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Abstract: 3D terrains used in digital animations and videogames are typically created by several
collaborators with a single-user application, which constrains them to update the shared terrain
from their PCs, using a turn-taking strategy. Moreover, collaborators have to visualize the terrain
through 2D views, confusing novice users when conceiving its shape in 3D. In this article, we
describe an architecture for collaborative applications, which allow co-located users to sketch a
terrain using their mobile devices concurrently. Two interaction modes are supplied: the standard
one and an augmented reality-based mode, which helps collaborators understand the 3D terrain
shape. Using the painting with brushesparadigm, users can modify the terrain while visualizing its
shape evolution through the camera of their devices. Work coordination is promoted by enriching
the 3D space with each collaborator’s avatar, which provides awareness information about identity,
location, and current action. We implemented a collaborative application from this architecture that
was tested by groups of users, who assessed its hedonic and pragmatic qualities in both interaction
modes and compared them with the qualities of a similar Web terrain editor. The results showed
that the augmented reality mode of our prototype was considered more attractive and usable by
the participants.

Keywords: co-located collaboration settings; sketching applications; terrain modeling architectures;
augmented reality; novice users; heterogeneous mobile devices

1. Introduction

Augmented Reality (AR) is not a new topic, but a significant increase in its popularity
has been seen in recent years. This may be because AR has improved a lot [1]. After all, if
starting from the premise that the main objective of AR is to integrate the real world with
the digital one, new technologies have allowed users to have more complex and positive
experiences that comply with this goal [2]. This is a consequence of the fact that multiple
developers have focused their efforts on integrating AR with mobile devices, since they
offer considerable computing power with the advantages of being portable and affordable
for many people [3].

Mobile devices have allowed work contexts to be transformed into highly interactive
environments, changing our way of viewing information and interacting with other people,
creating experiences beyond the classic scenario of a single-user with a single-computer [3].
However, this technological democratization also poses serious problems, e.g., complex
systems (like 3D modeling software) are typically used by people with advanced knowl-
edge, or experts familiar with a particular way of working and handling data. This imposes
an entry barrier for people involved in solving a complex problem, so it is essential to
facilitate the understanding of these systems by people with varying degrees of experience.
Interactions between people in everyday environments should also be eased [3].
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Numerous 3D modeling applications can be found in the commercial sector and
free software community, but most of them present problems for novice users, typically
with a steep learning curve [4]. Their user interface usually has many editing tools and
complicated options, and the interaction can be complex, since these applications rely on
the traditional 3D interaction paradigm: the input is provided by 2D peripherals, such as
mouse and keyboard, and the 3D model has to be visualized through 2D views taken from
different virtual cameras [5]. However, novice users are not wholly aware of these cameras,
so they encounter difficulties turning a camera towards the intended position or switching
it [6]. In addition, amateur users cannot quickly figure out the aspect of the 3D model just
from 2D views, which can suddenly disappear in the 3D virtual space.

On the other hand, these applications are single-user, so they obviously lack adequate
support for group work [7]. Thus, collaboration is usually limited to asynchronous settings,
in which 3D models are sequentially built by several persons using a single-user application.
In this case, they are normally affixed to static computers and coordinate their activities
without any support from the application [8]. Only one person works on the 3D model
during a collaborative session, while the other group members have to wait or observe [9].
Later, other collaborators can suggest changes to the colleague that is interacting with
the application; at times, they can take turns in order to perform their own part of the
shared work. Obviously, the applications neither support simultaneous interaction with
multiple collaborators nor maintain shared data consistency. It is clear that, in some steps
of group work, it is more efficient to have several persons producing simultaneously than
sequentially [10].

These problems are the motivation for our proposal, and to give it greater clarity, a
real-life scenario is introduced: a group of colleagues is discussing ideas about the shape
of a surface intended for a video game. They do not have a PC nearby, but each one
carries a smartphone or tablet. Instead of trying to convey their ideas just by speaking,
gesticulating, or sketching on a napkin, making room for lots of misunderstandings, they
could sketch such a surface with a collaborative application from their mobile devices,
using technologies, like AR, that facilitate this common task [11]. Once finished with the
first version of their sketch, these colleagues can save it in a format understandable by a 3D
modeling application. Later, that sketch can be imported, for instance, in CoMaya [12,13]
serving as a basis to model a 3D object with colors, textures, and movements (or behavior)
using the sophisticated tools provided by the aforementioned application.

As a solution for these problems, ShAREdT ( Shared Augmented Reality-based Editing
for Terrains) is proposed in this article. It is a novel architecture for developing collab-
orative applications that facilitate 3D terrain sketches by a group of co-located people,
using AR technology on their mobile devices with no extra equipment (e.g., stereoscopic
viewers, Kinects, projectors, LiDAR, or Microsoft HoloLens devices). The target users of
the applications developed with our proposed architecture are collaborators who may not
have prior training on 3D modeling and experts who might need to sketch basic terrains
on the go.

We built a prototype following our architecture’s guidelines, a collaborative mobile
application that allows basic 3D sketching of terrains, where users can model by visualizing
the terrain solely through the display of their device or with AR. For testing, groups of
novice users in 3D modeling have evaluated the hedonic and pragmatic qualities of this
prototype and have compared it with a similar application: WebGL Terrain Editor [14].
The results show that our proposal can improve the user experience of 3D terrain sketching
for beginners.

This article is organized in the following manner. After presenting related work on
terrain modeling applications in Section 2, the next main components of the ShAREdT
architecture are explained in Section 3: standard and AR-based interaction modes, terrain
modeling, 3D scene management, group awareness, and data sharing. Implementation
details of the collaborative application for terrain sketching that has been developed to
validate the ShAREdT architecture are given in Section 4, where we describe the three
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types of widgets that provide virtual objects with desired behaviors in the 3D scene. Then,
Section 5 presents the tests conducted with users of our new prototype, and Section 6
states the contributions, future extensions, and limitations of the achieved work. Finally, a
conclusion is provided in Section 7.

2. Related Work

In the following paragraphs, relevant terrain sketching applications are analyzed (see
Figure 1).

Figure 1. Different approaches for terrain construction and AR-based collaboration.

LandscapAR [15] is a single-user application for mobile devices that recognizes and
tracks an elevation map depicted on a white sheet of paper. The application captures an
image of the drawing and generates the elevation map from the level curves. The graphical
representation of the terrain is shown on the paper using AR. However, these models may
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not be altered directly. If some change on the terrain is needed, the user must physically
edit the drawing or create a new one, and then the application will generate the new terrain.

ARprism [16] is a desktop application that facilitates co-located collaboration for
geographical data visualization activities performed by two users, each using a lightweight
stereoscopic viewer. This application uses AR technology to add different topographical
data layers (e.g., elevation, hydrology, and soil) on a tabletop map. Nevertheless, the 3D
terrain representations must be modeled in advance, and the users cannot modify them.

CoMaya [12,13] is a collaborative plug-in for Maya [17], that allows several users
connected to a central server to work on the same 3D scene concurrently. CoMaya uses the
operational transformation technique [18,19] to maintain shared data consistency among
the distributed copies. However, transformation rules were created only for a subset of
operations. Thus, in case it is not possible to solve conflicting operations, users have to
figure them out.

Nam and Sakong [20] developed an AR-based collaborative synchronous workspace
for distributed product reviewing that allows a pair of users to analyze an everyday 3D
object. This system relies on tangible synchronized turntables and virtual shadows to
provide remote collaborators with awareness information. However, users had difficulty
pointing in the 3D space through the virtual shadows.

Second Surface [21] is a mobile multi-user AR application through which a user can
create and place digital contents in the neighboring space of ordinary objects, e.g., lamp-
posts and cars, considered as markers. The user can share those contents but not edit them
in real-time with other co-located users. Therefore, this application does not offer the same
degree of collaborative support as our proposal.

Clara.io [22] is a cloud-based tool that allows users to carry out polygonal mesh-based
3D modeling on a web browser. These models can be shared among several registered
users that have editing rights. To collaborate, users have to take turns to modify the same
mesh. As these meshes are stored on the cloud, users receive updates about the modified
models, simulating real-time editions.

Augmented Reality Sandbox [23] is a single-user AR system to create physical topogra-
phy models. It consists of a sandbox that can be physically manipulated, on top of which is
added a color-coded elevation map, along with level curves and simulated water. Although
it is a great teaching tool, it is a solution that requires a lot of space and equipment.

ShowMe [24] is a collaborative system that facilitates immersive gestural communica-
tion between users, a local apprentice, and a remote expert. The apprentice uses a HMD
(Head Mounted Display) equipped with two cameras that capture his stereoscopic view,
which is sent to the expert, who also uses a HMD. The expert has a depth sensor whereby
the HMD captures his hands, to be shown on the local apprentice’s 3D scene, using AR.
Additionally, the designers of ShowMe propose RemotIO [25], whereby the remote expert
can manipulate a radio through manual gestures [26]. Hence, the expert can show the
apprentice gestures made with his hands and their effect on the radio since it reacts in
real-time. This is a work where collaboration stands out. However, it is aimed at expert
users and requires highly specialized equipment.

The aforementioned proposals are summarized in Table 1, according to whether they
use AR technology and need extra equipment, whether they are groupware systems and
the type of collaboration they support, their application domain, whether they allow
concurrent work and their execution platform. From this analysis, it can be seen that
converging AR and groupware technologies is not a new idea. On the other hand, several
efforts have been made at supporting interaction with 3D objects constructed in advance,
as well as on creating and sharing 3D contents with other people, without the possibility of
performing changes. However, there are no other proposals that allow co-located novice
collaborators to create and modify concurrently in situ digital 3D terrains on their mobile
devices with no additional equipment required to use AR technology.
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Table 1. Comparative table of the related work and our proposal.

Proposal Uses AR Needs Extra Equipment for AR Is a Groupware Collaboration Support Type Application Domain Allows Concurrent Work Platform

LandscapAR [15] Yes No No Not applicable Terrain creation from
white paper Not applicable Mobile

ARprism [16] Yes Stereoscopic viewer Yes Face to Face Geographical data
visualization No PC

Product reviewing [20] Yes Stereoscopic viewer Yes Synchronous-Remote Reviewing No PC

CoMaya [12,13] No Not applicable Yes Synchronous-Remote 3D modeling Yes PC

Second Surface [21] Yes No Yes Synchronous-Remote Content creation
and sharing No Mobile

Clara.io [22] No Not applicable Yes Synchronous-Remote Polygonal mesh-based
3D modeling No Web

Sandbox [23] Yes Kinect and projector No Not applicable Topography model
creation Not applicable PC

ShowMe [24]
RemoteIO [25] Yes HMD Yes Synchronous-Remote Training No Mobile
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3. The ShAREdT Architecture

In this section, we describe the architectural approach to the collaborative modeling
of 3D terrains. This architecture is intended to promote face to face collaboration settings,
in which participants interact through their mobile devices with the aim of creating and
modifying a 3D terrain sketch. Figure 2 shows the main functional and data components of
the ShAREdT architecture represented as rectangles and ovals, respectively. Solid arrows
denote interactions among functional components; a dotted line means that a functional
component manages a data component, and a dotted arrow signifies that a functional
component can only consult a data component.

Figure 2. Functional and data components of the ShAREdT architecture.

In an early stage of our approach, interactions with the 3D scene were just performed
using AR over a marker, viewed through the camera of an iPad or iPod (see Figure 3).
Using AR in 3D model sketching has several advantages, as mentioned in Section 1.
However, from the tests conducted with users of the first version of our prototype [27–29],
we observed several drawbacks of only using AR to interact with the 3D scene. In some
cases, it is convenient to use the collaborative application without AR, thus two interaction
modes were included in the ShAREdT architecture: one using AR and the other rendering
the 3D scene in the standard way (see the AR-based Mode and the Standard Mode components
in Figure 2).

Figure 3. Some participants using the AR mode of our application while the marker is being projected
on a wall. The characteristics of the mobile devices are: (1) iPad 3rd generation. Screen size: 9.7 inches.
Weight: 660 g, (2) iPad Air 1st generation. Screen size: 9.7 inches. Weight: 469 g, (3) iPad Mini 1st
generation. Screen size: 7.9 inches. Weight: 308 g and (4) iPod Touch 5th generation. Screen size:
4 inches. Weight: 88 g. In all devices the camera is 5.0 MP.
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Another important improvement added to this new iteration of our work is group
awareness, a mechanism to inform each user of the actions performed by other group
members (see the Group Awareness component in Figure 2). In the case of face to face
terrain modeling settings, it is not necessary to show a collaborator the viewpoints and
positions of other participants, since this awareness information is clearly visible. Instead
of this, every collaborator can visualize the terrain mesh points where his colleagues are
drawing as well as the kind of operations they are applying. Each collaborator it is shown
a small rectangular box which serves as an avatar situated in the terrain mesh coordinates,
where the collaborator applied an editing operation, in addition to a label that contains
the collaborator’s name, and a sphere that shows the brush properties (see the Avatars
component in Figure 2).

The 3D Scene Management component performs the drawing of all objects that have
a graphical 3D representation and have to be shown on the screen. Some of these objects
are user tool widgets, which are interactable by collaborators (called User Tools in Figure 2).
Other objects are digital contents, such as the terrain that has a mesh representation (a
mesh representation is a particular case of a 3D representation) and is also interactable
(called Terrain Mesh in Figure 2). Some other objects provide awareness information, such
as the aforementioned avatars.

User tool widgets are used to select the editing operation that a collaborator desires
to apply. In this case, such widgets do not operate on Terrain Mesh, but on Collaborators
State by sending state change messages to the Data Sharing component. These messages
are: (1) first broadcasted to other participants, through this component, and (2) then locally
processed by the Group Awareness component to update Collaborators State with the last
editing operation selected by the corresponding collaborator.

Likewise, when a collaborator interacts with Terrain Mesh by touch events, this com-
ponent sends editing operation messages to Data Sharing. Thus, via this component, the
editing operations are transmitted to all users and locally applied on the Terrain Data
Structure by Terrain Modeling, using information provided by Collaborators State, such as the
selected editing operation, and the brush strength, smoothness, and radius. Terrain Mesh is
also updated in real-time by the Terrain Modeling component.

In the following subsections, several design considerations about the main compo-
nents of the ShAREdT architecture are described: standard and AR-based interaction modes
of the 3D scene (see Section 3.1), terrain modeling (see Section 3.2), 3D scene management
(see Section 3.3), awareness information for coordinating group work (see Section 3.4), and
data sharing for the concurrent creation and modification of a terrain mesh (see Section 3.5).

3.1. Standard and AR-Based Interaction Modes

Human beings perceive reality through five senses: hearing, sight, taste, touch, and
smell. In principle, it is possible to cheat our senses by means of artificially generated
stimuli, in order to provide a fake perception of virtual objects or environments [30].
Current technology is not sufficient to present full scale virtual environments to all five
senses, but there are important advances concerning three of them: sight, hearing, and
touch. This is the basis of the Virtual Reality area, whose objective is to immerse the user
inside a synthetic world.

A different approach is that of AR, which creates the illusion of virtual objects existing
inside the real environment. To achieve AR on mobile devices, the AR-based Interaction
Mode component relies on effective computer vision and machine learning algorithms to
recognize and track markers on which several digital contents can be added. This AR
principle is depicted in Figure 4. The scene taken by the camera of a mobile device shows
the physical marker placed on the table, which contains a target image, i.e., a formerly
learned arbitrary image printed on it. Then, the mentioned algorithms transform the target
image in greyscale to extract visual feature points on each frame of a video stream.
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Figure 4. The target color image is taken from the real scene (right), then it is transformed to grayscale and its visual feature
points in yellow are detected (center), and finally a virtual object is added on the real scene (left).

Using these visual feature points, the AR-based Interaction Mode component calculates
the transformation matrix M = R|~t, that represents the translation~t and rotation R of the
camera with respect to the target image. The matrix M transforms points in the reference
frame of the target image to points in the reference frame of the camera or conversely; the
Z axis is also inverted as shown in Figure 4. With the matrix M, 3D virtual objects can be
drawn correctly aligned with the target image on the video stream. That stream now gives
the illusion that the objects are placed inside the real scene. This is shown at the leftmost
side of Figure 4. Once the device camera captures the real scene with a marker, the rabbit is
drawn at the position and orientation given by the matrix M.

We use the Vuforia markers, which gives us the advantage that they can be used
virtually (displaying it on a screen or through a projector) or they can be printed on any
type of paper and the image can be in color (RGB not CMYK) or in black and white. To
capture a marker, there are no orientation restrictions and they can be done from a wide
variety of angles. Images for digital markers can be in JPG or PNG formats with a color
depth between 8 and 24 bits, with a maximum size of 2.25 MB and a minimum width of
320 pixels.

Using AR technology in 3D modeling applications presents two advantages for
users [31]: (1) an enhanced understanding of the 3D shape of virtual objects, and (2) a
more natural behavior to control the viewpoint from which the virtual scene is visualized.
Nevertheless, the usage of AR also presents some limitations, e.g., in case the mobile device
is heavy or large (the 5th generation iPad Pro weights up to 685 g), it might be difficult for
the user to hold it with a hand, while depicting on the terrain mesh with the other (see
Figure 3).

Taking these concerns into account, two interaction modes were included in the
ShAREdT architecture: (1) using the AR-based Mode component, where the 3D terrain and
widgets are shown to the collaborator with AR over a marker (see the left side of Figure 5),
and (2) using the Standard Mode component, which allows the user to interact with the 3D
scene entirely through the display’s device, i.e., no need of marker nor camera’s device (see
right side of Figure 5).

Both modes of interaction are always available to users, and they can switch between
them freely. For example, when AR is not required because they are in a tiny place or do
not have the marker, they can switch to standard mode. In a collaboration scenario, each
user can decide the most convenient mode for him at any moment.
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Figure 5. Snapshots of (a) the AR-based and (b) standard interaction modes.

3.2. Terrain Modeling Component

The design of the Terrain Modeling component is tightly bound to the type of 3D
models that the developer needs to manipulate. Thus, this component modifies the terrain
data structure and updates the vertices of the terrain mesh, according to the editing
operations defined by the 3D model. These abstractions are described in the following
two subsections.

3.2.1. Terrain Data Structure

A terrain can be defined as a piece of territory or land containing geometric charac-
teristics that define its shape, e.g., canyons, cracks, craters, lake basins, mountains, plains,
riverbeds, and valleys.

The most straightforward approach to abstracting the structure of a terrain into a
model is giving a height value for every point on its area, where this height value is
measured in relation to some accepted reference, e.g., the sea level. A terrain can be
described using a continuous function, e.g., Figure 6a shows the plot of a continuous
elevation map, in the form of a mountain, with level curves on the 3D surface. However,
the ShAREdT architecture makes use of a terrain representation known as Digital Elevation
Map (DEM), which is a discrete function:

h : R → F ,

where R is the rectangular region [1, m]× [1, n] ⊂ N2 for given integers m, n ∈ N, and F
denotes the domain of floating point numbers that can be saved in a computer. Thus, a 3D
terrain is stored as a floating point array of m× n size.

(a) (b)

Figure 6. (a) The plot of a continuous elevation map with level curves, and (b) the plot of a DEM: for every point of the
discrete domain, a discrete height value exists.
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The h function cannot describe all aspects of a real terrain, e.g., a layered terrain
composition, overhangs, or caves. However, this representation satisfies most of the
applications. Figure 6b shows the plot of discrete points that compose a DEM.

In the ShAREdT architecture, a terrain is represented in a graphical way as a 3D
surface, employing a polygonal mesh of 100× 100 squares.

3.2.2. Brush-Based Operations

To manipulate the shape of a 3D terrain, the Terrain Modeling component implements
the painting with brushes paradigm, which aims at emulating the process of applying paint
to an area using a brush. The reader is surely familiar with this paradigm, since it is used
in most drawing applications. Indeed, this paradigm is the de facto standard for terrain
editors, e.g., the procedural brushes method [32] and the WebGL terrain editor [14].

Just like a real brush, whereby a person can paint with multiple colors on an area,
a collaborator can perform various editing operations on a terrain using a digital brush.
The ShAREdT architecture provides support for four elemental editing operations for
manipulating the shape of a 3D terrain. Their effect on the terrain is as follows:

• Raise: the terrain is raised by augmenting the height values of the points within the
area swept by the brush stroke. As this operation adds on the former values, its effect
is cumulative.

• Lower: The terrain is lowered within the swept area by decreasing its height values.
Since this operation subtracts from the former values, its effect is also cumulative.

• Smooth: It diminishes precipitous shape modifications within the swept area by
moving the height values towards the height average within this area. Similar to the
prior operation, it overwrites the height values as a result of recurrent applications of
this operation on the same area.

• Flatten: The terrain is flattened within the swept area by moving the value of its points
to a height provided by the user. The result of this operation is cumulatively destruc-
tive, because it eventually overwrites the previous height values as a consequence
of recurrent applications of this operation on the same area. Flatten performs as a
weighted eraser when the specific height is zero.

3.3. 3D Scene Management Component

As mentioned at the beginning of Section 3, the user tool widgets and the terrain mesh
are placed inside the 3D scene. These interactable components of the ShAREdT architecture
are detailed in the following two subsections.

3.3.1. User Interface

When designing user interfaces of applications for mobile devices, it is necessary to
follow a different approach from the one used in desktop user interfaces in order to avoid
saturating the screen with multiple widgets like buttons, menus, and windows [33,34]. A
common solution is the use of contextual menus, which can be hidden or shown either by
the application or the user.

Another option to achieve a proper user interface design is AR. The ShAREdT archi-
tecture relies on this technology, since it provides a natural way to make the most of the
limited display size of mobile devices. Thus, the screen acts as the workspace, while the
digital contents are visualized as part of the 3D scene taken from the real scene by the
device’s camera.

AR-based applications run on a single window in full-screen mode (per user), but it
that usually does not provide widgets, such as borders, scrollbars, or menus. If buttons,
sliders, or labels are required, these widgets are normally displayed in a different layer
over the digital content with the aim of keeping them perceptible to the user at all times.
However, a distinct approach to the user interface design has been followed by embedding
a minimum of widgets along with the terrain mesh in the 3D scene, using an uncluttered
and simple layout.
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Figure 7 shows the user interface of the collaborative application developed to validate
the ShAREdT architecture. The terrain mesh is shown at the center of the 3D scene. In the
previous version of our collaborative application for terrain sketching [27–29], we observed
that users searched for a strategy to rotate the terrain mesh, in addition to walking around
the physical marker. Therefore, as shown in Figure 7, we added a rotation widget that acts
as a trackball, which spins the terrain mesh around two axes. This widget is also available
when the user interacts with the application in standard mode. The user can rely on the
rotation widget to visualize its shape from any perspective, together with an extra-slider to
zoom in/out the terrain mesh.

Figure 7. User interface of the ShAREdT-based collaborative application for terrain sketching, where avatars on the terrain
mesh denote the identity, location, and current action of participants in a collaborative session.

Besides the interactable terrain mesh and rotation widget, Figure 7 shows an operation
selection widget and a brush sprite, which allow collaborators to modify the terrain mesh
(see Section 3.3.2).

This minimalist user interface approach has three main advantages:

1. The user does not have to call a hidden menu every time he needs to perform an action;
2. The available space to put widgets is potentially larger than the screen size; and
3. The widgets are virtually accessible at any given moment; they are not invariably

shown, but just when the user fixes the camera on the area where these widgets are
envisioned to be (This interaction can be seen on https://computacion.cs.cinvestav.
mx/~lmsanchez/images/MDPI.mp4 (accessed on10 November 2021)).

3.3.2. Terrain Direct Manipulation

To directly manipulate a terrain mesh, the ShAREdT architecture defines the four
operations described in Section 3.2.2. Each collaborator can select one of these operations
by tapping on the equivalent button in the operation selection widget (see Figure 7). Just
one operation can be actived at a time. Therefore, if the user chooses another operation, the
former one is systematically deactivited.

The four possible states of the operation selection widget are shown at the leftmost
side of Figure 7. When an operation is selected, the corresponding button is accentuated,
while its icon is displayed at the central part of the widget. These four icons are designed
with the aim of clearly conveying the operation’s effect that is being applied on the terrain
mesh by the ongoing tool.

When an operation is performed on the terrain mesh, each collaborator uses a digital
brush to depict the areas where he aims at modifying. As mentioned before, a sprite
shaped like a brush has been placed to the right of the terrain mesh, in order to help each
collaborator have an accurate idea of the terrain area that will be touched when drawing
on it (see Figure 7).

A brush can be shaped as a square, triangle, or circle. For the moment, two basic
circular brushes are provided: a soft brush and a hard brush (the former is shown at the
rightmost side of Figure 7). To switch between these two brushes, the user has two options,

https://computacion.cs.cinvestav.mx/~lmsanchez/images/MDPI.mp4
https://computacion.cs.cinvestav.mx/~lmsanchez/images/MDPI.mp4
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either by double-tapping on the brush sprite or by using the Smooth checkbox (if it is
checked, the soft brush is activated, else the brush is hard).

The effect of an editing operation is determined by the following brush properties:
strength, shape, and radius. Each collaborator can change the stroke strength and brush
radius by making use of the sliders shown in Figure 7. A visual feedback of the brush radius
and stroke strength values are respectively given by the sprite-size and sprite-transparency
(the more transparency, the less strenght).

Each editing operation is performed within a circle, whose radius is the one of the
brush sprite and whose center is provided by the user with a touch on the terrain mesh.
The amount of modifications made on each point within the circle is determined by the
brush type (i.e., soft or hard) and a strength factor given by the user through a slider; the
brush shape masks the effect of an editing operation on the terrain mesh. When a brush
stroke is made on the screen, the series of touch events takes place at different coordinates
and makes consecutive changes in the terrain mesh, whose effect is the edition along the
touch gesture path.

Concerning the Flatten operation, each user has to give the height value. To fix this
property, the 3D scene provides a slider that displaces an indicator plane to the chosen
height, with the goal of giving the user visual feedback. This slider is placed parallel to the
vertical axis of the screen and is only visible when the Flatten operation is activated.

3.4. Group Awareness Component

The Group Awareness component of the ShAREdT architecture provides collaborators
with three elements of awareness information about others: identity, location, and current
action [35]. In the 3D scene, these elements are displayed as avatars on the terrain mesh.
These avatars are represented as little boxes that show the user’s name, where they are
(i.e., the last position where their finger was on the terrain mesh), and what action they are
performing (e.g., raise the terrain mesh).

To manage awareness information, Group Awareness relies on the Data Sharing com-
ponent, which provides state information about all active participants in a collaborative
session. State information is represented by the Collaborators State data component in
Figure 2. Besides each collaborator’s name and current editing operation, this data compo-
nent stores the properties defining the brush each user applies on the terrain mesh (e.g.,
strength, shape, and radius) as well as the height value needed by the Flatten operation.

For each present collaborator, the Group Awareness component draws an Avatar on the
3D scene (see Figure 2). An avatar takes the form of a little box that is situated in the last
place where the corresponding collaborator painted on the terrain mesh. Each box has a
random but unique color, as well as a label associated with the collaborator’s name, and a
sphere that denotes the last state change in the collaborator’s brush.

Figure 7 shows three participants in a collaborative session: Tom, Bruce, and Carl,
whose avatars are respectively represented by lilac, white, and mint boxes. The sphere
color corresponds to the editing operation button chosen from the operation selection
widget (i.e., green for Raise, red for Lower, blue for Smooth, and yellow for Flatten). For
instance, Figure 7 shows that the operations Raise, Smooth, and Lower were respectively
applied by Tom, Bruce, and Carl on the terrain mesh. The sphere size indicates the brush
size, which is also shown in pixels (1–50) at the center of the sphere. Other properties, such
as brush smoothness and strength, or the height needed by the Flatten operation, are not
shown to avoid saturating the 3D scene. However, these properties can be deduced by
collaborators from their effect on the terrain mesh, e.g., if the terrain mesh quickly raises,
the strength is substantial.

Neither the color nor the position of each box needs to be stored in the Collaborators
State, since the color is selected when the avatar is created and does not change for the
duration of a collaborative session. The box position is modified when Group Awareness
receives a message from Data Sharing about the editing operation that was just performed
by the corresponding collaborator.
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3.5. Data Sharing Component

The target settings we are interested in have to do with the face to face or co-located
collaboration taxonomy in the space-time matrix by Ellis et al. [36], which designates a
group of collaborators that work together at the same time and in the same place. To
allow co-located collaborators to create and modify a terrain mesh in a concurrent way, the
ShAREdT architecture follows a replicated scheme, meaning that each application instance
is formed by all data and functional components introduced at the beginning of Section 3.
Figure 8 shows three application instances (each one represented by a box), which are
connected by one-way communication channels (each one denoted by an arrow).

Figure 8. Distribution and communication schemes for the ShAREdT-based collaborative applications
for terrain sketching.

To connect m application instances, one for each participant in a collaborative session,
the ShAREdT architecture might use a peer-to-peer model, in which each application
instance can establish two one-way communication channels with another. Nevertheless,
rather than creating m(m− 1) channels to connect every pair of application instances, just
2(m− 1) channels are established supposing that, in face to face collaboration settings, all
application instances are connected through the same WiFi network. Therefore, not only
the network traffic can be decreased, but also the data exchange process can be simplified.

The communication support provided by the ShAREdT architecture follows a coordination-
based multiplatform model [35], where one of the application instances plays the role of
session coordinator, which manages connections and interactions among all participants
in a collaborative session. For example, in Figure 8, the application instance acting as
the session coordinator is hosted by the mobile device of one the collaborators. This
mobile device can be Android or iOS. The other application instances can also run on
heterogeneous mobile devices. It is important to mention that any application instance can
be the session coordinator, and the user interface is the same for all collaborators, so there
is not a particular one for the session coordinator.

If a modification occurs on the data components (see Collaborators State and Terrain
Data Structure in Figure 8), state change or editing operation messages (instead of the
whole collaborators state or the whole terrain mesh) are transmitted by the Data Sharing
component. Thus, the network is not saturated with unnecessary information.
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When an application instance issues a state change or editing operation message, this
instance first sends the message to the session coordinator, which distributes it towards
all connected instances, including the one that initially issued the message. When this
instance receives its own message, the corresponding component (Group Awareness or
Terrain Modeling in Figure 8) then processes it locally. In this way, the application instance
that issued a message is prevented from processing it twice. The other instances also
process the message in the same way as soon as they receive it from the session coordinator.
According to this data updating approach, every application instance receives its own
messages as if they would have been sent from another instance. This design decision
simplifies the data updating process, since all messages are handled in the same way,
without dividing into the own state and the state of others. In the following two subsections,
the updating mechanisms for the data components of our architecture is detailed.

3.5.1. Collaborators State Updating

At the beginning of a collaborative session, every application instance starts with an
empty Collaborators State data component, which is initialized in the following way. When
a collaborator logs in to the application, the corresponding avatar (see Section 4.1) issues a
state change message, which is forwarded by the Data Sharing component to its pair hosted
by the session coordinator. In turn, this one broadcasts the state change message to all
connected instances, including the one that initially sent this message. Upon receiving it,
the Data Sharing component, in each application instance, forwards this message to the local
Group Awareness component, which verifies whether there exists an entry in Collaborators
State with the collaborator identifier included in such a message. If it does not exist, Group
Awareness creates a new entry in Collaborators State using that identifier and initializes this
new state with default values. In case an entry already exists, Group Awareness resets this
state to default values.

When a collaborator selects a new editing operation or modifies the brush properties,
the corresponding user tool widget (see Section 4.2) sends a state change message to
the Data Sharing component of the local instance. Then, this component forwards the
message to its pair hosted in the session coordinator, which transmits it to all connected
instances. When this state change message arrives at an application instance, the Data
Sharing component eventually forwards it to Group Awareness, which searches for the
participant’s identifier in Collaborators State to update the corresponding information.

3.5.2. Terrain Data Structure Updating

Each application instance maintains a local replica of the terrain data structure. When
an editing operation is performed by a collaborator, while interacting with the terrain
mesh widget (see Section 4.3), this one issues an editing operation message, which is
sent by the Data Sharing component to its pair hosted in the session coordinator. In turn,
this one broadcasts the message to other connected instances, which process it to update
their own local replicas, in the following way. When an application instance receives an
editing operation message, Data Sharing informs the Terrain Modeling and Group Awareness
components of this message. First, Terrain Modeling searches for the participant’s editing
operation and brush properties in Collaborators State, using the identifier contained in the
message. Then, Terrain Modeling applies this editing operation in the position x, y of Terrain
Data Structure, using such brush properties, while Group Awareness updates the position
of the collaborator’s avatar in Terrain Mesh. Although consistency mechanisms have not
been implemented for the moment, in most cases the operations are executed in the order
in which they were sent to all instances (in our tests we only noticed minor inconsistencies
thanks to the fact that they were performed on a local area network).

In distributed systems, there exist many concurrency control mechanisms, but in
collaborative systems, this problem is solved in a different way, since these systems need
to consider both interactions among computers and interactions among people. For each
application domain, a trade-off should be found between the response level perceived by
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collaborators and the optimism level of the concurrency control mechanism used in the
collaborative application. In some cases, tight control might be even unnecessary. The mere
idea of allowing a collaborative application to lack a concurrency control mechanism might
seem unacceptable but, according to Greenberg and Marwood [37], it can be a reasonable
strategy. Depending on the type of application (in this case, a terrain sketching application
for co-located collaborators with mobile devices) either inconsistencies might be irrelevant,
or collaborators could mediate their own actions and solve their conflicts. A small amount
of accumulated inconsistencies can be acceptable to collaborators, or unperceived. For
instance, in sketching applications, the importance lies in discussing ideas and creating a
design concept rather than generating a final product.

4. Implementation of a ShAREdT-Based Collaborative Application

In this section, we expose some implementation details about the improved version of
our application, which has been developed using Unity 3D [38], a game engine commonly
employed to develop many kinds of applications besides games. Unity offers a wide range
of useful utilities to create multiplatform 2D and 3D applications for desktop computers
running Windows, MacOS, or GNU/Linux, and also on mobile devices running iOS
or Android.

We have also used Vuforia [39], a development library that facilitates the incorporation
of AR functionalities in Unity-based applications, Android, and iOS. Vuforia relies on
computer vision algorithms to identify a prior learned marker and to augment virtual
objects placed parallel to it.

Our prototype is built inside the Unity engine. All objects presented in the 3D scene
are GameObject instances, since this class owns all essential attributes to situate an object
in the 3D scene, e.g., scale, orientation, and position. This class is also related to the
Mesh class, which contains the mesh data, e.g., faces, material, texture, and vertices, to
depict the object on the screen. In addition, Unity defines the MeshCollider class to detect
whether the object is hit by a touch gesture and on which point. It is possible to associate
other classes with GameObject, with the goal of defining new behaviors according to the
application’s requirements.

Next, three kinds of widgets for the 3D scene are described.

4.1. Avatars Widgets

In collaborative applications, it is needed to stay informed about other participants’
state during a working session. As mentioned in Section 3.4, tiny avatars are used to exhibit
the touches performed by collaborators. Such avatars are GameObject instances, and they
are also related to the PlayerState class, which contains the collaborator’s name, as well
as other attributes that specify the chosen editing operation and brush shape, as shown
in Figure 9. The PlayerState methods facilitates the creation and resizing of a dynamic
array (named mask) that serves as a digital brush, whose properties change in real-time.

When a participant joins a collaborative session, the Unity Prefab mechanism is used
to create GameObject clones. In this case, the PlayerPrefab class is defined as a template
in the creation of collaborator avatar instances.

In Unity, it is feasible to develop multi-user applications employing the NetworkView
class, which has an association with GameObject. Through NetworkView, each GameObject
instance can automatically update its translation, rotation, and scale properties and perform
RPCs on all connected application instances. This mechanism is used by the collaborator
avatars to update their location and PlayerState instance.

Besides the collaborator avatars, there are other GameObject instances that compose
the 3D scene: the user tools and terrain mesh widgets. Behavior classes are attached to
those GameObject instances, in order to handle their reaction to user touches.
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Figure 9. Class diagram of the collaborator creation and terrain mesh sketching.

4.2. User Tools Widgets

The user tools of our collaborative application contains a checkbox, a rotation widget,
a sprite, three sliders, and four buttons (see Figure 7). These widgets are also implemented
as GameObject instances, but rather than associating a behavior class with each widget, the
TerrainUIManager class was created with the aim of managing them (see Figure 9).

As for the checkbox and the three sliders, they are compliant with the common func-
tionality programmed by Unity developers for this type of widgets. When a collaborator
interacts with these widgets, the corresponding TerrainUIManager methods are invoked to
update the PlayerState property for that collaborator, i.e., the brush strength, smoothness,
and radius, as well as the value for the Flatten operation.

The four buttons are GameObject instances. With the aim of tracking each time a
collaborator taps on these buttons, the tap gesture behavior from TouchScript (TouchScript
is a multitouch framework for Unity, designed to receive touch events from different
sources and to facilitate the handling of gesture interactions. It can be found in the Unity
Asset Store) has been added to them. A sphere shape is used to implement the rotation
widget, and the pan gesture behavior has been attached to it, in order to track the dragging
action on the sphere. This action causes the terrain mesh rotation.

The sprite is a GameObject instance, whose Mesh instance is simply a plane asso-
ciated with a pair of transparent textures to show the hard and smooth brushes. The
double tap gesture and pinch gesture behaviors have been added to this plane to invoke the
TerrainUIManager methods that modify the brush radius and smoothness. For simplifica-
tion, all these behaviors are not shown in Figure 9.

4.3. Terrain Mesh Widgets

According to Figure 9, the terrain representation in the 3D scene is a GameObject
instance, which is associated with the MeshCollider class that handles the collision of touch
events with the Mesh instance of the 3D terrain (implemented as a GameObject instance).

The PaintScript class has been added to handle the reactions of the terrain mesh to
touches; it is also responsible for calculating the right index in the terrain array from the
touch coordinates. PaintScript obtains touch events from MeshCollider and performs
operations via the TerrainManager class. This one contains the terrain array and applies
editing operations on it, using any collaborator state included in an array of PlayerState
instances. In addition, TerrainManager has a reference to the Mesh instance of the terrain
and maintains the Z coordinate values of its vertices up-to-date, thanks to the data stored
in the terrain array; therefore, the terrain shape is modified in real-time.

The terrain mesh, as a GameObject instance, also relies on the NetworkView class to
trigger editing operations through RPCs, invoking the applyOp() method with the precise
PlayerState instance in all connected application instances.
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5. Tests and Results

In this section, we explain the tests conducted with several groups of users who
conjointly sketched 3D surfaces using two tools: (1) our ShAREdT-based collaborative
application running on mobile devices, and (2) a free web browser desktop application
called WebGL terrain editor [14], which is neither AR nor collaborative but offers brush-
based operations that are akin to our prototype. We selected WebGL terrain editor because,
first of all, it is suitable for novice users, as it offers minimal and straightforward widgets.
Second, the way to build and manipulate terrains is similar to our prototype. Finally,
WebGL is a free and available application.

The purpose of the tests described below is to compare the usability and user experi-
ence: (1) between the WebGL terrain editor and the ShAREdT-based application in both the
standard and AR-based interaction modes, and (2) between these two forms of interaction
provided by our prototype.

Participants were MSc and PhD students at the Computer Science Department of
CINVESTAV-IPN. This was the first 3D modeling experience for the majority of them (see
Figure 10).

Figure 10. A snapshot of some participants of our tests.

5.1. Test Management

The next assumptions were made to carry out our tests:

• There is a relatively small group of collaborators in the same room wanting to create a
3D surface for a certain purpose.

• They have a desktop computer with an internet connection and a web browser.
• Each of them has a WiFi-enabled mobile device running iOS or Android (besides to

the Apple devices used in the former tests, the following two types of Android devices
were also used in these tests: (1) Samsung Galaxy S6. Screen size: 5.1 inches. Weight:
138 g. Camera: 16 MP and (2) Samsung Galaxy Tab S. Screen size: 10.5 inches. Weight:
465 g. Camera: 8 MP).

• They have a working WiFi network and at least one mobile device with a public
IP address.

• There is no packet loss in the exchange of short messages.

To start a collaborative session in the ShAREdT-based application, the device with
a public IP has to execute its instance of the application, which will also play the role of
session coordinator. The collaborator of this device should provide a unique nickname and
tap the Start Session button at startup. This collaborator can also edit the terrain mesh as
well as other participants, but this device should not leave the session until the end.

Each participant must connect his device to the WiFi network and launch the applica-
tion. They also have to provide a unique nickname and tap the Join to Session button. Then,
they must choose, from the list of available sessions, the one started by the collaborator
whose instance of the application acts as session coordinator.
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Once everyone is connected, the editing phase can start. At the beginning of the
collaborative session, all participants have the terrain mesh and the editing tools exactly in
the same state. To guarantee this initial state, users can tap the Reset button. Then, they can
modify the terrain mesh using the editing tools without further restrictions. At the end of
the session, participants can tap the Leave button to abandon the session. In the current
version of the application, the issue of latecomers [40] has not yet been addressed, thus it is
assumed that participants will not reach the collaborative session lately.

In principle, the ShAREdT-based application can support an arbitrary number of
participants. However, during the test sessions, we observed that the main limiting factor
was the bandwidth available on the local WiFi network. For instance, using a public
WiFi network, our ShAREdT-based application was able to support up to 13 connected
participants before starting to lose messages or saturating the network. These problems
occured depending on the time of the day, suggesting that they were not caused by the
prototype implementation, but by the network public character. To avoid them, a mobile
zone (by means of this functionality, a mobile device plays the role of WiFi access point, to
which other devices can connect, constituting an ad-hoc network that can be declared as
public or private) was also used on an Android device, allowing up to 10 participants to
establish a connection. Let us notice that this limitation is due to the hardware. Using this
ad-hoc WiFi network solution, a good response was obtained from the application, thanks
to the private network.

To evaluate the user experience of the tested applications, we relied on the AttrakDiff
tool [41], whereby users assign a weight to pairs of opposite words, indicating how much
an application can be described with one or another word. Tests were conducted with
20 participants (the maximum number of users supported by AttrakDiff) who formed five
groups of four individuals each.

On the other hand, the WebGL terrain editor was used on a desktop computer, since
both mouse buttons are needed to manipulate the 3D model. This editor is not designed for
a touch screen. Thus, each group of collaborators has a PC to interact with WebGL using a
turn-taking policy.

Three tests have been carried out with each group of users. Before starting the tests,
participants used, for some minutes, the WebGL terrain editor and the ShAREdT-based
application in both standard and AR modes in order to get acquainted with them. In the
first test, participants were asked to model a conical shape with a crater at the summit
(similar to a volcano) using WebGL and ShAREdT in standard mode. In the second test,
they were asked to model the “M” letter with WebGL and ShAREdT in AR mode. Finally,
in the third test, they were asked to model the “Q” letter using ShAREdT in standard and
AR modes. These three tasks were selected because they have relatively simple shapes and
a similar difficulty, but they are different enough to avoid the undesirable learning effect.

At the end of each test, every user evaluated each application with the AttrakDiff
tool. We obtained a total of 120 questionnaires, which consisted of two per participant in
each test.

5.2. Results

The results of these comparisons are shown in Figures 11 and 12. In these tests,
the modeling abilities of participants were not assessed, but rather their perception of
each application, using just one type of questionnaires. The following dimensions were
evaluated [41]:

• Pragmatic Quality (PQ): It refers to the usability of an application and denotes how
well users are in reaching their objectives through the application.

• Hedonic Quality Identity (HQ-I): It shows to what extent the application allows the user
to relate to it.

• Hedonic Quality Stimulation (HQ-S): Humans have an innate need to advance and
create. This dimension denotes to what extent the application is able to support
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this requirement in terms of stimulation, interesting and novel functions, interaction,
presentation styles, and contents.

• Attractiveness (ATT): It represents a global value of the application subject to the
quality perception.

(a) (b)

(c)

Figure 11. AttrakDiff porfolio charts for the three comparisons. (a) ShAREdT in standard mode vs.
WebGL; (b) ShAREdT in AR mode vs. WebGL; (c) Standard mode vs. AR mode of ShAREdT.
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(a) (b)

(c)

Figure 12. Semantic pairs for the three comparisons. (a) ShAREdT in standard mode vs. WebGL; (b) ShAREdT in AR mode
vs. WebGL; (c) Standard mode vs. AR mode of ShAREdT.
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AttrakDiff provides three types of graphs for each test. Figure 11 shows the portfolio
charts, where the values of the hedonic quality (HQ) are depicted on the vertical axis (the
higher the better). The horizontal axis denotes the values of the pragmatic quality (PQ)
(the further to the right the better). The graph domain is divided in nine regions, some
of them are labeled with categories, such as neutral, desired, and superfluous, whereby the
applications are graded. Based on the values of HQ and PQ, the examined applications
may be situated in one or more “character-regions”.

In Figure 11a, the WebGL terrain editor is compared with the ShAREdT-based applica-
tion in standard mode. The two colored rectangles denote the results of these applications.
The coordinates of the center in each rectangle indicate the average obtained in both quali-
ties, and the rectangle size represents the confidence intervals. A bigger rectagle means
that weights assigned by users were more varied than in the case of a smaller rectangle.
The orange rectangle (the biggest one) corresponds to the WebGL terrain editor. The blue
rectangle (the smallest one) shows the results of ShAREdT in standard mode. Both appli-
cations were perceived as neutral and their respective centers are very close, though they
slightly tend to the desired region. In the case of WebGL, users show a larger disagreement
in both qualities.

Figure 11b shows the results of comparing WebGL (orange rectangle) with ShAREdT
in AR mode (blue rectangle). Users perceived both applications as neutral with a similar
pragmatic quality (PQ), but the use of AR had a positive impact on the hedonic quality (HQ),
which practically places our prototype on the boundary of the neutral region. Once again,
users show a larger disagreement with WebGL than with ShAREdT.

Figure 11c shows the comparison between the standard (orange rectagle) and AR (blue
rectangle) modes of our prototype. Let us notice that users’ perception in the pragmatic
quality (PQ) is very similar for both interaction modes, but a significative improvement in
the hedonic quality (HQ) for the AR mode can be observed.

Figure 13 features charts of average values for the pragmatic quality (PQ), hedonic quality
identity (HQ-I), hedonic quality stimulation (HQ-S), and attractiveness (ATT) dimensions.
These kind of graphs has a range that varies from −3 to 3, denoting the scale of seven
steps that each semantic differential has (lower is worse). Figure 13a shows that WebGL
and ShAREdT in standard mode mainly received similar neutral evaluations, since the
values in all dimensions are close to zero, but WebGL has a very slight advantage. In
Figure 13b, ShAREdT in AR mode obtained more favorable results than WebGL, which
was just slightly better in PQ. Figure 13c shows that ShAREdT was better evaluated in AR
mode than in standard mode, and they almost tied in PQ.

Finally, Figure 12 presents the average values for each pair of words in the ques-
tionnaire. In Figure 12a, the evaluation of semantic differentials was similar in almost
all cases, and the only noticeable differences were “cumbersome-strightforward” and
“ugly-attractive”. Figure 12b shows that, in most pairs, ShAREdT in AR mode was
superior to WebGL, which just had notable advantages in three semantic differentials:
“complicated-simple”, “cumbersome- strightforward”, and “unruly-manageable”. In
Figure 12c, ShAREdT in AR mode was again better evaluated than the standard mode.
Only in the pragmatic quality (PQ) semantic differentials did ShAREdT, in standard mode,
have a slight advantage.
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(a) (b)

(c)

Figure 13. Dimensions charts for the three comparisons. (a) ShAREdT in standard mode vs. WebGL; (b) ShAREdT in AR
mode vs. WebGL; (c) Standard mode vs. AR mode of ShAREdT.

6. Discussion

To discuss our test results, it is necessary to briefly return to the scenario that we
presented at the beginning of this paper: a group of colleagues who can express their
ideas casually to achieve a basic 3D terrain that later, if they wish, they can edit in another
more sophisticated piece of software. Under this premise, we created a simple application
that allows novice users to make basic 3D terrain sketches, with the added value of being
collaborative and offering an AR interaction mode to facilitate work.

We sought to compare the ShAREdT application with another similar tool, a basic
design application for beginners, and usable in casual environments. this ruled out pro-
fessional tools such as Maya or Blender. At this point, we realized that there is a lack of
applications with these characteristics, and it was not until recent years, thanks to the
power of mobile SoCs and the integration of technologies such as LiDAR, that 3D modeling
applications have appeared for mobile devices [42,43]. Therefore, we chose WebGL Terrain
Editor as a comparison application, even though it is not mobile, collaborative, or AR
capable. So why did we choose it? As we already mentioned, to our knowledge, there
are no applications that meet all of these characteristics and that are also aimed at novice
users. Thus, if a professional tool had been used, a critical bias would have been created;
participants would probably have found it very confusing, which would have led them to
have a negative experience, creating unreliable results.

However, having taken WebGL as a comparison application allows our results to
have a context beyond evaluating our prototype and to provide more evidence for other
related research. For instance, contrast 3D modeling solutions on platforms other than
a PC [44], AR’s contribution in these types of tools, and the elements of collaboration in
developments of a similar nature [45,46].
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Regarding the difference in platforms, we can say that we obtained a fascinating result
since, as can be seen in Figures 11 and 12, participants perceived the standard mode of
ShAREdT and WebGL in a very similar way. It must be considered that our participants had
little or no experience in 3D modeling in such a way that they did not have preconceptions
or prejudices that favored a specific platform. Due to their background as postgraduate
students who carry out all their professional activities on a PC, one might think a priori
that this mode of interaction had a particular advantage, but the results make it clear that
this was not the case; for them, the experiences of using a mobile device and a PC were
the same. This is important for interpreting the rest of the results, since we consider it a
baseline indicating an insignificant platform difference.

On the other hand, we have the AR aspect. In comparing the AR mode of ShAREdT
against WebGL and the standard mode, we can see that participants better received the AR
mode. Looking at Figure 11, we see that the pragmatic quality (PQ) was very similar in the
three tests, but the hedonic quality (HQ) was slightly higher in the tests involving ShAREdT
in AR mode. This tells us that users could perform their tasks equally well in all cases, but
they found AR more enjoyable. These results follow the trends that can be found in the
state of the art, e.g., Fechter et al. [47] mention that virtual reality can facilitate tasks close
to real-life activities. Although in our case it did not involve tasks of this nature, the results
indicate that AR could have a beneficial effect for users with little experience to have more
pleasant experiences in 3D modeling.

Finally, we will address the collaborative aspect. Collaboration was a latent variable
in our study. Therefore, it cannot be directly observed in the results but must be seen as
part of the entire evaluation. Our application can lead to confusing situations from what
we observed in the tests and from the participants’ statements. This is not strange, since
it is well known that an excellent collaborative tool is founded on elements of coherence,
awareness, shared space, and concurrent work [48,49]. Of course, 3D modeling tools are
no exception. However, this confusion was not significant enough to harm the participants’
perception, since the most relevant point is that it allowed them to express themselves and
implement their ideas.

An important aspect that must be highlighted is the choice of AttrakDiff as an evalua-
tion tool. Our proposal does not intend to contribute to Computer Vision or Groupware
formally but is a demonstration of how elements of these areas can help create solutions to
facilitate the expression of people, in this particular case, in the modeling of 3D terrains.
Moreover, it is precisely because of this expression that we decided to evaluate with a user
experience tool, since it allows us to measure, in a quantitative way, at the same time, the
pragmatic and hedonic perceptions of the users. Beyond performance measures or formal
verification, we were interested in whether the components proposed in our architecture
could create a valuable product for users.

6.1. Limitations

Some important limitations of the ShAREdT architecture are:

• The use of markers affects people’s mobility, since their devices are physically bound
to them. To use markers, collaborators need a physical space to move around and
must not lose them, since the AR mode of ShAREdT becomes unusable.

• The current version of our architecture does not provide any support for latecomers
nor for asynchronous work. Thus, collaborators are not free to join the session late
or at different moments, since the current proposal lacks mechanisms to manage
persistent collaborative sessions (e.g., logs of past actions on the 3D scene).

• The editing functionality is basic. More elaborate operations and a broader diversity
of brush shapes would allow users to sketch more sophisticated terrains.

6.2. Future Work and Implication

This work establishes a broad set of possibilities for further improvement of the
ShAREdT architecture. As it only provides support for face to face collaboration settings,
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in the near future we plan to support distributed collaborative work so that people are not
limited to work in the same physical place. However, this additional functionality needs
the redesign of some functional and data components or the creation of new ones:

• For sketching applications, in which the goal of collaborators is to create preliminar
approaches rather than final models of 3D terrains, minor errors are acceptable, as
found by Greenberg and Marwood [37] in their work on 2D editing tools. These
observations agree with ours, since differences among the terrain meshes from the
several application instances were considered as irrelevant by our users. In both
studies, errors can be negligible because they happen sporadically, thanks to the local
area network in which those tests were made. However, in wide area networks, the
rate of inconsistencies increases significantly [19], so data coherence has to be ensured
using suitable mechanisms, such as operational transformation [18], which transforms
editing operations before applying them on the terrain mesh.

• At the user interface level, collaborators would need additional awareness information
to coordinate their work. However, adding new awareness widgets in each user’s
view of the 3D space is not a good idea, since the view size is limited to the screen size
of the mobile device in the standard mode of ShAREdT. An alternative solution could
be the creation of a multi-device environment for each collaborator, so that the new
awareness widgets can be displayed on another surface. Nevertheless, collaborators
would face problems to interact with an additional device, since one of their hands
is used to hold the mobile device and the other to interact with the 3D modeling
application through screen touches. Consequently, multi-modal interaction would be
needed in this case, e.g., voice or gestures, to interact with other devices. Besides, an
audio or video support might be useful to communicate with others.
The communication scheme of the ShAREdT architecture also needs modifications. In
particular, the centralized session coordinator, which is in charge of the broadcasting
state and editing operation messages among all application instances, must be re-
placed by a peer to peer communication approach or a distributed session coordinator.
In this way, collaborative editing sessions would be fault-tolerant.

7. Conclusions

The main contribution of this work is ShAREdT, a new architecture for facilitating
the development of terrain sketching applications for face-to-face collaboration settings.
The applications developed with the ShAREdT architecture’s guidelines are intended for
novice collaborators, who can concurrently create and modify 3D terrain sketches using
technology on heterogeneous mobile devices without the need for extra equipment, such
as stereoscopic viewers, projectors, or HMD.

The ShAREdT application, which served as a proof of concept, implements two
interaction modes. The former one is the standard mode, where the application displays
the necessary touch widgets so that users can work: an area for the 3D terrain, a brush to
create grooves on the terrain (with radius, strength, and smooth controls), a widget rotation
that aids in navigation, as well as four tools to sculpt the terrain (raise, lower, smooth and
flatten). The latter mode is AR, which has the same widgets and working principles as the
standard one, with the particularity that users can have an immersive view of the terrain
mesh using their device’s camera and a marker (digital or printed). This enhanced version
of the physical world allows users to see the terrain through their device’s camera as if
it were a physical object. In both modes, awareness widgets are offered, i.e., users have
avatars that inform in what area of the field their colleagues are working and what tool
they are using.

To evaluate our application, we compared it against WebGL Terrain Editor, aimed at
novice users, and it has basic widgets very similar to ours, even though it is not collabora-
tive, mobile, or AR compatible. We had 20 participants for our tests who compared and
evaluated both applications using the AttrakDiff questionnaire, which allowed us to collect
the perceived quality of pragmatic and hedonic aspects. From the results obtained, we can
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conclude that the difference between platforms (mobile and PC) was not significant for
the participants. In the same way, the added AR and collaborative features had a positive
impact, so participants valued them better when carrying out their tasks. Both features of
our application created a more valuable product for end-users.

From a qualitative point of view, we observed that participants employed their domi-
nant hand to draw while holding the device with the other, which is usually more limited.
Thus, participants grew tired and changed the mobile device between hands. Moreover, if
the participant’s hand is trembling, it will be challenging to draw strokes accurately. This
makes sense because, as other studies have observed, AR places a cognitive and physical
demand on users, which can cause fatigue and tiredness in the upper extremities [50].
This represents a design challenge, since there is also evidence that AR can be a great
collaboration and learning tool, but it has to deal with aspects of the environment and
physical effort that it imposes on users [51].

Another exciting behavior observed while testing our application is that participants
tended to stand in one spot while creating or modifying a shared terrain rather than
roaming around the marker to get diversified viewpoints. Therefore, they did not take full
advantage of AR technology. This situation may be due to users not having experience
with AR-based applications.

As a final observation, AR can be an outstanding element for inexperienced users to
endure 3D modeling applications better. Observing the groups of participants, we could
say that four individuals per group make up an excellent collaborative work team. Beyond
that, situations of disorder, confusion, and frustration can be created. This becomes a more
acute limitation in the AR mode due to the use of markers, since users need ample physical
space to move. The standard mode would also have limitations for large groups, as each
participant is reflected in a virtual avatar. It could be the case that the 3D space was filled
with avatars, which would be very confusing.

Furthermore, large devices, e.g., a 9.7-inch screen, offer a better experience, as users
can see more content. However, a larger screen size increases the device’s weight (e.g., a
660 g iPad), so a large device becomes inconvenient if an AR modeling session lasts for a
long time. Of course, we need to do more research to understand how these details affect
the AR interaction mode .
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