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Abstract
Cysteine S-sulfenylation is an important post-translational modification (PTM) in proteins,

and provides redox regulation of protein functions. Bioinformatics and structural analyses

indicated that S-sulfenylation could impact many biological and functional categories and

had distinct structural features. However, major limitations for identifying cysteine S-sulfeny-

lation were expensive and low-throughout. In view of this situation, the establishment of a

useful computational method and the development of an efficient predictor are highly

desired. In this study, a predictor iSulf-Cys which incorporated 14 kinds of physicochemical

properties of amino acids was proposed. With the 10-fold cross-validation, the value of area

under the curve (AUC) was 0.7155 ± 0.0085, MCC 0.3122 ± 0.0144 on the training dataset

for 20 times. iSulf-Cys also showed satisfying performance in the independent testing data-

set with AUC 0.7343 and MCC 0.3315. Features which were constructed from physico-

chemical properties and position were carefully analyzed. Meanwhile, a user-friendly web-

server for iSulf-Cys is accessible at http://app.aporc.org/iSulf-Cys/.

Introduction
Post-translational modifications (PTMs) play crucial roles in various cell functions and biologi-
cal processes, as well as in regulating cellular plasticity and dynamics. Cysteine S-sulfenylation
in proteins, a reversible covalent oxidation, is one of the posttranslational modifications and
has emerged as a dynamic mechanism for inactivation in protein family. It was discovered
that the reversible S-sulfenylation modification was involved in various biological processing
including cell signaling, response to stress, protein functions and signal transduction.

Identifying S-sulfenylation modification with chemoproteomic approaches [1–4] have been
developed and did not give specific modification sites. Meanwhile increasing evidences have
demonstrated that the site-specific mapping platform could find broad applications in chemi-
cal biology [5]. Yang [6] got over 1000 S-sulfenylation sites on more than 700 proteins through
site-specific mapping. However, experimental identification of S-sulfenylation sites with a site-
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directed mutagenesis strategy is expensive. With the existing experimental data, it is highly
desired to develop computational method for timely and reliably identifying the potential S-
sulfenylation sites in proteins.

The present study was initiated in an attempt to develop a more powerful method to identify
the S-sulfenylation sites in proteins. To get the predictor, three different features were con-
structed from site-specific amino acid propensity, physicochemical and biologic properties.
Meanwhile, a user-friendly web-server for the predictor was developed in JAVA. We hope that
the online web-sever could become a useful tool for both basic research and drug development
in the relevant areas. Fig 1 is the chart to illustrate the prediction procedure.

Materials and Methods

Data collection and preprocessing
To develop a statistical predictor, it is fundamentally important to establish a reliable and rigor-
ous benchmark dataset to train and test the predictor. The benchmark dataset which contains
some errors will lead to an unreliable predictor and the accuracy tested could be completely
meaningless. The experimentally validated S-sulfenylation cysteine benchmark dataset used in
this study was derived from[6]. A total of 1105 S-sulfenylated sites on 778 Homo proteins iden-
tified in RKO cells from quantitative S-sulfenylome analyses. Only the canonical protein iso-
forms are retained. The corresponding protein sequences were retrieved from NCBI database.
To facilitate description later, for every peptide fragment P with cysteine (C) located at its cen-
ter, it can be expressed as

P ¼ R�xR�ðx�1Þ � � �R�2R�1CR1R2 � � �RðZ�1ÞRZ ð1Þ

where the subscript ξ, η are integers, R−ξ represents the ξ-th uptream amino acid residue from
the center, Rη the η-th downstream amino acid residue, and so forth.

The number of the upstream and downstream amino acid residues has been calculated from
the experimental peptides and their average lengths of upstream and downstream are 5.838 ±
4.741 and 6.988 ± 4.514, respectively. So ξ = η = 10 was adopted. If the upstream or down-
stream in a peptide was less than 10, the lacking residues were filled with a dummy residue
‘‘X”. The peptide P with an experimentally S-sulfenylated site was defined as positive sample
and other peptides with cysteine at center in the same experimental proteins were defined as
negative samples.

To reduce the redundancy and avoid homology bias which would overestimate the predic-
tor, we removed those peptides that had� 40% pairwise sequence identity to any other from
the benchmark datasets. Finally, we obtained the benchmark dataset which contained 1045 S-
sulfenylated and 7124 non-S-sulfenylated peptide samples.

To further demonstrate and verify the performance of the predictor, we randomly divided
the dataset into two subsets S_tr and S_te which were used for training and testing, respec-
tively. Training dataset S_tr contained 900 S-sulfenylated peptides and 6856 non-S-sulfeny-
lated peptides which were randomly derived from dataset, respectively. The independent
testing dataset S_te contained the remaining 145 S-sulfenylated peptides and 268 non-S-sulfe-
nylated peptides which none of them was in the training dataset S_tr. The description of the
dataset was in Table 1. All the experimental S-sulfenylation peptides and their modified sites
were listed in S1 Data.
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Feature Construction
In the theme of using machine learning methods to predict posttranslational modification sites
(PTMs), the feature construction was an important processing which would depend on how to
extract the desired information from the peptide sequences. Amino acid physicochemical
properties and position-specific amino acid propensity were utilized to convert peptide frag-
ments into feature constructions. As the center position in peptides was always cysteine (C), we
omitted it in the encoding schemes. In fact there were 20 amino acid residues participating in
feature construction in a peptide.

(a)Binary encoding. Binary feature construction is the orthogonal binary encoding
scheme which translates every amino acid into a 20-dimensional vector. For example, alanie
(A) was encoded as “10000000000000000000”, cysteine (C) was “01000000000000000000” and
so on. There were 21 amino acid residues (20 native and 1 pseudo ‘X’) in our dataset. The alanie
(A) was encoded as “100000000000000000000”(a 21 dimensional vector), cysteine (C) was
“010000000000000000000”,. . ., X was “000000000000000000001”. We got a 20�21 = 420
dimensional vector for a peptide P.

(b)The position-specific amino acid propensity. The position-specific amino acid pro-
pensity (PSAAP) has been introduced in [7] which used 20 native amino acids and got excel-
lent results. The PSAAP matrix was 21�20 which every row denoted one kind of amino acids
and the column denoted positions in a peptide. We used this encoding scheme and got a 20
dimensional vector for every peptide P.

(c) AAIndex property. Each amino acid has many specific physicochemical and biologic
properties. These properties have direct or indirect effects on protein properties. Different
combinations of those properties have different influences to the structures and functions of
proteins. AAIndex [8] is a database which contains various physicochemical and biologic prop-
erties of amino acids. Some combinations of physicochemical properties have been utilized

Fig 1. A diagram flow to illustrate the predicting procedure.

doi:10.1371/journal.pone.0154237.g001

Table 1. The number of positive and negative peptides in training and independent test dataset.

Data Positive Negative

S_tr 900 6856

S_te 145 268

doi:10.1371/journal.pone.0154237.t001

iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins

PLOS ONE | DOI:10.1371/journal.pone.0154237 April 22, 2016 3 / 9



which transformed sequence fragments into mathematical vectors and have shown efficient
effects [9, 10]. In this work, we selected fourteen physicochemical properties from AAIndex
database, including hydrophobicity, solvent, polarity, polarizability, accessible, PK-N, PK-C,
melting point, molecular weight, optical rotation, net charge index of side chains, entropy of
formation, heat capacity and absolute entropy. The pseudo amino acid X was defined 0 as its
physicochemical property value. Therefore, each amino acid was constructed into 14 features
through AAIndex database. For a peptide fragment, a 280-D (20�14 = 280) feature vector was
obtained through AAIndex encoding scheme. The number of the three different feature con-
structions was given in Table 2.

Algorithm
For the prediction of cysteine S-sulfenylation sites in proteins, the support vector machine
(SVM) algorithm was used and the post probability SVM was implemented by LIBSVM[11], a
public and widely used SVM library. In this work, the kernel function was radial basis function
(RBF) kernel with parameter g = 0.005. For a query peptide P as formulated by feature con-
struction, suppose pr is its probability to the S-sulfenylated peptide. The query peptide P is
predicted as a S-sulfenylation modification if pr is greater than a cutoff, otherwise non-S-sulfe-
nylation. The cutoff value is default 0.5 for balancing the true positive and negative rate. The
predictor established via the above procedures was called iSulf-Cys.

Five metrics for measuring prediction quality
To illustrate the performance of the statistical predictor, we utilized the four common measure-
ments. The four frequent measurements are sensitivity (SN), specificity (SP), accuracy (ACC),
and Mathew correlation coefficient (MCC). They are defined as

SN ¼ TP
TPþ FN

SP ¼ TN
TNþ FP

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp

ð2Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where TP (true positive) represents the number of S-sulfenylated peptides correctly predicted,
TN (true negative) the numbers non-S-sulfenylated peptides correctly predicted, FP (false posi-
tive) the non-S-sulfenylated incorrectly predicted as the S-sulfenylated peptides, and FN (false
negative) the S-sulfenylated peptides incorrectly predicted as the non-S-sulfenylated peptides.
In addition to the above four criteria, the AUC (area under the receiver operating characteristic
curve) is also utilized as a quantitative indicator of robustness.

Table 2. The number of dimensions of three feature constructions.

Features AAIndex Binary PSAAP

No. 280 420 20

doi:10.1371/journal.pone.0154237.t002

iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins

PLOS ONE | DOI:10.1371/journal.pone.0154237 April 22, 2016 4 / 9



Results and Discussion

The evaluation of the prediction performance and accuracy
In statistical prediction, the following three cross-validation methods are often used to examine
a predictor for its performance in practical application: independent test, subsampling or K-
fold (such as 6-fold, 8-fold, or 10-fold) cross-validation test and the leave-one-out (LOO)
cross-validation. The LOO always yielded a unique result for a given benchmark dataset and
has been widely used in PTM sites [12–16] and various statistical predictors [17–19] because it
was the most unbiased. The K-fold cross-validation for its shorter computational time has also
been utilized in literatures [20–22]. In this work 10-fold cross-validation has been adopted and
was performed 20 times for different subsampling combinations, followed by averaging their
outcomes. The last results were mean ± standard variance.

The results which were obtained on the training dataset were given in Table 3 with the four
metrics as defined in Eq 2. The Table 3 also contained the results of three different feature con-
structions. As can be seen from Table 3 and Fig 2(a), the overall AUC was 0.7155 ± 0.0085 for
the AAIndex which were higher than PSAAP (0.6233 ± 0.0054) and Binary (0.7040 ± 0.0083)
encoding schemes. Meanwhile the accuracy, sensitivity, specificity and MCC for AAIndex
were (65.59 ± 0.72)%, (67.31 ± 0.73)%, (63.89 ± 1.05)% and 0.3122 ± 0.0144 on training data-
set. MDD-SOH[23] is an another existing S-sulfenylation predictor based on the same data[6].
The results were listed in Table 3 in 5-fold cross-validation which the training data were 1031
positive and 216 negative samples. The two predictors have the comparable performances on
the S-sulfenylation sites.

On the independent test which none of them was in the training dataset, the AUC was
0.7343 and MCC 0.3315 (see Table 4 and Fig 2(b)). Fig 2 showed the performance of the pro-
posed predictor.

The feature construction analysis for amino acids
Amino acid composition was utilized to illustrate differences between S-sulfenylation and non-
S-sulfenylation peptides. The WebLogo [24] (Fig 3) clarified the amino acid compositions for
the peptides which could not obviously demonstrated the differences between S-sulfenylated
and non-S-sulfenylated peptides. Another clear and succinct TwoSampleLogo [25] (Fig 4)
revealed the differences from statistically significant differences (p<0.01). It showed that the
lysine (K), arginine (R), glutamic (E) in the upstream and lysine (K), glutamic (E) in the down-
stream played an important role in S-sulfenylated peptides. While the leucine (L) residue played
a relative role in the non-S-sulfenylated peptides. The lysine (K) (at position -6, -5,-4,-2,+7 and
+8) and arginine (R) (at position -2, -4) are positive polar residues and glutamic (E) (at position
-4,-3,+1,+3,+4 and +5) is negative polar residue in the S-sulfenylated peptides. Meanwhile leu-
cine (L) is nonpolar residue in the non-S-sulfenylated peptides at the position -4 and +3. All

Table 3. The 10-fold cross-validation results of three different feature constructions on the balanced training dataset. The results have been run 20
times for every feature construction by SVM algorithm with g = 0.005 and cutoff = 0.5. The values are mean ± standard variance. The results of MDD-SOH
were obtained in 5-fold cross-validation.

Features AUC SN(%) SP(%) ACC(%) MCC

PSAAP 0.6233 ± 0.0054 31.34 ± 1.52 81.74 ± 0.75 56.54 ± 0.55 0.1515 ± 0.0114

Binary 0.7040 ± 0.0083 68.56 ± 0.47 63.11 ± 0.87 65.83 ± 0.67 0.3172 ± 0.0135

AAIndex 0.7155 ± 0.0085 67.31 ± 0.73 63.89 ± 1.05 65.59 ± 0.72 0.3122 ± 0.0144

MDD-SOH – 68 70 70 0.27

doi:10.1371/journal.pone.0154237.t003
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Fig 2. (a)The 10-fold ROC curves of the three feature constructions on the balanced training dataset. (b) The
10-fold ROC curve of AAIndex feature construction on the independent test.

doi:10.1371/journal.pone.0154237.g002

Table 4. The 10-fold cross-validation results of independent test by SVM algorithmwith g = 0.005 and
cutoff = 0.5.

AUC SN(%) SP(%) ACC(%) MCC

0.7343 68.97 65.67 66.83 0.3315

doi:10.1371/journal.pone.0154237.t004

Fig 3. (a) The amino acid composition Logo of S-sulfenylated peptides. (b) The amino acid composition Logo
of non-S-sulfenylated peptides.

doi:10.1371/journal.pone.0154237.g003

Fig 4. The TwoSampleLogo between sulfenylation and non-sulfenylation peptides (p<0.01).

doi:10.1371/journal.pone.0154237.g004
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these indicated that the position-specific propensities and physicochemical properties played
intrinsic effects in the discriminant between S-sulfenylated and non-S-sulfenylated peptides.

The online web-service of iSulf-Cys
A user-friendly and publicly accessible web-server is one of the keys in the statistical prediction
of posttranslational modification. For the convenience of the vast majority of experimental sci-
entists, we have developed a web-server for the iSulf-Cys predictor in JAVA. Users can easily
get their desired results from the online webserver. The input proteins should be in FASTA for-
mat and the output with IBS[26] software as Fig 5. The web-server can be freely accessible at
http://app.aporc.org/iSulf-Cys/.

Discussion and Conclusions
One particular challenge in machine learning such as support vector machine and conditional
random forest is that the available dataset was highly unbalanced: the number of S-sulfenyla-
tion peptides (positive instances) is much smaller than the number of non-S-sulfenylation pep-
tides (negative instances). Unbalanced dataset presents a challenge for support vector machine
classifier that is trained to optimize the generalization accuracy. Standard support vector
machine algorithm without considering class-imbalance leads to high false negative rate by
predicting the positive as the negative one [27, 28]. In order to overcome this disadvantage, a
common approach is to change the distribution of positive and negative instances during train-
ing by randomly selecting a subset of the training data from the majority class. Following the
approach used in the literatures [29, 30], we balanced the positive and negative dataset during
the cross-validation by randomly selecting the negative sequence peptides from the whole neg-
ative dataset for 20 times.

As one of the new posttranslational modifications (PTMs) for cysteine (C), S-sulfenylation
could impact many biological and functional categories. The predictor iSulf-Cys was developed
for identifying the cysteine S-sulfenylation in proteins. The benchmark dataset was entirely
derived from site-specific mapping experiments. Forteen physicochemical properties were took
into account in feature constructions which polar attribute displayed strong power between
S-sulfenylation and non-S-sulfenylation. The proposed predictor also showed good perfor-
mance in independent test. Meanwhile an online web-server http://app.aporc.org/iSulf-Cys/
was developed for the predictor which would facilitate the use for the biologists.

Supporting Information
S1 Data. The dataset contained non-homologous 1045 S-sulfenylated and 7124 non-S-sul-
fenylated cysteine peptides which had been retrieved from 778 Homo proteins.
(XLSX)

Fig 5. The predictive IBS results of the online webserver.

doi:10.1371/journal.pone.0154237.g005
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