HSD tests to compare mean CAI
and RCDI values between different host genomes after combining all segments’ values.

To test for neutrality at the third codon position, a neutrality plot was made by
comparing the GC contents at the first, second, and third codon positions. GC12 being
the average of GC1 and GC2 was plotted against GC3. If GC12 and GC3 are significantly
correlated to one another, and the slope of the regression line is close to 1, mutational
bias is assumed to be primarily responsible for shaping codon usage patterns rather than
translational selection. Selection against mutation bias can lead to larger differences in GC
content between positions 1 and 2, and position 3 and little to no correlation between GC12
and GC3 [89].

RVA strains isolated from specific hosts (pig, human, cow, and avian) were also
compared to the pig, human, cow, and chicken genomes to test whether RVA genomes
showed evidence of adapting to specific hosts. Seven complete genomes (77 segment
genomes) for each host, isolated from either avian, cow, human, or pig hosts. While
reassortment and spillover events occur in RVA evolution, there are larger generally
bovine/porcine/human/avian clades (Figure 1, SI Figures S1 and S2), so isolates represent-
ing their general host strain clades were chosen. If RVA genomes did not appear to differ in
CAI and RCDI patterns based on host type, then it would suggest mutational selection was
the dominating force over the translational selection, and that selection at the translation
level was weak or undetectable.

3. Results
3.1. Different Tree Space Occupied by the 11 Segments

Multi-dimensional scaling of the random, post-burn-in sampling of BEAST trees for
each of the 11 segments revealed that segments 4 and 9 occupy distinct tree spaces from each
other and the rest of the genome (Figure 2). Segments 10 and 11 occupied indistinguishable
tree space indicating close geodesic distances and high levels of evolutionary linkage
between them. Segments 3 (VP3), 5 (NSP1), and 6 (VP6) also shared highly overlapping
tree space with one another. Segment 2’s (VP2) evolutionary history was most like segment
6 (VP6). None of the segments overlapped with segment 1 (VP1) except for segment
7 (NSP3). Segment 7 also had the most phylogenetic uncertainty of all 11 segments as
shown by the larger spread around the plot of the post-burn-in trees in Figure 1. The
best-supported trees are depicted for segments 1–3 (Figure 3), segments 4–6, 9 (Figure 4),
and segments 7, 8, 10, and 11 (Figure 5), with the host species coded on the tree and the
branch lengths color-coded by relative evolutionary rate (Figure 3). While segment 4 had a
more independent evolutionary history from other segments, its tree and AI/PS statistics
suggested this segment has stricter host boundaries than segment 9 (Figure 4, Table 1),
indicating either less opportunity for divergence due to selection responses to host species
change or that segment 4 has a stronger role in host determination.

The AI and PS statistics calculated from the post-burn-in random trees (Table 1,
Figures 2–5) comparing human to non-human host spillover events, indicated segment
4 was least likely to switch hosts (AI = 1.23, PS = 11.71) while segment 9 was the most
prone to switching hosts (AI = 3.83, PS = 25.80). The AI and PS statistic for separately
tested non-human host phylogenies (SI files S24 and S25) using each specific host species
as a state, was 3.20 for segment 4 and 4.18 for segment 9. A lower AI statistic indicates a
stronger correlation between trait and phylogeny, so this result also indicates VP7 has less
strict host boundaries relative to the other segments. We note that as the 11 trees used for
the whole-genome comparison were under-sampled for non-human hosts, a larger analysis
should be done with less-biased host sampling before confident conclusions can be formed
regarding a comparison of relative host associations between all of the 11 segments.
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Table 1. Association Index and Parsimony score statistics calculated in BaTS. The statistics for
segments 1–11 was calculated based on 300 randomly sampled-post burn-in trees (Figures 3–5) in
which states for each isolate were marked as either human or non-human host. The * next to segments
4 and 9 rows at the bottom of the table is indicating the statistics are for the separately made trees
for segments 4 and 9, using all available complete sequences of both VP4 and VP7 available for
non-human host isolates, with the AI and PS statistics being calculated using the specific host as the
state for each isolate.

Segment Association Index (AI) p-Value Parsimony Score (PS) p-Value

Segment 1 1.79 0.00 16.78 0.00
Segment 2 1.97 0.00 18.63 0.00
Segment 3 2.88 0.00 22.86 0.00
Segment 4 1.23 0.00 11.71 0.00
Segment 5 2.11 0.00 17.87 0.00
Segment 6 2.68 0.00 19.19 0.00
Segment 7 1.60 0.00 18.03 0.00
Segment 8 1.89 0.00 19.66 0.00
Segment 9 3.83 0.00 25.79 0.00

Segment 10 2.44 0.00 17.26 0.00
Segment 11 2.11 0.00 18.99 0.00
Segment 4 * 3.11 0.00 31.88 0.00
Segment 9 * 4.18 0.00 34.15 0.00

Figure 2. Multi-dimensional scaling plot using 350 post-burn-in BEAST trees from each of the 11 RVA segments. Randomly
sampled post-burn-in trees were taken from each segment to account for phylogenetic uncertainty. Points sharing the same
color are from the same segment as shown in the legend. Points closer to each other indicate close geodesic distances and
high levels of evolutionary linkage.
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Figure 3. Time-scaled phylogenetic trees of Segments 1–3 for 789 mammalian RVA strains. The phylogenies are time-scaled
using tip-dating. Scale bars below each tree represent branch length time in years. The branches are colored by rate. Cyan
indicates the fastest evolutionary rate among all lineages, and black represents the slowest rate of evolution. Colored
asterisks specify the host species the strain was isolated from as shown in the legend. Posterior probabilities, node bars for
confidence intervals of the divergence dates, and tip labels for the strain names can be viewed by opening SI files S2–S4
(xml) or SI tree files S13–S15 in FigTree.
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Figure 4. Time-scaled phylogenetic trees of Segments 4, 6, 9, and 5 for 789 mammalian RVA strains. Phylogenies are
time-scaled using tip-dating. Scale bars below each tree represent branch length time in years. The branches are colored by
rate. Cyan indicates the fastest evolutionary rate among all lineages, and black represents the slowest rate of evolution.
Colored asterisks specify the host species the strain was isolated from as shown in Figure 3. Posterior probabilities, node
bars for confidence intervals of the divergence dates and tip labels for the strain names can be viewed by opening SI files
S5–S8 (xml) or SI tree files S16–S19 in FigTree.
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Figure 5. Time-scaled phylogenetic trees of Segments 8, 7, 10, and 11 for 789 mammalian RVA strains. Phylogenies are
time-scaled using tip-dating. Scale bars below each tree represent branch length time in years. Table 1. Posterior probabilities,
node bars for confidence intervals of the divergence dates and tip labels for the strain names can be viewed in SI by opening
SI files S9–S12 (xml) or tree files (SI 20–23) in FigTree.

3.2. Evolutionary Rates

Segment 8 (NSP2) displayed the lowest mean substitution rate (1.48 × 10−3 substitu-
tions per site per year), while segment 4 (VP4) had the highest (3.77 × 10−3 substitutions
per site per year) (Table 2). The mean rate for segment 11 was likely skewed higher due
to the frequency of large insertions into the segment. Segments 1–3 showed similar evo-
lutionary rate changes at corresponding clades and time periods in their trees, with the
higher evolutionary rates occurring earlier in their evolutionary histories (Figure 3) (for
node confidence intervals at divergence dates see SI Figures S1–S11). Higher evolutionary
rates tended to be observed along branches leading towards non-human host isolates,
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particularly for VP7, which had more rate variation across the tree than the other segments
(Figure 4). For example, the Ailuropoda melanoleuca (giant panda) strain (represented by the
green asterisk in Figures 3–5) possesses a genomic backbone that is within a cluster of pig
and cow strains, except for segment 9. The giant panda’s RVA segment 9 occupies a more
divergent branch associated with a higher evolutionary rate than the rest of its segments.

Coefficients of variation (CoV) for each segment (Table 2) were consistently high,
supporting the assumption that a strict molecular clock is inappropriate for this analysis,
and that a relaxed clock is a better choice. All segments exhibited relatively similar
TMRCA estimates with segments 1–3 possessing slightly older TMRCA dates than the
other segments (Table 2). Segment 1 had the oldest TMRCA estimate (~1957) of all the
segments, while segment 11 had the most recent TMRCA estimate (~1969). Node bars for
95% confidence intervals of the node divergence dates are shown in SI Figures S1–S11 for
each segment. Since this data set of 789 genomes includes strains collected from geographic
areas across the world, it appears that most of the mammalian RVA genetic diversity
present today has evolved in the past ~60 years.

The Bayesian Skyride plots indicate that RVA segments reached their peak diversity
levels around the year 2000, with a steep decline around the year 2007, which coincides
with the introduction and broad-scale use of RVA vaccination (Figure 6).

Figure 6. Skyride plots of the 11 RVA segments. The X-axis represents the date. The Y-axis represent effective population
size and is a proxy for genetic diversity. All segments show a sharp decrease in diversity roughly 10 years before 2017
(2006–2008).



Viruses 2021, 13, 1460 12 of 26

Table 2. Mean rates, 95% highest posterior density (HPD), coefficient of variation, and date for the ‘time to most recent
common ancestor’ (TMRCA) for each segment’s phylogenetic tree.

Segment Mean Rate 95% HPD
(Lower, Upper)

Coefficient of
Variation TMRCA

Segment 1 (VP1) 1.724 × 10−3 1.610 × 10−3 1.835 × 10−3 2.410 1957
Segment 2 (VP2) 1.703 × 10−3 1.589 × 10−3 1.826 × 10−3 2.602 1963
Segment 3 (VP3) 1.948 × 10−3 1.814 × 10−3 2.087 × 10−3 2.436 1962
Segment 4 (VP4) 3.775 × 10−3 3.517 × 10−3 4.044 × 10−3 8.978 1964.5

Segment 5 (NSP1) 2.953 × 10−3 2.694 × 10−3 3.223 × 10−3 3.994 1964.5
Segment 6 (VP6) 1.694 × 10−3 1.541 × 10−3 1.857 × 10−3 3.412 1967.5

Segment 7 (NSP3) 1.615 × 10−3 1.454 × 10−3 1.778 × 10−3 5.061 1967
Segment 8 (NSP2) 1.473 × 10−3 1.335 × 10−3 1.610 × 10−3 3.323 1966.5
Segment 9 (VP7) 2.660 × 10−3 2.400 × 10−3 2.940 × 10−3 3.375 1966.5

Segment 10 (NSP4) 1.583 × 10−3 1.420 × 10−3 1.743 × 10−3 2.599 1967.5
Segment 11 (NSP5/6) 2.424 × 10−3 2.040 × 10−3 2.831 × 10−3 3.285 1969

3.3. Differing Codon Usage Patterns by Segment

Compared to the other ORFs, NSP5 possessed significantly higher CAI scores and
significantly lower RCDI scores across all host genomes. The wide range of values for each
RVA segment suggests that, while there may be differences in selective pressure on codon
usage by segment, the translational selection was relatively weak compared to mutational
selection for the rest of the genome.

Codon usage patterns for both mammalian and avian RVA appear more compatible
with avian genomes than mammalian genomes (Figures 7 and 8), however, human genomes
and avian genomes showed similar compatibility between one another, with RVA genomes,
and their CAI scores were not significantly different. RVA had higher CAI values and RCDI
scores closer to 1 for both human and avian genomes relative to rabbit, cow, pig, and dog
genomes. RVA compared against the pig genome resulted in the lowest CAI scores for all
segments and strains. In other words, based on CAI and RCDI metrics, RVA is predicted to
be the least translationally efficient within pigs.

A neutrality plot revealed that NSP4 had the highest GC content in position 3 (GC3)
relative to the other segments. VP6 had the highest GC content in positions 1 and 2 (GC12)
relative to the other segments while NSP1 and VP3 had the lowest GC12 content. While
VP6’s GC12 content was higher than the rest of the RVA genome, VP6’s GC3 content was
not. The slopes for all regression lines deviated from 1 (Figure 9), ranging from 0.043 (VP7)
to 0.316 (NSP1), indicating that there was significant selective pressure on position 3 for
codon usage for all segments. The slopes indicate NSP1 is under more mutational pressure
than the other segments, while VP7 is under more selective pressure at position 3 compared
with the other segments, however, the lower GC3 values relative to GC12 in VP7 actually
indicates lower adaptation to the host genome.

The lower GC3 values relative to GC12 in VP1 and VP3 also showed low slopes (0.06
and 0.05 respectively), suggesting that they may also be under less mutation pressure and
more translational selection, however like VP7, the relatively low GC3 content in already
high AU genome, suggests the translational efficiency would be lower. The correlation co-
efficient overall for GC12 and GC3 was 0.261 (p < 0.001). While some segments/ORFs (VP1,
VP2, VP4, NSP1, NSP2, NSP3, and NSP5) were more significantly positively correlated
between GC12 and GC3, segments 9 and 10 displayed no significant correlation.
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Figure 7. Boxplots of the Codon Adaptation Index and Relative Codon Deoptimization Index values for RVA genes with
respect to different RVA hosts. (A). Sampled sequences representing common genotypes for each of the 11 segments were
measured for CAI with respect to the six hosts shown. The Y-axis value ranges are different for each host as some hosts have
higher CAI values. Higher CAI values indicate more efficient expression. (B). RCDI values for the same sampled sequences
from A plotted for each segment with respect to each host. RCDI values closest to 1 indicate more similar codon usage
patterns. The Y-axis value ranges are different for each host. Tukey-Kramer 95% pair-wise confidence intervals are shown in
SI Figure S3.
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Figure 8. Tukey’s honest significance test for RCDI and CAI values between different host genomes. Values used for this
test are the combined values for all segments used in Figure 6.

Figure 9. Neutrality plot of RVA ORFs. GC percentages of codon position 3 plotted against GC percentages of codon
positions 1 and 2 (GC12) for the ORF for 11 RVA genes. Slopes significantly deviating from 1 show evidence of natural
selection, while slopes near 1 suggest neutrality wherein mutational selection is the driving force of codon usage patterns.

3.4. Synonymous Sites under Selection, However Evidence Does Not Suggest Translational
Selection to Specific Hosts

When comparing strains isolated from different species, there was no evidence to
support the conclusion that RVAs adapt their codon usage to specific hosts (Figure 10).
While the bovine strains and avian strains had RCDI values closer to 1.0 than the pig
and human RVA strains, there were no significant differences between RCDI values of
avian isolates compared to avian genomes vs. RCDI values of bovine isolates compared to
avian genomes. Based on RCDI values, bovine strains were “most compatible” with avian
genomes, and human strains were “less compatible” to the human genome than to bovine
strains. Given that avian and mammalian RVAs do not exchange genetic information in
nature, there is a substantial divergence between avian RVA isolates and mammalian RVA
isolates. The fact that RVA strains show more similar codon patterns between bovine and
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avian strains than between human and bovine strains suggests that translational selection
by the host does not play a large role in codon bias.

Figure 10. Box plots of CAI and RCDI values for each ORF from strains isolated from specific hosts.
RCDI and CAI values were derived by sampling 7 complete genomes (77 segment genomes) for
each host, isolated from either avian (red), cow (green), human (blue), or pig (purple) hosts. These
RVA genomes were then separately compared to cow, chicken, human or pig codon usage charts.
** if p < 0.01, *** if p < 0.001, **** if p < 0.0001, and ns if p > 0.05.

Rotavirus genes overall had higher CAI scores and lower RDCI scores when contrasted
with the avian genome codon usage patterns (Figure 7). The lowest CAI and highest RDCI
scores were observed when RVA genes were compared with rabbit genomes. However,
there was little variation depending on which host the viral strain was isolated from (i.e.,
avian RVA strains did not have significantly different scores when compared to bovine
RVA strains using the same reference codon usage patterns) (Figure 10). There was no
evidence for detectable translational selection by the host, however, the observation that
RVA was generally less optimized for the non-human mammalian genomes suggests that
RVA may have higher protein expression levels in humans.

4. Discussion

While segment exchange between different RVA genotypes is common, reassortment is
not a random process [90–94]. However, the limits of segment exchange, whether ecological
or mechanical, are poorly understood. Some segment combinations work well together,
whereas others are incompatible [95]. Numerous factors potentially could affect whether
segments from different RVA genotypes are able to reassort, including protein interactions,
RNA-RNA and RNA-protein interactions, and the need to maintain host range and ensure
RNA packaging efficiency.

The goal of this study was to better predict potential (or unlikely) genome constella-
tions that may emerge in nature and enhance our understanding of why some segments
co-segregate, and some do not. To this end, we compared the evolutionary histories as
well as some of the selective pressures acting on the 11 RVA segments, first by perform-
ing phylogenetic analyses on a large collection of complete RVA genomes, and then by
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assessing the selective pressures acting on synonymous sites by segment and host type.
We estimated the diversity levels of each RVA segment over the last ~60 years and linked
decreases in diversity to the introduction of RVA vaccines between 2006 and 2008.

The segments that share highly similar tree space may share important interactions
that rely on a higher percentage of the sequence (e.g., selective pressure at synonymous
sites), while the segments that inhabit distinct tree space are likely more flexible on a variety
of genetic backgrounds. RVA’s RNA segments are under different evolutionary pressures,
which is clear from the distinct evolutionary histories of the segments (Figure 2), and the
significant difference in nucleotide composition between the segments, despite coming
from the same genome (Figures 7 and 9). The zoonotic potential for rotaviruses makes
understanding restrictions on genetic exchange important, as outcrossing events can result
in novel strains which may cause more severe disease or be better able to evade a vaccine
or immune response. Both codon usage and reassortment potential can be important
factors in the viral host range, and both are constrained by RNA interactions, translational
selection, and mutational bias. Understanding the relative constraints of the RVA genome
can help better assess the risk of zoonotic outbreaks and emerging strains.

4.1. Potential Impact of Rotavirus RNA and Protein Interactions on Segment Co-Segregation

RVA protein and RNA molecules interact with each other in a variety of ways during
infection and assembly processes. Incompatibilities among different genotypes resulting
from these interactions may limit the diversity of genome constellations observed in nature.
For example, RNA secondary structures and segment-specific sequences found in the non-
translated terminal regions (NTRs) may govern the formation of the supramolecular RNA
complex associated with segment packaging [31,94,96–99] Sequence mismatches between
segments from coinfecting RVAs may prevent segment interactions and co-packaging, and
hence, the generation of reassortment RVAs. One of the studies [96] also suggested that VP4
has a less conserved terminal RNA structure, so the importance of these RNA interactions
may vary significantly by segment.

The order in which the segments associate to form the supramolecular RNA complex
may be sequential. In this scenario, the smallest segments interact first, then they recruit
intermediate-sized segments before finally incorporating the largest segments [97]. In
addition, incompatibilities in the 3′-NTRs of the smaller segments may have stronger
effects on segment co-segregation than do the larger segments. For instance, the smallest
RVA segments, segments 10 and 11 must directly interact before they can interact with larger
segments. Evidence for this supposition that the smaller segments’ RNA structure is under
strong selective pressure along with its protein structure (i.e., synonymous mutations are
often not neutral) also comes from our observation that segments 10 and 11 co-segregated
with one another more strongly than other pairs of segments (Figure 2), despite their many
protein interactions with other segments.

There is evidence for frequent inter-host-species reassortment of segment 10, which
encodes the enterotoxin, NSP4, in nature [15,100], so reassortment of segment 10 may be
more dependent on the sequence conservation of terminal +ssRNA between segments
10 and 11, than on protein interactions. In addition to NSP5, segment 11 also encodes a
second out of frame protein, NSP6, via leaky scanning. NSP6 is not required for virion
function and is sometimes not expressed in rotaviruses [101]; however, it is constrained due
to overlapping with NSP5. Segment 11’s RNA structure is thought to have some functional
importance [96,102] however segment 11 appears more tolerant of genome insertions
than other segments [51,52], likely due to packaging signal duplication [52]. The close
evolutionary histories of segments 10 and 11 may also relate to NSP4-NSP5 interactions
during viroplasm formation [34].

The tree spaces of both segments 4 and 9 (Figure 2) were notably distinct from the tree
spaces of the rest of the genome. RVA segment 4 encodes the spike protein, VP4, which is
cleaved by trypsin into VP8 * and VP5 *. VP4 interacts with different receptors depending
on the strain, including sialoglycans and histo-blood glycans [103–105] These different



Viruses 2021, 13, 1460 17 of 26

receptors partly explain why certain P types tend to dominate in different populations,
species, and age groups [105,106]. Our results showed that the gene tree of segment 4
was distinct from the rest of the genome, suggesting that segment 4 may reassort more
readily than other segments. Alternatively, segment 4’s divergent history could also be
explained by VP4’s role in host determination (Table 1). Segment 9 (VP7) had the weakest
association with host species (Table 1) which may explain its distance from VP4 and the rest
of the genome. Other environmental studies have also found that segment 4 and segment
9 are more likely to appear in different genetic backgrounds [107–109]. Based on the high
genetic diversity of segments 4 and 9, and segment 4 seeming to have a less conserved
role in RVA +ssRNA assortment, reassortment into new genetic backgrounds may confer
a selective advantage and a broader host range, as strains can have an opportunity to
evolve in a novel host, they may otherwise be unable to infect, due to a barrier caused
by another segment (e.g., poor receptor-binding). Segment 4’s larger geodesic distance
from the rest of the genome and high diversity in RNA secondary structure, suggests that
segment 4’s synonymous sites may be less critical to the segment’s function. Segment 9,
on the other hand, is critical for the formation/stabilization of the supramolecular RNA
complex and for packaging the genome. Both segments 4 and 9 have been shown to tolerate
homologous recombination among highly divergent genotypes, including recombination
events resulting in the disruption of many amino acids, whilst still maintaining overall
tertiary structure [110].

Due to the importance of VP1, VP2, and VP3 during the formation of the virion,
synthesis of dsRNA, and associating with the 11 +ssRNA segments, one might expect
these segments to be the least likely to reassort independently. However, the critical VP1,
VP2, and VP3 interactions are mostly protein-protein interactions, so even a genetically
distant strain could maintain a conserved amino acid sequence allowing these segments
some flexibility with their genetic background. Our results showed that, while these three
segments are generally associated with the larger “gene tree” of the rest of the genome,
they have a more independent evolutionary history than for example, segments 10 and 11,
which almost entirely overlap in tree space.

Interestingly, segment 7 (encoding NSP3) shared the closest evolutionary history with
segment 1 (Figure 1). We expected segment 1 to have the closest evolutionary history with
segments 2 or 3 given their proteins’ interactions, however, VP1’s high degree of structural
conservation [5] and having less functionally important RNA structure than the other
segments may explain its tolerance for novel genetic backbones. Segment 7/NSP3 may
have less strain-specific interactions with other segments resulting in less fitness variation
following a reassortment event. Segment 7 may have endured a significant reassortment
event around 1970 (Figure 5, and SI file S10) which also may explain its geodesic from
the other segments. NSP3’s primary function is to recognize a conserved group-specific
sequence present on all group A RV segments and interact with host eIF4G, a protein that
is highly conserved among orthologs [111]. This suggests NSP3 genes could be flexible to
many RVA genetic backgrounds and hosts.

Segment 5 (NSP1) was only particularly distinct in the tree space (Figure 2) from seg-
ments 1, 4, and 9. This was somewhat surprising as NSP1 has relatively low conservation,
can tolerate insertions and deletions, and is not required for rotavirus replication in vitro
(although the RNA is still required for packaging). NSP1’s important role in targeting the
host’s antiviral response as an interferon antagonist [112], inhibiting apoptosis [113,114],
and activating NFkappaB [115] may explain a stronger host-association. NSP1 reassortment
with different host strains may confer a deleterious effect in vivo, despite the reassortment’s
ability to compete in vitro (i.e., in the absence of a significant immune response).

4.2. Rotavirus Evolution Following the Introduction of Rotavirus Vaccines

The live-attenuated pentavalent vaccine, RotaTeq (Merck, West Point, U.S.), was
introduced in 2006, and the live-attenuated monovalent vaccine, Rotarix (GlaxoSmithKline,
Rixensart, Belgium, U.S.), was disseminated in 2008. RotaTeq contains five human-bovine
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reassortment viruses with strain serotypes of G1P [5], G2P [5], G3P [5], G4P [5], and G6P
[8]), while Rotarix is comprised of the human G1P [8] strain, RIX4414. These vaccines
provided effective protection against contemporaneous globally dominant strains G1P [8],
G2P [4], G3P [8], G4P [8], and G9P [8]. Our results show a coincident decline in the relative
diversities and effective population sizes of all RVA segments after 2006. Supporting this
analysis, several studies, including an analysis of G12 strains in Africa, G12 strains in Spain,
and a lineage of P [8] strains also show a general decline in diversity/effective population
size after 2008 [116–118].

The introduction of the RVA vaccines resulted in a global reduction in RVA-associated
mortality. However, vaccine effectiveness varied substantially by region [119] and resulted
in changes to the circulating strain prevalence. For example, in a post-vaccine era, the
prevalence of G9P [8], G2P [4], and G9P [4], G9P [8] increased, while the prevalence of
G1P [8] and G3P [8] declined [120–123]. The emergence of rare genotypes or animal RVA
reassortments in children also appears to be connected to the selective pressure imposed by
vaccination. For example, the increase in abundance of G12 and G11 genotypes [121,122]
and the appearance of atypical Wa-like and DS-1-like reassortments, such as the emergence
of G1P [8] with a DS-1-like backbone in Malawi [124], appear linked to increases in RVA
vaccination. Given DS-1-like and Wa-like segments are thought to have incompatibilities
with one another, limiting their reassortment potential [95], the vaccine-induced selection
for mutations can be difficult to assess. That is, it is difficult to determine whether emerging
fixed mutations are the direct result of escape mutants or are compensatory mutations
resulting from novel reassortments. A study on G2P [8] evolution did not observe evidence
of vaccine-induced selection; however, another study focusing on P [6], P [4], and P [8]
genes did report substantial divergence from the vaccine strains.

Vaccine-induced selective pressure may partly explain the pattern observed when
comparing the geodesic distances of the segments. Like the present study, which found
that segments 4 and 9 (encoding serotype proteins VP4 and VP7) were especially amenable
to reassorting into new genetic backgrounds, a study of European Bluetongue virus (BTV)
isolates also found that segments 2 and 6 (encoding the BTV homologs of VP4 and VP7)
were quite distant from the rest of the genome in tree space [125]. However, the BTV
segments 2 and 6 were closer to one another in tree space, whereas in RVA segments 4
and 9 were highly distinct from each other. Additionally, BTV segments 7 (encoding the
inner capsid protein) and 10 (encoding NS3) shared close evolutionary histories with one
another, and distinct from the rest of the genome. Interestingly, in another BTV study on
strains from India, segment 4 (encoding a protein homologous to VP3 in RVA) was found
to be the most isolated segment in tree space [126]. While there are BTV vaccines available,
BTV does not infect humans, is not as globally distributed as RVA, and far fewer serotypes
circulate, so there may be more selective pressure on RVA serotype segments to reassort.

While RVA segments were unlinked and had different phylogenies and rate varia-
tions along with their trees, the segments’ patterns in relative diversity over time mostly
matched each other. In the Rift Valley fever virus [127], which is a three-segmented -ssRNA
arbovirus, different skyline plots were observed for each segment, suggesting that the
segments are evolving independently to some extent. In the Rift Valley fever study, the
medium segment had a much larger effective population size than the small and large
segments, indicating that the medium segment experienced reassortment events more fre-
quently than the small and large segments, which tended to co-segregate. The differences
in evolutionary patterns between RVA and Rift Valley fever virus may be a consequence
of their differing epidemiology. Frequent outbreaks of Rift Valley fever are limited to
sub-Saharan Africa, and their transmission relies heavily on mosquitos and not human-
to-human transmission. Rotavirus is conversely, a globally present pathogen with many
dominating strains constantly circulating amongst humans, likely making it less sensitive
to bottleneck effects.

A more thorough comparison of the geodesic distances between the spike and outer
capsid proteins and the rest of the genome in other dsRNA viruses is indicated. It would be
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interesting to ascertain whether the patterns observed in RVA are also seen in other dsRNA
viruses. While both G and P types are significantly associated with certain hosts (Figure 1,
Table 1), this study suggests segment 9 is the most flexible to different hosts, while segment
4 is the least. Rotavirus disease is typically discussed in terms of ‘GXP[Y]’ strains, however,
segment 4 and segment 9 evolve independently both from each other and from the rest of
the genome. The prevalence of common G and P combinations in association with certain
backbones seems to have more to do with an ecological abundance of those strains and less
to do with a functional constraint on the virus. As this study analyzed strains from prior to
2017, the global declines in RVA diversity in response to RVA vaccination may change.

4.3. Codon Bias Analysis Shows Codon Usage Differs between Segments, but Not between
Host Strains

We contrasted the codon usage patterns of several common mammalian RVA geno-
types with a set of RVA host reference genomes. Our results showed that mammalian and
avian RVA codon usage patterns were most compatible with avian genomes (Figure 7).
For example, the highest CAI values and lowest RCDI values in our comparative analysis
suggested that RVA NSP5’s codon usage pattern was best adapted to the chicken genome
(Figure 7). This finding suggests that RVA originated as an avian virus that subsequently
expanded its host range to include mammalian hosts. The fact that RVA appears better
adapted to human and avian genomes rather than the other mammalian genomes tested
further suggests that RVA spread to other mammalian hosts after adapting to humans,
though more evidence is required to confirm this hypothesis (Figure 8). Additionally,
NSP5’s relatively high CAI value and low RCDI value (Figure 7; both values approach 1)
may indicate a strong selective advantage for NSP5’s codon optimization. Since efficient
NSP5 protein expression is critical for RVA viroplasm formation and replication [128–130],
the higher CAI value may indicate that NSP5’s codons are optimized to match avian hosts
to maximize NSP5 expression in host cells. The variation in GC content between segments
was also notable, as being from the same genome, this suggests mutational bias towards
AU or GC is not entirely responsible for RVA’s observed codon bias. The low GC3 content
and especially low GC3:GC12 ratio seen in VP3 (Figure 9), in contrast with the high GC3
content of NSP5 and NSP4 (relative to the rest of the genome), could suggest it is beneficial
for the rotavirus to have lower-efficiency VP3 expression relative to NSP4 and NSP5, during
infection. Varying the codon bias by gene, or maintaining suboptimal codon bias to the
host, may sometimes be beneficial [69,74], a phenomenon which has been observed for
example, in hepatitis A virus [61].

Although the bovine and avian RVA strains sampled tended to have higher CAI scores
and RCDI scores closer to 1, there was no evidence of divergence in codon usage among
bovine and avian strains. The similarity in codon usage between host strains is in contrast
with a study of influenza A which found that avian and human influenza strains have
distinctly different G/C vs. A/U contents from one another [131]. Our finding suggests
that, while RVA strains may indeed experience an advantage from matching the codon
usage patterns of their hosts, it is unlikely that translational selection can counteract nucleic
acid selection (i.e., selection favoring synonymous substitutions improving virus survival
and reproduction). The wide range of CAI/RCDI values and GC3 content for some of the
segments suggest that translational selection is not an especially strong selective pressure
for every gene. However, translational selection does seem to be a stronger selective
pressure at least in NSP5, based on its significant divergence from the rest of the RVA
genome’s codon usage (Figure 9). The neutrality plot also shows that GC percentages at
position 3 frequently are significantly different from the GC percentages at positions 1 and
2, which would indicate that strong selection is occurring at position 3 (Figure 9). The
variation in GC content and codon usage by segment could point to RVA using codon bias
as a mechanism of controlling viral gene expression. While there is no significant difference
in codon usage between strains isolated from different hosts (Figure 10), notably RVA, in
general, is significantly more optimized to human and avian genomes, than pig and cow
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genomes. This indicates translational efficiency is not a barrier for zoonosis between avian
and mammalian strains.

There are some limitations in the assessment of codon usage patterns. Despite the
potential advantage of possessing a codon usage pattern that strongly resembles that of
a host, codon usage patterns on their own are inadequate for making inferences or con-
clusions about the selective forces acting on virus populations. Furthermore, a significant
amount of codon usage pattern variation exists between genes of the same host, so forming
conclusions regarding viral codon-level adaptation to the host is especially difficult. That
is, having high CAI values or RCDIs close to 1.0 does not necessarily mean that the virus
is more adapted to that host. It could, however, provide evidence that the viral genes are
better expressed in a particular host or that a specific gene of a virus may be more efficiently
expressed. Additionally, we note that rotaviruses have especially AU-rich genomes, and
their codon usage patterns diverge from human usage patterns more than other human
viruses [74]. It would appear that the benefits of being AU-rich outweigh any benefits
conferred through codon optimization.

This study further supports caution when measuring for selection by comparing
dN/dS ratios for rotaviruses, as the selective pressure at synonymous sites varies sig-
nificantly by segment. While the evidence did not support RVA nucleotide composition
or translation selection varying based on the host strain, certain segments were under
stronger selectional (translational) rather than mutational pressure at codon position 3.
RVA’s indistinctive codon usage by host strain, suggests translational efficiency is not an
important host-range barrier for RVA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13081460/s1, Figure S1. Phylogeny of segment 4 used for AI calculation referenced in
main text Table 1, Figure S2. Phylogeny of segment 9 used for AI calculation referenced in main
text Table 1, Figure S3. Tukey-Kramer 95% pair-wise confidence intervals for main text Figure 7A,
Segments 1–11.
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