

# SYSTEMATIC REVIEW OPEN ACCESS

# Chemoprevention of Gastrointestinal Cancers: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials and Cohort Studies

Jia En Chan<sup>1</sup> D | Suresh Shanmugham<sup>1</sup> D | Suresh Kumar<sup>1</sup> D | Yeong Yeh Lee<sup>2,3</sup> D | Siew Mooi Ching<sup>4,5,6</sup> D | Nathorn Chaiyakunapruk<sup>7,8,9</sup> D | Sajesh K. Veettil<sup>1,10</sup> D

<sup>1</sup>Department of Pharmacy Practice, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia | <sup>2</sup>School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia | <sup>3</sup>GI Function and Motility Unit, Hospital USM, Universiti Sains Malaysia, Kota Bharu, Malaysia | <sup>4</sup>Faculty of Medicine and Health Sciences, Department of Family Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia | <sup>5</sup>Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia | <sup>6</sup>Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia | <sup>7</sup>Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA | <sup>8</sup>IDEAS Centre, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA | <sup>9</sup>School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia | <sup>10</sup>School of Medicine, Taylor's University, Petaling Jaya, Selangor, Malaysia

Correspondence: Nathorn Chaiyakunapruk (nathorn.chaiyakunapruk@utah.edu) | Sajesh K. Veettil (sajeshveettil@imu.edu.my)

Received: 18 November 2024 | Revised: 2 April 2025 | Accepted: 14 April 2025

Funding: The authors received no specific funding for this work.

Keywords: chemoprevention | cohort studies | gastrointestinal cancers | meta-analysis | randomized controlled trial | umbrella review

### **ABSTRACT**

Several meta-analyses have investigated the association between chemopreventive agents (CPAs) and the risk of gastrointestinal cancers, but syntheses of the quality of evidence in aggregate are lacking. This umbrella review aimed to assess the quality of evidence from meta-analyses of randomized controlled trials (RCTs) and cohort studies that examine inverse associations between CPAs and the risk of gastrointestinal cancers or any premalignant conditions. Summary effect sizes from random-effects models, between-study heterogeneity, 95% prediction interval, small-study effect, excess significance, and credibility ceilings were devised to classify the credibility of evidence from meta-analyses of cohort studies, whereas the GRADE approach was used for meta-analyses of RCTs. From 20,296 publications, 577 full-text articles were evaluated for eligibility, and 69 articles that provided 194 unique meta-analyses were included. Among meta-analyses of RCTs (N=93), 26 reached statistical significance (p < 0.05). Seven inverse associations were graded as either high quality (celecoxib and colorectal adenomas, (N = 4)) or moderate (aspirin and colorectal adenomas, (N=2) and H-pylori eradication and gastric cancer (N=1)). Among meta-analyses of cohort studies (N=101), 60 reached statistical significance. Four inverse associations were graded as either convincing (antivirals with hepatocellular carcinoma (HCC); N=1) or highly suggestive (aspirin with HCC (N=2) and colorectal cancer (N=1)). This review suggests that the associations with the most consistent empirical evidence were confined to those targeting the wellestablished risk factors of gastrointestinal cancer progression. Despite the limited established evidence, the inverse associations observed between metformin and colorectal, esophageal, and gastric cancers, as well as between statins and HCC and gastric cancer, merit further research.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

### **Summary**

- What is the current knowledge on the topic?
- Several meta-analyses have investigated the association between chemopreventive agents (CPAs) and the risk of gastrointestinal cancers. While existing evidence suggests that some of these agents may hold promise, the accumulated data remain complex and inconclusive, with studies reporting mixed findings.
- · What question did this study address?
- How credible is the evidence behind the inverse associations between chemopreventive agents (CPAs) and gastrointestinal cancers in meta-analyses of randomized clinical trials (RCTs) and cohort studies?
- · What does this study add to our knowledge?
- Eighty-six statistically significant associations supporting chemopreventive approaches were found from 194 examined associations from meta-analyses of RCTs and cohort studies. Inverse associations between celecoxib and aspirin on colorectal adenomas and *H.pylori* eradication on gastric cancer were supported by good-quality evidence from RCTs. Inverse associations of antivirals with hepatocellular carcinoma (HCC), aspirin with HCC, and colorectal cancer were supported by good-quality evidence from cohort studies. Metformin with colorectal cancer, esophagus cancer, and gastric cancer, and statins with HCC and gastric cancer yielded suggestive evidence.
- How might this change clinical pharmacology or translational science?
- Overall, the association between several CPAs and gastrointestinal cancers has been extensively studied, but only a few associations with CPAs targeting well-established risk factors are graded as good-quality evidence. Several CPA approaches have demonstrated promising effects in reducing the risk of several gastrointestinal cancers but have fallen short of having established evidence that merits further investigation.

# 1 | Introduction

Gastrointestinal (GI) cancers account for a significant portion of the global cancer burden, representing about a quarter of all cancer cases and a third of cancer-related deaths [1]. The global economic cost of GI cancers is projected to reach 8.2 trillion dollars between 2020 and 2050 [2]. Given the significant public health and economic implications, there is a pressing need to identify effective strategies for preventing GI cancers. Chemoprevention could be a promising strategy for achieving this objective.

Chemoprevention is the use of natural, synthetic, or biological agents to reverse, suppress, or prevent either the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease [3]. A large body of research has investigated the potential use of various chemopreventive agents (CPAs). While existing evidence suggests that some of these agents may hold

promise, the accumulated data remain complex and inconclusive, with studies reporting mixed findings [4]. Over the past few decades, numerous systematic reviews and meta-analyses have been published; these studies have consolidated the clinical efficacy of various chemopreventive approaches and informed future research directions. However, there has been little synthesis of the quality of evidence in an aggregate manner across these studies. Moreover, the strength, precision, and potential influence of bias on these associations need further clarification.

This umbrella review aimed to systematically identify relevant meta-analyses of randomized clinical trials (RCTs) and cohort studies on chemoprevention of GI cancers, summarize the findings, assess the precision of associations and the presence of bias, thereby enabling the grading of evidence using well-defined criteria.

### 2 | Methods

The study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline [5] and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline [6]. The protocol of this study was registered with PROSPERO (CRD42024575101).

# 2.1 | Search Strategy and Selection Criteria

A systematic literature search was conducted in PubMed, the Cochrane Database of Systematic Reviews, and Epistemonikos from database inception until May 2024 using a predefined search strategy (Table S1).

Studies were included if they met the following criteria: (1) systematic reviews with meta-analysis of RCTs or cohort studies investigating the association between the use of CPAs and risk of GI cancers or any premalignant conditions (example, colorectal adenomas), (2) investigated CPAs, such as repurposed drugs, vitamins, antioxidants, or any supplements, at any dose, either alone or in combination. This review did not consider dietary components and plant-derived chemicals. When more than one meta-analysis was available for the same research question (i.e., overlapping meta-analyses), we selected the meta-analysis with the largest data set (Table S2). We excluded (1) meta-analyses of studies with other study designs (e.g., cross-sectional, casecontrol); (2) meta-analyses published in languages other than English; (3) meta-analyses that directly compared different CPAs; and (4) meta-analyses that provided insufficient or inadequate data for the selection process and/or quantitative synthesis.

Two authors (J.E.C. and S.K.) independently screened titles or abstracts and examined the full text of potentially eligible articles. Discrepancies were resolved by a third reviewer (S.K.V.).

# 2.2 | Data Extraction

Data were extracted, and the methodological quality of included meta-analyses was assessed using A Measurement Tool to Assess Systematic Reviews (AMSTAR-2) [7] independently by

TABLE 1 | Criteria for credibility of evidence classification in meta-analyses of cohort studies.

| Credibility of evidence      | Classification criteria                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Convincing (Class-I)         | <ul> <li>Number of cases &gt; 1000</li> <li>p &lt; 10<sup>-6</sup></li> <li>Heterogeneity (I²) &lt; 50%</li> <li>Largest component study reporting a statistically significant result (p &lt; 0.05)</li> <li>95% prediction interval excluding the null</li> <li>Absence of small-study effects</li> <li>Absence of excess significance bias</li> <li>Survived 10% credibility ceiling test</li> </ul> |
| Highly Suggestive (Class-II) | - Number of cases > 1000<br>- $p < 10^{-6}$<br>- Largest component study reporting a statistically significant result ( $p < 0.05$ )                                                                                                                                                                                                                                                                   |
| Suggestive (Class-III)       | - Number of cases > 1000<br>- $p < 10^{-3}$                                                                                                                                                                                                                                                                                                                                                            |
| Weak (Class-IV)              | - <i>p</i> < 0.05                                                                                                                                                                                                                                                                                                                                                                                      |
| Non-significant              | - <i>p</i> > 0.05                                                                                                                                                                                                                                                                                                                                                                                      |

two authors (J.E.C. and S.S.G) and checked by a third author (S.K.V.). For each eligible meta-analysis, we abstracted data at the meta-analysis level (Table S2). Disagreements were resolved by consensus.

### 2.3 | Statistical Analysis

For each association, we recalculated the pooled summary estimates and corresponding 95% CIs with p-values using the DerSimonian and Laird random-effects model. Heterogeneity was assessed with the I² statistics. The evidence for small-study effects was evaluated using the Egger test. For meta-analyses of cohort studies, we estimated the 95% prediction interval [8], assessed excess significant bias [9], and performed the credibility ceiling test using a 10% ceiling value [10]. Detailed descriptions of these tests are provided in Table S2 in the Supplement. All statistical analyses were conducted using Stata software, version 16.0 (StataCorp LLC). All tests were conducted at a significance level of 2-sided p = 0.05, except for the Egger and excess significance tests, which used a 2-sided p = 0.10 significance level.

# 2.4 | Summary of Evidence

For meta-analyses of RCTs, we evaluated the certainty of evidence for each association using the Grading of Recommendation, Assessment, Development and Evaluations (GRADE) framework, which classified evidence as very low, low, moderate, or high [11]. For meta-analyses of cohort studies, we have applied several criteria to grade the credibility of evidence and classified it as conclusive (class I), highly suggestive (class II), suggestive (class III), or weak (class IV) (Table 1). Statistically significant associations demonstrating an overall risk reduction of at least 25% (i.e., risk ratio (RR)  $\leq$  0.75) can be considered meaningful from a public health perspective, given that the outcome of interest is the risk of cancer [12], and here such associations have been listed as promising approaches.

# 2.5 | Sensitivity and Subgroup Analyses

We performed sensitivity analyses for associations initially graded as having high or moderate quality evidence (for RCTs), or class I or II evidence (for cohort studies). These analyses included excluding small studies (<25th percentile) [13], excluding primary studies with low quality or high risk of bias, as well as applying the Hartung-Knapp-Sidik-Jonkman approach for meta-analyses with fewer than five studies [14].

# 3 | Results

Overall, we identified a total of 20,296 publications, evaluated 577 eligible full-text articles (2.84%), and finally included 69 articles (11.96%) describing 194 unique associations (i.e., meta-analyses) (Figure S1). One hundred thirty-seven articles (23.74%) were excluded because of overlap characteristics (Table S3).

# 3.1 | Findings From Meta-Analyses of RCTs

Thirty-four eligible articles (Table S4) describing 93 unique associations for 6 GI cancers (Figure 1) were included. Characteristics of included associations are given in Table S4. The median number of studies per association was three (interquartile range [IQR]: 2.5–5). The methodological quality of the meta-analyses assessed using AMSTAR-2 varied, with 22 rated as high quality, 7 as moderate, 4 as low, and 60 as critically low quality (Table S4).

Twenty-six [15–29] of 93 associations (27.96%) achieved statistical significance (p < 0.05). Summaries of all statistically significant and nonsignificant associations are presented in Tables S5 and S6, respectively. Among 26 statistically significant associations, 8 meta-analyses were initially graded as moderate to high-quality evidence (Table 2). The inverse associations (N=4) between the use of celecoxib on colorectal adenomas in a population with a previous history of colorectal

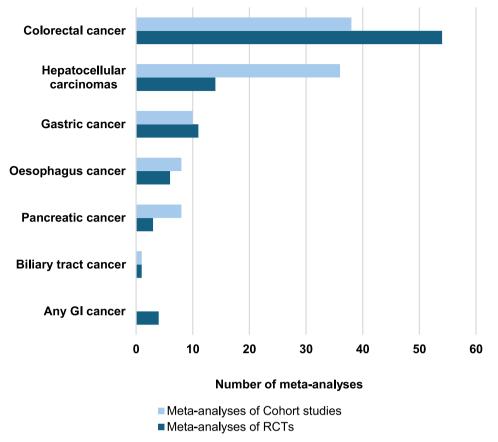



FIGURE 1 | This figure illustrates the distribution of meta-analyses investigating different gastrointestinal (GI) cancers in published literature.

adenomas were supported by high-quality evidence [18]. Moderate-quality evidence supported the following inverse associations: aspirin use with colorectal adenomas (N=2)[17, 19], selenium supplementation with HCC (N=1) [20], and Helicobacter pylori (H. pylori) eradication therapy with gastric cancer (N=1) [27]. The association between selenium supplementation with HCC was downgraded to low quality after sensitivity analysis excluded trials with a high risk of bias (Table S7). Associations graded as high or moderate quality of evidence in both main and sensitivity analyses were provided in Table 2. We also identified 13 additional promising chemoprevention approaches in the main analysis: colorectal adenoma recurrence (N=3; difluoromethylornithine with sulindac, berberine, and calcium supplement), advanced colorectal adenoma recurrence (N=2; low and high-dose aspirin), HCC incidence and recurrence (N=5; antivirals, selenium and vitamin K2), gastric cancer (N=2; H. pylorieradication), any GI cancer (N = 1; selenium) (Table 2).

# 3.2 | Findings From Meta-Analyses of Cohort Studies

Forty-two articles describing 101 unique associations for six GI cancers (Figure 1) were included. The characteristics of included associations were provided in Table S8 in the Supplement. The median number of studies per association was 5 (IQR: 3–10). The details of adjustment for potential confounding variables in the included meta-analyses are reported in Table S8. According

to AMSTAR-2, three meta-analyses met the moderate-quality level, 16 had low quality, and the majority, 82 meta-analyses, were deemed to be of critically low quality (Table S8).

Sixty [16, 21, 30–55] of the 101 associations (59.41%) were statistically significant (p<0.05) (Table S9). The forty-one (40.59%) non-significant associations are presented in Table S10 in the Supplement. Of the 77 of the 101 associations that provided sufficient data to reperform the meta-analysis, only 12 (15.58%) reached statistical significance at p<10<sup>-6</sup>. Among 77 associations, 40 (51.95%) demonstrated large heterogeneity ( $I^2$ >50%). The 95% prediction intervals excluded the null value for 11 associations (14.29%). Small-study effects were found in 17 associations (22.08%). The effect sizes of the largest study were statistically significant at p<0.05 for 43 associations (55.84%). Twenty-five associations (32.47%) passed the 10% credibility ceiling test. Excess significance bias was identified for only five associations, as the necessary data was unavailable to perform this test for the majority of the examined associations.

Among the 42 statistically significant associations evaluated for credibility [16, 21, 30, 31, 33–42, 44–50, 52–54], one association was found to have convincing evidence [47], three had highly suggestive evidence [44, 52], and eight had suggestive evidence (Table 3) [30, 31, 34, 38, 45, 47, 48, 53]. The inverse association between interferon-based antiviral treatment for chronic hepatitis C (CHC) (sustained virological response (SVR) vs. non-SVR) and risk of HCC ranked as convincing [47]. Our review found highly suggestive evidence (N=3) that

 $\textbf{TABLE 2} \hspace{0.2cm} | \hspace{0.2cm} \textbf{Findings of statistically significant associations in meta-analyses of randomized controlled trials. \\$ 

| Author,                | Cancer                |                                       |                                                                                                                                                        |                                                  | C                           | Studies per | No. of       | Č     | =          | size (RR/<br>OR/HR) | (20) 0 | E C               | Ĕ        |
|------------------------|-----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|-------------|--------------|-------|------------|---------------------|--------|-------------------|----------|
| year<br>Associations   | types<br>with high or | Uucome<br>" moderate quality o        | year types Outcome ropulation intervention Comparate.  Associations with high or moderate quality of evidence in both primary and sensitivity analyses | intervention<br>rimary and sensitiv              | Comparator<br>vity analyses | association | participants | Cases | romow-up   | (95% CI)            | F (%)  | AMSIAK            | CE       |
| Veettil et al.<br>[18] | CRC                   | Recurrence of any colorectal adenomas | History of colorectal adenomas                                                                                                                         | Celecoxib<br>at any dose<br>(400–800 mg/<br>day) | Placebo                     | м           | 3463         | 1437  | 1–3 years  | 0.67                | 0.00   | Moderate          | High     |
| Veettil et al.<br>[18] | CRC                   | Recurrence of any colorectal adenomas | History of colorectal adenomas                                                                                                                         | Celecoxib<br>(400 mg/day)                        | Placebo                     | ю           | 2862         | 1224  | 1–3 years  | 0.69 (0.64-0.75)    | 0.00   | Moderate          | High     |
| Veettil et al. [18]    | CRC                   | Recurrence<br>of advanced<br>adenomas | History of colorectal adenomas                                                                                                                         | Celecoxib<br>at any dose<br>(400–800 mg/<br>day) | Placebo                     | б           | 3457         | 291   | 1–3 years  | 0.42 (0.34-0.53)    | 0.00   | Moderate          | High     |
| Veettil et al.<br>[18] | CRC                   | Recurrence<br>of advanced<br>adenomas | History of colorectal adenomas                                                                                                                         | Celecoxib<br>(400 mg/day)                        | Placebo                     | 8           | 2856         | 256   | 1–3 years  | 0.45 (0.35-0.58)    | 0.00   | Moderate          | High     |
| Ma et al.<br>[19]      | CRC                   | Recurrence of any colorectal adenomas | History of CRC<br>or adenomas                                                                                                                          | Low-dose<br>aspirin<br>(80–160 mg/day)           | Placebo                     | 4           | 1383         | NR    | 1-4 years  | 0.79                | 0.00   | Critically<br>low | Moderate |
| Veettil et al.<br>[17] | CRC                   | Recurrence<br>of advanced<br>adenomas | History of CRC<br>or adenomas                                                                                                                          | Any dose<br>of aspirin<br>(80–325 mg/day)        | Placebo                     | r.          | 2950         | 253   | 2-4years   | 0.70 (0.55-0.88)    | 0.00   | Moderate          | Moderate |
| Ford et al.<br>[27]    | Gastric               | Incidence of<br>gastric cancer        | Healthy asymptomatic H. pylori-infected individuals                                                                                                    | H. pylori<br>eradication<br>therapy              | Placebo                     | 7           | 8323         | 193   | 4-22 years | 0.54 (0.40-0.72)    | 0.00   | High              | Moderate |

(Continues)

TABLE 2 | (Continued)

| year                      | Cancer      |                                                  |                                                                                      |                                                                    |            | Studies per | No. of       |       |                           | OR/HR)           |                    |                   |          |
|---------------------------|-------------|--------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|-------------|--------------|-------|---------------------------|------------------|--------------------|-------------------|----------|
|                           | types       | Outcome                                          | Population                                                                           | Intervention                                                       | Comparator | association | participants | Cases | Follow-up                 | (95% CI)         | I <sup>2</sup> (%) | AMSTAR            | CEa      |
| Statistically sig         | nificant as | ssociations demon.                               | Statistically significant associations demonstrating a risk reduction of $\geq 25\%$ | tion of≥25%                                                        |            |             |              |       |                           |                  |                    |                   |          |
| Veettil et al.<br>[17]    | CRC         | Recurrence of advanced adenomas                  | History of CRC<br>or adenomas                                                        | Low-dose<br>aspirin<br>(80–160 mg/day)                             | Placebo    | R           | 1178         | 91    | 2-4years                  | 0.66 (0.44–0.99) | 0.00               | Moderate          | Low      |
| Veettil et al. [17]       | CRC         | Recurrence<br>of advanced<br>adenomas            | History of CRC or adenomas                                                           | High-dose<br>aspirin<br>(300–325 mg/<br>day)                       | Placebo    | 4           | 2218         | 216   | 2-4 years                 | 0.73             | 0.00               | Moderate          | Low      |
| Veettil et al.<br>[15]    | CRC         | Recurrence of<br>any adenomas                    | History of CRC or adenomas                                                           | Calcium supplement with elemental dose $\geq 1600 \text{ mg/}$ day | Placebo    | 2           | 447          | 121   | 3 years                   | 0.74             | 0.00               | High              | Very low |
| Fang et al. [23]          | CRC         | 1-year<br>recurrence<br>of colorectal<br>adenoma | History of colorectal adenomas                                                       | Berberine supplement at any dose (0.3–0.6 g/day)                   | Placebo    | ю           | 1066         | 322   | 1 year                    | 0.57             | 45.30              | Critically<br>low | Low      |
| Yang et al.<br>[24]       | CRC         | Recurrence of any colorectal adenomas            | History of colorectal adenomas                                                       | DFMO +<br>sulindac                                                 | Placebo    | ٣           | 677          | 78    | 3 years                   | 0.24 (0.14-0.41) | 4.00               | Critically<br>low | Low      |
| Bjelakovic<br>et al. [20] | HCC         | Incidence<br>of HCC                              | High-risk<br>population <sup>b</sup>                                                 | Selenium<br>supplement                                             | Placebo    | 4           | 9798         | 177   | NR                        | 0.56 (0.42-0.76) | 0                  | High              | Moderate |
| Singal et al.<br>[16]     | HCC         | Incidence<br>of HCC                              | Patients with<br>chronic HCV<br>cirrhosis                                            | IFNs alone or<br>with RBV                                          | Placebo    | 4           | 347          | 75    | Median: 37–<br>103 months | 0.30 (0.14-0.63) | 40.70              | Critically<br>low | Low      |
| Zhang et al. [21]         | нсс         | Recurrence                                       | Patients after<br>curative resection<br>or ablation of<br>HBV-related<br>primary HCC | Nucleos(t)ide<br>analogues <sup>c</sup>                            | Placebo    | 2           | 304          | N. N. | NR                        | 0.71             | 0.00               | Critically        | Verylow  |

TABLE 2 | (Continued)

|                           |                       |                                                |                                                                 |                                                |            |             |              |       |             | Effect           |           |                   |          |
|---------------------------|-----------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|------------|-------------|--------------|-------|-------------|------------------|-----------|-------------------|----------|
|                           |                       |                                                |                                                                 |                                                |            |             |              |       |             | size (RR/        |           |                   |          |
| Author,                   | Cancer                |                                                |                                                                 |                                                |            | Studies per | No. of       |       |             | OR/HR)           |           |                   |          |
| year                      | types                 | Outcome                                        | Population                                                      | Intervention                                   | Comparator | association | participants | Cases | Follow-up   | (95% CI)         | $I^2$ (%) | AMSTAR            | CE       |
| Riaz et al.<br>[28]       | НСС                   | 2-year<br>HCC tumor<br>recurrence              | History of HCC                                                  | Vitamin K2 at<br>any dose (45<br>or 90 mg/day) | Placebo    | 5           | 754          | 106   | 2 years     | 0.66 (0.47–0.91) | 26.00     | Critically low    | Very low |
| Riaz et al.<br>[28]       | HCC                   | 3-year<br>HCC tumor<br>recurrence              | History of HCC                                                  | Vitamin K2 at<br>any dose (45<br>or 90 mg/day) | Placebo    | ٦.          | 754          | 120   | 3 years     | 0.71 (0.58–0.85) | 0.00      | Critically<br>low | Very low |
| Khan et al.<br>[22]       | Gastric               | Incidence of<br>metachronous<br>gastric cancer | Post-resection early-stage GC patients with H. pylori infection | H. pylori<br>eradication<br>therapy            | Placebo    | 4           | 2658         | 155   | 3-6 years   | 0.47             | 0.00      | Critically<br>low | Low      |
| Chen et al.<br>[26]       | Gastric               | Incidence of<br>gastric cancer                 | H. pylori -infected<br>patients with<br>NAG or AG               | H. pylori<br>eradication<br>therapy            | Placebo    | 9           | 2662         | 12    | 2–9 years   | 0.28 (0.08-0.95) | 0.00      | Critically<br>low | Very low |
| Bjelakovic<br>et al. [20] | Any<br>types<br>of GI | Incidence of all<br>GI cancers <sup>d</sup>    | General<br>population + high-<br>risk population <sup>b</sup>   | Selenium<br>supplement                         | Placebo    | ιν          | 11,110       | 265   | 7–7.4 years | 0.59 (0.46–0.75) | 0.00      | High              | Low      |

Abbreviations: AG, Atrophic gastritis; AMSTAR-2, A Measurement Tool to Assess Systematic Reviews; CE, credibility evidence; CI, confidence Interval; CRC, colorectal cancer; DFMO, difluoromethylornithine; ES, effect size; GI, gastrointestinal; HBV, hepatitis B virus; HCC, hepatocellular carcinomas; HCV, hepatitis C virus; H. pylori, Helicobacter pylori; HR, hazard ratio; IFN, interferon; NAG, non-atrophic gastritis; NR, not reported; OR, odds ratio; RBV,

ribavirin; RR, risk ratio.

\*\*Associations that were graded as having high, moderate, low, and very low quality of evidence based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) assessment.

\*\*PHIGH-risk populations including populations with premalignant conditions, or populations living in areas with high incidence of GI cancers.

\*\*Camivudine (with adefovir or entecavir rescue) and adefovir.

\*\*All GI cancers, including esophageal, gastric, small intestine, colorectal, pancreatic, liver, and biliary tract cancers.

 TABLE 3
 Findings of Statistically Significant Associations in Meta-analyses of Cohort Studies.

| CEa                                            |                                                                                           | -                                                                                           | 2                                         | 7                          | 7                                      |                                                                                      | ю                                              | 6                       | 4                              | 4                                     | NA                                    | NA                                     |
|------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|--------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| AMSTAR                                         |                                                                                           | Critically low                                                                              | Critically<br>low                         | Critically<br>low          | Critically<br>low                      |                                                                                      | Critically<br>low                              | Critically<br>low       | Critically<br>low              | Critically<br>low                     | Critically<br>low                     | Critically                             |
| 10%<br>CCT,<br>95% CI                          |                                                                                           | 0.20-                                                                                       | 0.75-                                     | 0.67-                      | 0.71-                                  |                                                                                      | 0.89-                                          | 0.85-                   | 0.66-                          | 0.76-                                 | NA                                    | NA                                     |
| SSE/<br>ESB                                    |                                                                                           | NP/NP                                                                                       | Yes/<br>NAf                               | Yes/<br>NAf                | Yes/<br>NAf                            |                                                                                      | No/<br>Yes                                     | No/<br>NA <sup>f</sup>  | No/<br>NA <sup>f</sup>         | Yes/<br>NAf                           | NA/<br>NA <sup>f</sup>                | NA/<br>NAf                             |
| PI<br>(95%<br>CI)                              |                                                                                           | 0.10-                                                                                       | 0.44-                                     | 0.58-                      | 0.75-                                  |                                                                                      | 0.61-                                          | 0.32-                   | 0.61-                          | 0.58-                                 | N<br>A                                | NA                                     |
| Largest<br>study<br>effect<br>size<br>(95% CI) |                                                                                           | 0.13<br>(0.11–<br>0.15)                                                                     | 0.81<br>(0.80–<br>0.82)                   | 0.81<br>(0.80-<br>0.82)    | 0.86<br>(0.79–<br>0.94)                |                                                                                      | 0.76<br>(0.74–<br>0.79)                        | 0.50<br>(0.45–<br>0.56) | 0.72<br>(0.56–<br>0.93)        | 0.90<br>(0.80–<br>1.10)               | NA                                    | NA                                     |
| P (%)                                          |                                                                                           | 40.30                                                                                       | 87.20                                     | 62.80                      | 0.00                                   |                                                                                      | 92.20                                          | 88.60                   | 0.00                           | 31.10                                 | NR                                    | NR.                                    |
| ď                                              |                                                                                           | $2.62 \times 10^{-49}$                                                                      | 1.79×10 <sup>-9</sup>                     | 3.54×10 <sup>-9</sup>      | $3.35 \times 10^{-10}$                 |                                                                                      | $9.63 \times 10^{-5}$                          | 1.96×10 <sup>-6</sup>   | $1.01 \times 10^{-5}$          | $4.14 \times 10^{-7}$                 | NA                                    | AZ AZ                                  |
| Cases                                          |                                                                                           | > 1000                                                                                      | 19,539                                    | 18,103                     | > 1000                                 |                                                                                      | 127,291                                        | > 1000                  | 371                            | 977                                   | NR                                    | NR                                     |
| No. of<br>partici-<br>pants                    |                                                                                           | 27,452                                                                                      | 338,446                                   | 299,767                    | N<br>R                                 |                                                                                      | 3,536,448                                      | N<br>R                  | NR                             | N<br>R                                | N<br>R                                | NR                                     |
| Effect<br>size (RR/<br>OR/HR)<br>(95% CI)      |                                                                                           | 0.20 (0.16-0.25)                                                                            | 0.68 (0.60-0.77)                          | 0.75 (0.68–0.83)           | 0.81 (0.76-0.87)                       |                                                                                      | 0.85 (0.78-0.92)                               | 0.67 (0.57–0.79)        | 0.75 (0.66–0.85)               | 0.75 (0.67–0.84)                      | 0.67 <sup>b</sup> (0.44-0.91)         | 0.74 <sup>b</sup> (0.64-0.83)          |
| Follow-up                                      |                                                                                           | 2.1 (median)<br>to 10 years<br>(mean)                                                       | NR                                        | NR                         | 3–24 years                             |                                                                                      | NR                                             | NR                      | 3-24 years                     | 3-24 years                            | 3-24 years                            | 3-24 years                             |
| Studies per<br>association                     | sensitivity analyses                                                                      | 34                                                                                          | 13                                        | 7                          | 10                                     |                                                                                      | 18                                             | 22                      | s.                             | 10                                    | 7                                     | N                                      |
| Comparator                                     | ary and sensitivi                                                                         | Received<br>antiviral<br>treatment<br>(IFNs alone<br>or with<br>RBV) but not<br>achieve SVR | Not using<br>aspirin                      | Not using<br>aspirin       | Lowest<br>frequency of<br>aspirin use  |                                                                                      | Not using<br>aspirin                           | Not using<br>metformin  | Lowest dose<br>of aspirin use  | Lowest<br>duration of<br>aspirin use  | Lowest<br>duration of<br>aspirin use  | Lowest<br>frequency of<br>aspirin use  |
| Intervention                                   | Associations with convincing or highly suggestive quality of evidence in both primary and | Received<br>antiviral<br>treatment<br>(IFNs alone or<br>with RBV) and<br>achieved SVR       | Any dose<br>of aspirin                    | Aspirin                    | Highest<br>frequency of<br>aspirin use | uction of $\geq 25\%$                                                                | Regular aspirin<br>use (≥ 2 times<br>per week) | Metformin               | Highest dose<br>of aspirin use | Highest<br>duration of<br>aspirin use | Highest<br>duration of<br>aspirin use | Highest<br>frequency of<br>aspirin use |
| Population                                     | estive quality of e                                                                       | Patients<br>with chronic<br>hepatitis C                                                     | Patients with<br>chronic liver<br>disease | HBV-infected<br>population | General<br>population                  | ıstrating a risk rec                                                                 | General<br>population                          | DM patients             | General<br>population          | General<br>population                 | General<br>population                 | General                                |
| Outcome                                        | sing or highly sugg                                                                       | Incidence<br>of HCC                                                                         | Incidence<br>of HCC                       | Incidence<br>of HCC        | Incidence<br>of CRC                    | Statistically significant associations demonstrating a risk reduction of $\geq 25\%$ | Incidence<br>of CRC                            | Incidence<br>of CRC     | Incidence<br>of CRC            | Incidence<br>of CRC                   | Incidence of colon cancer             | Incidence of rectal cancer             |
| Cancer                                         | with convinc                                                                              | НСС                                                                                         | НСС                                       | НСС                        | CRC                                    | significant a:                                                                       | CRC                                            | CRC                     | CRC                            | CRC                                   | Colon                                 | Rectal                                 |
| Author,<br>year                                | Associations                                                                              | Bang and<br>Song [47]                                                                       | Wang<br>et al. [52]                       | Wang<br>et al. [52]        | Ye et al.<br>[44]                      | Statistically :                                                                      | Wang<br>et al. [30]                            | Wang and<br>Shi [53]    | Ye et al.<br>[44]              | Ye et al.<br>[44]                     | Ye et al.<br>[44]                     | Ye et al.<br>[44]                      |

Critically

0.53-

No/ Yes

0.16 - 1.27

0.66 (0.49-0.88)

71.20

 $6.44 \times 10^{-8}$ 

898

4353

0.46

16

No treatment

IFN alone or with RBV

Patients with HCV cirrhosis

Incidence of HCC

HCC

Singal et al. [16]

32-96 months (0.34-0.61)

low

NAB  $CE_a$ 3 3 4 AMSTAR Critically low Low Low Low 10% CCT, 95% CI 0.51-0.920.46 - 1.030.65 - 0.910.80-1.010.74--79.0 0.97 0.62 - 1.020.75 - 1.010.45 - 1.18ΝA SSE/ ESB NA/ NAf Yes/ NAf No/ NAf Yes/ NAf Yes/ NAf No/ NAf No/ NAf No/ NA No/ NAf No/ NAf 0.24-0.14-0.41-3.35 (95% CI) 0.08-2.30 0.30-0.21 - 1.810.35 - 1.570.18-1.55 ΡI NA size (95% CI) Largest study effect 0.78 (0.64-0.28 (0.20– 0.40) 0.97 (0.93–1.02) 0.56 (0.47–0.67) 0.26 (0.13-0.55) 0.59 (0.41– 0.84) 0.99 (0.99–1.00) 0.49 (0.45-0.53) 0.70 (0.58-0.85) 0.95) NA  $I^2$  (%) 85.40 93.60 58.20 48.30 87.60 97.70 97.40 33.90 49.80 NR  $5.94 \times 10^{-6}$  $3.24 \times 10^{-2}$  $4.51 \times 10^{-6}$  $9.64 \times 10^{-5}$  $8.25 \times 10^{-3}$  $2.18 \times 10^{-3}$  $1.73 \times 10^{-7}$  $1.01 \times 10^{-3}$  $1.03 \times 10^{-2}$ NA d 13,142 12,743 Cases > 1000 1625 4929 NRNR NRNRNR1,774,476 2,591,272 122,095 partici-15,411 18,431 No. of pants 2288 4970 2953 NR $_{
m NR}$ 0.56 (0.44–0.72) 0.42 (0.29–0.61) size (RR/ OR/HR) (95% CI) 0.54b (0.20-0.88) (0.37-0.72)0.50-0.73) (0.47-0.82)(0.60-0.93)(0.61 - 0.93)(0.35-0.79)(0.39-0.96)0.52 0.62 09.0 0.75 0.53 0.61 35-114 months Mean: 24–79.6 months 35-114 months Mean: 32 months 3.1-4.8 years 2.9-4.2 years Follow-up 3-24 years 4-26 years to 10 years  $_{
m R}$ NRStudies per association 7 10 22 10 15 4 11 \_ 2 4 Comparator Lowest duration of aspirin use No treatment No treatment No treatment No treatment Not using metformin Not using aspirin Not using aspirin Not using aspirin Not using statins Any antiviral treatment Intervention Highest duration of aspirin (100 mg/day) Antiviral IFNs alone or Lamivudine aspirin use treatment: Metformin Low-dose with RBV Statins Aspirin Aspirin NAs Patients after HCC resection HCC resection or ablation Patients with chronic HBV infection curative HBV-related Patients with chronic HBV Population Patients with chronic liver Patients with chronic hepatitis C Patients after population infection and Overall population<sup>c</sup> DM patients population or TACE General General disease Incidence of rectal cancer Recurrence of HCC Recurrence of HCC Outcome Incidence of HCC Cancer Rectal types cancer HCC HCC HCC HCC HCC HCC HCC HCC HCC Zeng et al. [31] Bang and Song [47] Wang et al. [40] Zhang et al. [21] Lok et al. [37] Lok et al. [37] Author, Ye et al. [44] Yi et al. [38] Li et al. [48] Li et al. [49] year

TABLE 3 | (Continued)

| TABLE 3 | (Continued)

|   | CEª                                            | 4                                                                                           | 4                                                                       | 4                                                                                                | NA®                                                        | NA®                                           | NAg                          | $NA^g$                             | NA®                                                      |
|---|------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|------------------------------|------------------------------------|----------------------------------------------------------|
|   | AMSTAR                                         | Critically                                                                                  | Critically<br>low                                                       | Low                                                                                              | Critically<br>low                                          | Critically<br>low                             | Critically<br>low            | Critically<br>low                  | Critically<br>low                                        |
|   | 10%<br>CCT,<br>95% CI                          | 0.22-                                                                                       | 0.13-                                                                   | 0.46-                                                                                            | 0.68-                                                      | 0.57-                                         | NA                           | NA                                 | 0.41-                                                    |
|   | SSE/<br>ESB                                    | Yes/<br>Yes                                                                                 | No/<br>Yes                                                              | Yes/<br>NAf                                                                                      | No/<br>NAf                                                 | No/<br>NAf                                    | NA/<br>NAf                   | NA/<br>NAf                         | No/<br>NAf                                               |
|   | PI<br>(95%<br>CI)                              | 0.25-                                                                                       | 5.16                                                                    | 9.37                                                                                             | 0.64-                                                      | 0.59-                                         | Z<br>A                       | Z<br>A                             | 0.34-                                                    |
|   | Largest<br>study<br>effect<br>size<br>(95% CI) | 0.49<br>(0.28–<br>0.86)                                                                     | 0.11<br>(0.07-<br>0.18)                                                 | 0.61<br>(0.51–<br>0.73)                                                                          | 0.71<br>(0.61–<br>0.83)                                    | 0.69<br>(0.62–<br>0.76)                       | NA                           | NA                                 | 0.51<br>(0.42–<br>0.62)                                  |
|   | $I^{2}\left(\% ight)$                          | 0.00                                                                                        | 74.90                                                                   | 8.10                                                                                             | 0.00                                                       | 0.00                                          | 96.70                        | 64.00                              | 37.30                                                    |
|   | d                                              | 1.22×10 <sup>-12</sup>                                                                      | $8.13 \times 10^{-5}$                                                   | $7.60 \times 10^{-3}$                                                                            | $7.71 \times 10^{-8}$                                      | $5.45 \times 10^{-20}$                        | NA                           | NA                                 | $1.17 \times 10^{-11}$                                   |
|   | Cases                                          | 419                                                                                         | 715                                                                     | X<br>X                                                                                           | Z<br>Z                                                     | 3518                                          | NR                           | NR                                 | > 1000                                                   |
|   | No. of<br>partici-<br>pants                    | 3194                                                                                        | 1775                                                                    | 107,844                                                                                          | NR                                                         | 99,852                                        | 152,716                      | 1,083,952                          | 25,327                                                   |
|   | Effect<br>size (RR/<br>OR/HR)<br>(95% CI)      | 0.34 (0.26–0.46)                                                                            | 0.24 (0.12-0.49)                                                        | 0.66                                                                                             | 0.75                                                       | 0.70 (0.65-0.76)                              | 0.53 (0.32-0.88)             | 0.46 (0.37–0.57)                   | 0.53                                                     |
|   | Follow-up                                      | Median:<br>25–96 months                                                                     | >1 year                                                                 | N<br>R                                                                                           | 9–15years                                                  | ≥5years                                       | NR                           | NR                                 | NR                                                       |
|   | Studies per<br>association                     | 12                                                                                          | 4                                                                       | m                                                                                                | 9                                                          | 4                                             | S                            | ю                                  | ∞                                                        |
|   | Comparator                                     | Received<br>antiviral<br>treatment<br>(IFNs alone<br>or with<br>RBV) but not<br>achieve SVR | No treatment                                                            | Not using<br>NSBBs                                                                               | Not using<br>aspirin                                       | Not using<br>aspirin                          | Not using statins            | Not using statins                  | Not using<br>statins                                     |
|   | Intervention                                   | Received<br>antiviral<br>treatment<br>(IFNs alone or<br>with RBV) and<br>achieved SVR       | DAA treatment                                                           | Carvedilol<br>alone at any<br>dose or in<br>combination<br>with other<br>treatments <sup>d</sup> | Aspirin                                                    | Aspirin                                       | Statins                      | Lipophilic<br>statins              | Statins                                                  |
|   | Population                                     | Patients with<br>HCV cirrhosis                                                              | Adult HCV<br>patients with<br>history of HCC                            | Patients with cirrhosis                                                                          | HBV or<br>HCV-infected<br>patients with<br>diabetes status | HBV or<br>HCV-infected<br>patients            | Patients with<br>hepatitis B | Overall<br>population <sup>c</sup> | Patients<br>after HCC<br>resection or<br>transplantation |
| , | Outcome                                        | Incidence<br>of HCC                                                                         | Recurrence of<br>HCV-related<br>HCC beyond<br>1 year after<br>treatment | Incidence<br>of HCC                                                                              | Incidence<br>of HCC                                        | Incidence<br>of HCC<br>(follow-up<br>≥5years) | Incidence<br>of HCC          | Incidence<br>of HCC                | Recurrence<br>of HCC                                     |
|   | Cancer<br>types                                | нсс                                                                                         | HCC                                                                     | нсс                                                                                              | нсс                                                        | НСС                                           | HCC                          | HCC                                | НСС                                                      |
|   | Author,<br>year                                | Singal<br>et al. [16]                                                                       | Lui et al.<br>[42]                                                      | He et al. [50]                                                                                   | Li et al.<br>[55]                                          | Li et al.<br>[55]                             | Zeng et al. [31]             | Zeng et al.<br>[31]                | Khajeh<br>et al. [32]                                    |

TABLE 3 | (Continued)

| CEª                                            | NA®                                                                           | т                              | 4                                            | 4                                                                                                   | 4                                                   | 4                                                   | 4                                              | 4                              | 60                                  | 4                        |
|------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------------------|-------------------------------------|--------------------------|
| AMSTAR                                         | Low                                                                           | Critically<br>low              | Critically<br>low                            | Critically low                                                                                      | Moderate                                            | Moderate                                            | Critically<br>low                              | Critically<br>low              | Low                                 | Critically<br>low        |
| 10%<br>CCT,<br>95% CI                          | 0.46-                                                                         | 0.90-                          | 0.48-                                        | 0.32-                                                                                               | 0.04-                                               | 0.17-                                               | 0.87-                                          | NR                             | 0.37-                               | 0.26-                    |
| SSE/<br>ESB                                    | NA'<br>NAf                                                                    | No/<br>NAf                     | Yes/<br>No                                   | No/<br>Yes                                                                                          | NA/<br>NAf                                          | No/<br>Yes                                          | No/<br>NP                                      | Yes/<br>NP                     | No/<br>NAf                          | NA/<br>NAf               |
| PI (95% CI)                                    | A Z                                                                           | 0.39-                          | 0.29-                                        | 0.31-                                                                                               | Y<br>Y                                              | 0.01-                                               | 0.26-                                          | 0.26-                          | 0.22-                               | N A                      |
| Largest<br>study<br>effect<br>size<br>(95% CI) | 0.74<br>(0.63–<br>0.87)                                                       | 0.70<br>(0.65–<br>0.74)        | 0.85<br>(0.43–<br>1.66)                      | 0.53<br>(0.32–<br>0.87)                                                                             | 0.27<br>(0.07–<br>0.97)                             | 0.39<br>(0.17–<br>0.90)                             | 0.95<br>(0.89–<br>1.02)                        | NR                             | 0.68<br>(0.54–<br>0.85)             | 0.53<br>(0.36–<br>0.87)  |
| I² (%)                                         | 00.00                                                                         | 88.80                          | 16.00                                        | 0.00                                                                                                | 0.00                                                | 0.00                                                | 96.20                                          | 86.00                          | 31.80                               | 0.00                     |
| ď                                              | 1.59×10 <sup>-4</sup>                                                         | 1.66×10 <sup>-5</sup>          | 2.04×10 <sup>-3</sup>                        | $4.45 \times 10^{-9}$                                                                               | $1.13 \times 10^{-2}$                               | 9.18×10 <sup>-4</sup>                               | $2.76 \times 10^{-3}$                          | $2.70 \times 10^{-2}$          | $2.62 \times 10^{-4}$               | 1.33×10 <sup>-3</sup>    |
| Cases                                          | N R                                                                           | > 1000                         | 242                                          | 211                                                                                                 | 21                                                  | 72                                                  | 14,933                                         | 6164                           | > 1000                              | 586                      |
| No. of<br>partici-<br>pants                    | 107,658                                                                       | 3,504,600                      | 35,502                                       | 2386                                                                                                | 1240                                                | 5626                                                | 2,378,794                                      | 890,956                        | 5,203,191                           | 796                      |
| Effect<br>size (RR/<br>OR/HR)<br>(95% CI)      | 0.73                                                                          | 0.73 (0.63-0.84)               | 0.57 (0.40-0.82)                             | 0.43                                                                                                | 0.22 (0.07–0.71)                                    | 0.37 (0.21-0.67)                                    | 0.67                                           | 0.60 (0.38-0.94)               | 0.53 (0.38-0.75)                    | 0.53 (0.36-0.78)         |
| Follow-up                                      | NR                                                                            | N<br>R                         | Mean: 24–<br>121 months                      | Mean:<br>27-79 months                                                                               | N<br>R                                              | N<br>N                                              | N<br>R                                         | ≥5 years                       | NR                                  | NR                       |
| Studies per<br>association                     | 7                                                                             | 25                             | ∞                                            | 10                                                                                                  | 7                                                   | м                                                   | 10                                             | 8                              | ιΩ                                  | 7                        |
| Comparator                                     | Not using<br>NSBBs                                                            | Not using<br>statins           | No treatment                                 | No treatment<br>or failed<br>eradication                                                            | No treatment<br>or failed<br>eradication<br>or both | No treatment<br>or failed<br>eradication<br>or both | Not using<br>aspirin                           | Not using<br>aspirin           | Not using<br>metformin              | Not using<br>statins     |
| Intervention                                   | Nadolol alone<br>at any dose or<br>in combination<br>with other<br>treatments | Statins                        | H. pylori<br>eradication<br>therapy          | H. pylori<br>eradication<br>therapy                                                                 | H. pylori<br>eradication<br>therapy                 | H. pylori<br>eradication<br>therapy                 | Regular aspirin<br>use (≥ 2 times<br>per week) | ≥5 years of aspirin use        | Metformin                           | Statins                  |
| Population                                     | Patients with cirrhosis                                                       | General<br>population          | Asymptomatic H. pylori- infected individuals | H. pylori-<br>infected<br>patients with<br>early-stage<br>GC treated via<br>endoscopic<br>resection | Individuals<br>with gastritis                       | Individuals<br>with peptic<br>ulcer                 | General<br>population                          | General<br>population          | DM patients                         | Patients<br>with BO      |
| Outcome                                        | Incidence                                                                     | Incidence of<br>gastric cancer | Incidence of<br>gastric cancer               | Incidence of<br>metachronous<br>gastric cancer                                                      | Incidence of<br>gastric cancer                      | Incidence of<br>gastric cancer                      | Incidence of<br>gastric cancer                 | Incidence of<br>gastric cancer | Incidence of<br>esophagus<br>cancer | Incidence<br>of OAC      |
| Cancer                                         | нсс                                                                           | Gastric                        | Gastric                                      | Gastric                                                                                             | Gastric                                             | Gastric                                             | Gastric                                        | Gastric                        | Esophagus<br>cancer                 | Esophagus<br>cancer      |
| Author,<br>year                                | He et al. [50]                                                                | Chen<br>et al. [45]            | Lee et al.<br>[39]                           | Fan et al.<br>[46]                                                                                  | Sugano<br>et al. [35]                               | Sugano<br>et al. [35]                               | Wang<br>et al. [30]                            | Wang<br>et al. [30]            | Chen<br>et al. [34]                 | Alexandre<br>et al. [33] |

TABLE 3 | (Continued)

| Author,<br>year         | Author, Cancer<br>year types                           | Outcome             |                     | Population Intervention Comparator | Comparator                              | Studies per<br>association | Follow-up | Effect<br>size (RR/<br>OR/HR)<br>(95% CI) | No. of<br>partici-<br>pants | Cases | ď                     | $I^2$ (%) | Largest<br>study<br>effect<br>size<br>(95% CI) | PI (95% CI) | SSE/<br>ESB 9          | 10%<br>CCT,<br>95% CI | AMSTAR            | CEª |
|-------------------------|--------------------------------------------------------|---------------------|---------------------|------------------------------------|-----------------------------------------|----------------------------|-----------|-------------------------------------------|-----------------------------|-------|-----------------------|-----------|------------------------------------------------|-------------|------------------------|-----------------------|-------------------|-----|
| 36]                     | Singh Esophagus Incidence<br>et al. [36] cancer of OAC | Incidence<br>of OAC | Patients<br>with BO | PPIs                               | Not using PPIs                          | ĸ                          | 6-40years | 0.31 (0.17-0.57)                          | NR                          | 198   | 1.44×10 <sup>-4</sup> | 23.70     | 0.42<br>(0.18–<br>0.98)                        | 0.07–       | No/<br>NA <sup>f</sup> | 0.18-                 | Critically<br>low | 4   |
| Zhang Es<br>et al. [41] | Esophagus                                              | Incidence<br>of OAC | Patients<br>with BO | COX inhibitors                     | COX inhibitors Not using COX inhibitors | 9                          | NR        | 0.61 (0.49-0.76)                          | 4353                        | 467   | 9.87×10 <sup>-6</sup> | 0.00      |                                                | 0.45-       | No/<br>NAf             | 0.45-                 | Critically<br>low | 4   |

AMSTAR, A measurement tool to assess systematic reviews; BO, Barrett's Esophagus; CCT, credibility ceiling test; CE, credibility of evidence; CI, confidence Interval; COX, cyclooxygenase; CRC, colorectal cancer; DAAs, direct-acting antivirals; DM, diabetes mellitus; ES, effect size; ESB, excess significance bias; HBV, hepatitis B virus; HCC, hepatocellular carcinomas; HCV, hepatitis C virus; H. pylori, helicobacter pylori; HR, hazard ratio; NA, not applicable; NAs, nucleos(t)ide analogues; NP, not pertinent (because the number of expected significant studies was larger than the number of observed significant studies); NR, not reported; NSBBs, non-selective betablockers; OAC, esophageal adenocarcinoma; OR, odds ratio; PI, prediction interval; PPIs, proton pump inhibitors; RBV, ribavirin; RR, risk ratio; SSE, small study effect; SVR, sustained virologic response; TACE, transarterial

Associations that were nominally significant (i.e., p < 0.05) were graded as having convincing (class 1), highly suggestive (class 2), suggestive (class 3), or weak (class 4) evidence based on the amount of evidence, statistical significance, heterogeneity, small-study effect, excess significance bias, prediction interval, and credibility ceiling test

PFixed-effect size is used due to insufficient data to reperform meta-analysis using random-effects model.

\*\*Overall population includes both general and high-risk populations.

dearvedilol as tested alone or in combination with other treatments such as endoscopic variceal ligation (EVL) and ivabradine. "Nadolol was tested alone or in combination with other treatments such as isosorbide mononitrate (ISMN).

NA, not applicable (due to insufficient data to perform excess significance bias test). NA, not applicable (due to insufficient to perform the statistical analyses to perform the assessment of credibility of evidence). aspirin use was inversely associated with the risk of HCC (in patients with chronic liver disease (CLD) [52] and hepatitis B (HBV) [52]) and CRC (high vs. low-frequency use of aspirin) [44]. No associations were downgraded after sensitivity analyses (Table S11).

We also identified 37 additional promising chemoprevention approaches in the main analysis including those with suggestive evidence (N=8): (1) metformin with CRC [53], esophagus cancer [34], and HCC (in patients with diabetes mellitus) [48]; (2) lowdose aspirin (100 mg/day) with HCC in the case of CLD [38], and regular aspirin use with CRC [30]; (3) statins with gastric cancer [45], and HCC [31]; and (4) interferon-based antiviral with HCC (treatment vs. no-treatment) in patients with CHC (Table 3) [47].

# 3.3 | Comparing Findings From Meta-Analyses of Cohort Studies and Those of RCTs

In total, we identified 18 associations for which findings were available from both meta-analyses of RCTs and cohort studies (Table S12). Statistically significant results favoring CPA were identified in both RCT and cohort data for four outcomes: HCC (antiviral for HCV-related cirrhosis) [16], and HCC recurrence (nucleotide analogues after curative resection or ablation of HBV-related primary HCC) [21], gastric cancer (*H. pylori* eradication therapy in asymptomatic *H. pylori*-cases) [27, 39], metachronous gastric cancer (*H. pylori* eradication therapy in early-stage gastric cancer treated via resection) [22, 46].

# 4 | Discussion

Findings of our study are important in the context of the current limited empirical evidence supporting chemoprevention strategies. To the best of our knowledge, this is the first umbrella review that provides an overview of the current evidence regarding GI chemoprevention, highlighting both its promising and less conclusive aspects. Overall, the association between several CPAs and GI cancers has been extensively studied, but only a few associations with CPAs are graded as having good-quality evidence.

The associations with the most consistent empirical evidence were confined to interventions that targeted the wellestablished risk factors of GI cancer progression, for example, antiviral treatment including interferon either alone or in combination with other agents (e.g., ribavirin) for chronic hepatitis infections to prevent HCC [47]. Associations between antiviral therapies and HCC were mostly consistent and frequently of strong magnitude, irrespective of factors like type of viral infection [37, 47], presence of cirrhosis [16, 37], and previous history of HCC [21, 42]. It is anticipated that the risk of HCC would be further reduced by direct-acting antivirals (DAAs) due to their higher SVR rates [56]. Nevertheless, some observational data have raised concerns about the potential association between DAAs and an increased rate of HCC recurrence, as well as the development of de novo HCC [57, 58]. A recent meta-analysis of cohort studies found no differences in the risk of developing de novo HCC between DAAs and interferon-based therapies [59]. However, the evidence was not conclusive, as the DAA-treated

cohort included a greater proportion of older patients with more advanced liver disease and additional HCC risk factors. Furthermore, the available literature lacks robust evidence on the effects of entecavir or tenofovir disoproxil fumarate, which are currently the recommended first-line treatments for HBV infection in adults [60].

With regards to *H.pylori* eradication to prevent gastric cancer, the evidence was of moderate quality based on a meta-analysis of RCTs [27]. The findings from meta-analyses of cohort studies were also consistent with RCTs [39]. Nonetheless, these meta-analyses were constrained by the paucity of studies from regions outside of Asia, implying that these findings may not be generalizable beyond the Asian populations.

Aspirin has long been recognized as a potential CPA, particularly against CRC. One of the biological mechanisms that has been proposed to contribute to aspirin's chemopreventive effect is its potential to inhibit cyclooxygenase-2 (COX-2), an enzyme implicated in promoting inflammation and cell proliferation, and which is frequently overexpressed in colorectal cancer [61, 62]. Our findings from meta-analyses of cohort studies also support the association [44]. In contrast, a most recent metaanalysis of four RCTs found no statistically significant association between low-dose aspirin use (vs. no intervention) and CRC incidence over a 5-to 10-year follow-up period [63], supporting a current recommendation from the US Preventive Services Task Force (USPSTF) [64]. Moreover, there is currently no highquality evidence to support the effect modification of aspirin in different population groups, such as by age, sex, diabetes status, race, and ethnicity [63]. Notably, no existing recommendations specifically address the use of aspirin for chemoprevention of secondary CRC among patients with previous colorectal neoplasia or CRC, who may already be undergoing routine surveillance colonoscopy. We found moderate quality of evidence from metaanalysis of RCTs for low-dose aspirin in preventing recurrent colorectal neoplasia (reported as advanced or any colorectal adenomas) [17, 19]. Although high-quality evidence supports the use of celecoxib for this purpose [18], concerns over its long-term cardiovascular safety have hampered its clinical adoption. A recent network meta-analysis [65], demonstrated that low-dose aspirin had the most favorable safety profile compared to nonaspirin NSAIDs, and the excess benefit over risk might therefore be favorable for all patients with previous neoplasia, regardless of baseline neoplasia status. Patients without an increased risk of bleeding who are recommended to take low-dose aspirin daily as part of secondary prevention of cardiovascular disease are more likely to experience positive outcomes [64]. Cost-effectiveness analyses that explore the long-term outcomes of aspirin chemoprevention in combination with surveillance colonoscopy at different time intervals in different subgroup populations with varying baseline CRC risks are desirable to further define its potential role in clinical practice.

Our review also identified evidence for the potential effects of aspirin on HCC and gastric cancer. First, with regard to HCC, experimental and clinical evidence indicates that aspirin may hinder the progression of liver disease and HCC development through the prevention of platelet degranulation, modulation of bioactive lipid profiles, and inhibition of the proinflammatory enzyme COX-2 [66]. Notably, an inverse association between

aspirin use (around 3-7 years) and HCC risk was observed across patients with chronic viral hepatitis [52], and chronic liver diseases [52]. The presence of cirrhosis appears to be a critical factor that influences the risk of GI bleeding [67]. However, recent observational studies [66, 68] in patients with chronic hepatitis B or C indicated that low-dose aspirin use was not associated with a substantially higher risk of GI bleeding, even among persons with decompensated cirrhosis. Nevertheless, the optimal dose (ranging from 75 to 160 mg) and duration of aspirin needed to achieve maximum clinical benefit without increasing the risk of GI bleeding remains unclear. Moreover, the available evidence suggests that the use of aspirin in conjunction with other drugs (e.g., statins, metformin, antivirals) may yield a synergistic inhibitory effect on the progression of HCC [69]. Further high-quality studies, particularly RCTs, are needed to better understand these issues while accounting for the impact of potential confounding factors. Second, with regard to gastric cancer risk, the available evidence suggests that aspirin's potential to prevent gastric cancer may be attributed to its anti-inflammatory and antiplatelet properties, including the induction of apoptosis and inhibition of angiogenesis [70]. Meta-analysis of cohort studies demonstrated an inverse association with regular use of aspirin [30]; however, the credibility of the evidence was weak. Meanwhile, the meta-analysis of individual patient data from two trials did not corroborate this relationship [30]. Recent meta-analyses of observational studies have suggested that aspirin might confer protective effects against pancreatic cancer [71], and esophageal cancer [72]. However, these beneficial associations were not observed in our review since the analysis was restricted to cohort studies alone.

Obesity and its metabolic complications, including diabetes, have been associated with an increased risk of several cancers, including GI cancers. As a first-line anti-diabetic medication, metformin may indirectly inhibit tumorigenesis by enhancing glycaemic regulation and decreasing circulating insulin levels [73]. Experimental data also indicated that metformin has a direct inhibitory effect on specific signaling pathways responsible for cell proliferation, motility, invasion, and migration [74, 75]. Meta-analyses of cohort studies provided suggestive evidence that metformin was inversely associated with risks of CRC [53], HCC [48], and esophageal cancer [34] in patients with diabetes mellitus. However, evidence from well-designed, high-quality trials was not available to support the observations. The most compelling evidence to date supporting the chemopreventive potential of metformin is derived from a recently conducted clinical trial, which demonstrated the efficacy of low-dose metformin (250 mg per day) in reducing the risk of recurrent colorectal adenomas among Japanese patients who had previously undergone surgical resection of colorectal adenomatous polyps [76]. In addition, a recent umbrella review [77] on metformin and cancer outcomes demonstrated a reduced risk of pancreatic and gastric cancers associated with metformin use, but our review, limited to cohort studies, did not confirm these findings [78, 79]. Given the high prevalence of diabetes and the increased cancer risk associated with that condition, the observed effect of metformin on GI cancers in our review is encouraging.

The available evidence indicates a potential inverse relationship between statin use and the risk of gastric cancer [45], HCC [31], and esophageal adenocarcinoma (among those with Barrett's esophagus) [33], though the findings are only suggestive and require further investigation. Notably, our findings suggest that the use of statins is associated with a reduced risk of HCC [31], not only among patients with chronic viral hepatitis and cirrhosis, but it could also benefit those with fatty liver disease [80]. Meanwhile, clinicians often express concerns about prescribing statins to patients with chronic liver disease, including fatty liver patients, due to the potential risk of hepatotoxicity. Additional clinical trials should assess the chemoprotective potential of statins among these individuals without a conventional medical indication for statin therapy.

The ideal CPA would be one that is broadly effective, safe, affordable, widely available, and easy to administer. Although the promising agents mentioned above show potential in meeting these criteria, there remains a dearth of high-quality prospective studies, particularly long-term RCTs, that account for the impact of potential confounding factors and identify the optimal dose and appropriate population to target. Future studies should also evaluate the overall impact of these agents on the risk of any cancers collectively, rather than focusing solely on individual cancer types.

While antioxidants and vitamins (such as, vitamins A, C, D, and E, beta-carotene, B-vitamins, folic acid) are commonly believed to play an important role in suppressing cancer progression, our review was unable to identify any clear associations supporting these compounds.

While our umbrella review offers valuable insights, the presence of low-quality evidence limits the ability to draw robust conclusions regarding the chemoprevention of GI cancers for many CPAs. Future research should aim to address the identified gaps, focusing on high-quality study designs and long-term follow-up to strengthen the evidence base. Examining the role of low-dose aspirin in primary colorectal cancer prevention among individuals with high cardiovascular disease risk, as suggested by USPSTF, is a priority. Additionally, determining the optimal doses of aspirin and metformin to reduce the risk of HCC and CRC, respectively, as well as investigating the chemopreventive potential of statins among individuals without a conventional medical indication for statins therapy, are important areas for future research.

### 4.1 | Limitations

Our review had several limitations. First, the umbrella review focuses only on existing meta-analyses; therefore, CPAs not tested in meta-analysis are not presented in this review. Second, we did not appraise the quality of individual primary studies because this was beyond the scope of the review. Additionally, we did not perform the credibility assessment for some analyses because the data needed for predictive interval estimation and assessment of small study and excess significant bias effects were not available. Instead, we summarized the findings as originally reported by the authors of meta-analysis studies. The review has excluded the findings from meta-analyses that evaluated the use of various interventions associated with an increased risk of GI cancer occurrence. As an example, we observed that proton pump inhibitor use is associated with a decreased risk of esophageal cancer in

individuals with Barrett's esophagus. However, meta-analyses of cohort studies also suggest these agents may increase the risk of certain gastrointestinal cancers, such as gastric, pancreatic, and liver cancers [81]. Finally, we restricted this review to publications written only in the English language.

#### 5 | Conclusion

Overall, the association between several CPAs and GI cancers has been extensively studied, but only a few associations with CPAs targeting well-established risk factors are graded as good-quality evidence. A number of CPA approaches, including the use of aspirin, metformin, and statins, have demonstrated promising effects in reducing the risk of several GI cancers. Despite less established evidence, these approaches merit further research.

#### **Author Contributions**

Jia En Chan and Sajesh K. Veettil wrote the manuscript; Sajesh K. Veettil, Nathorn Chaiyakunapruk, and Jia En Chan designed the study; Jia En Chan, Suresh Shanmugham, and Suresh Kumar performed the research; Jia En Chan., Sajesh K. Veettil, Yeong Yeh Lee, and Siew Mooi Ching analyzed the data. Registration details: PROSPERO (CRD42024575101) https://www.crd.york.ac.uk/PROSPERO/view/CRD42024575101. All authors interpreted the data, read the manuscript, and approved the final version. All authors have contributions that meet the criteria for authorship and all authors will sign a statement attesting to authorship, disclosing all potential conflicts of interest, and releasing the copyright should the manuscript be accepted for publication.

#### Acknowledgments

The authors wish to thank Professor Frederick Charles Smales, Adjunct Professor, School of Dentistry, IMU University, for taking the time to review and comment on our manuscript.

# **Ethics Statement**

The authors have nothing to report.

# **Conflicts of Interest**

The authors declare no conflicts of interest.

### **Data Availability Statement**

Dr. Sajesh K Veettil had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Data were extracted from published meta-analyses and randomized controlled trials, all of which are available and accessible.

# References

- 1. F. Bray, M. Laversanne, H. Sung, et al., "Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries," *CA: a Cancer Journal for Clinicians* 74 (2024): 229–263.
- 2. S. Chen, Z. Cao, K. Prettner, et al., "Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories From 2020 to 2050," *JAMA Oncology* 9 (2023): 465–472.
- 3. W. P. Steward and K. Brown, "Cancer Chemoprevention: A Rapidly Evolving Field," *British Journal of Cancer* 109 (2013): 1–7.

- 4. K.-S. Chun, E.-H. Kim, S. Lee, and K. B. Hahm, "Chemoprevention of Gastrointestinal Cancer: The Reality and the Dream," *Gut Liver* 7 (2013): 137–149
- 5. M. J. Page, J. E. McKenzie, P. M. Bossuyt, et al., "The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews," *British Medical Journal* 372, no. n71 (2021): n71, https://doi.org/10.1136/bmi.n71.
- 6. B. S. Brooke, T. A. Schwartz, and T. M. Pawlik, "MOOSE Reporting Guidelines for Meta-Analyses of Observational Studies," *JAMA Surgery* 156, no. 8 (2021): 787–788, https://doi.org/10.1001/jamasurg. 2021.0522.
- 7. B. J. Shea, B. C. Reeves, G. Wells, et al., "AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both," *BMJ* 358 (2017): j4008, https://doi.org/10.1136/bmj.j4008.
- 8. J. P. T. Higgins, S. G. Thompson, and D. J. Spiegelhalter, "A re-Evaluation of Random-Effects Meta-Analysis," *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 172 (2009): 137–159.
- 9. J. P. Ioannidis and T. A. Trikalinos, "An Exploratory Test for an Excess of Significant Findings," *Clinical Trials* 4 (2007): 245–253.
- 10. G. Salanti and J. P. A. Ioannidis, "Synthesis of Observational Studies Should Consider Credibility Ceilings," *Journal of Clinical Epidemiology* 62 (2009): 115–122.
- 11. M. Mercuri and A. Gafni, "The Evolution of GRADE (Part 3): A Framework Built on Science or Faith?," *Journal of Evaluation in Clinical Practice* 24, no. 5 (2018): 1223–1231, https://doi.org/10.1111/jep.13016.
- 12. D. L. Streiner and G. R. Norman, "Mine Is Bigger Than Yours: Measures of Effect Size in Research," *Chest* 141 (2012): 595–598.
- 13. A. Dechartres, D. G. Altman, L. Trinquart, I. Boutron, and P. Ravaud, "Association Between Analytic Strategy and Estimates of Treatment Outcomes in Meta-Analyses," *JAMA* 312, no. 6 (2014): 623–630, https://doi.org/10.1001/jama.2014.8166.
- 14. J. IntHout, J. P. Ioannidis, and G. F. Borm, "The Hartung-Knapp-Sidik-Jonkman Method for Random Effects Meta-Analysis Is Straightforward and Considerably Outperforms the Standard DerSimonian-Laird Method," *BMC Medical Research Methodology* 14 (2014): 25.
- 15. S. K. Veettil, S. M. Ching, K. G. Lim, S. Saokaew, P. Phisalprapa, and N. Chaiyakunapruk, "Effects of Calcium on the Incidence of Recurrent Colorectal Adenomas: A Systematic Review With Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials," *Medicine (Baltimore)* 96 (2017): e7661.
- 16. A. K. Singal, A. Singh, S. Jaganmohan, et al., "Antiviral Therapy Reduces Risk of Hepatocellular Carcinoma in Patients With Hepatitis C Virus-Related Cirrhosis," *Clinical Gastroenterology and Hepatology* 8 (2010): 192–199.
- 17. S. K. Veettil, K. G. Lim, S. M. Ching, S. Saokaew, P. Phisalprapa, and N. Chaiyakunapruk, "Effects of Aspirin and Non-Aspirin Nonsteroidal Anti-Inflammatory Drugs on the Incidence of Recurrent Colorectal Adenomas: A Systematic Review With Meta-Analysis and Trial Sequential Analysis of Randomized Clinical Trials," *BMC Cancer* 17 (2017): 763.
- 18. S. K. Veettil, S. Nathisuwan, S. M. Ching, et al., "Efficacy and Safety of Celecoxib on the Incidence of Recurrent Colorectal Adenomas: A Systematic Review and Meta-Analysis," *Cancer Management and Research* 11 (2019): 561–571, https://doi.org/10.2147/CMAR.S180261.
- 19. S. Ma, T. Han, C. Sun, et al., "Does Aspirin Reduce the Incidence, Recurrence, and Mortality of Colorectal Cancer? A Meta-Analysis of Randomized Clinical Trials," *International Journal of Colorectal Disease* 36 (2021): 1653–1666.
- 20. G. Bjelakovic, D. Nikolova, R. G. Simonetti, and C. Gluud, "Antioxidant Supplements for Preventing Gastrointestinal Cancers," *Cochrane Database of Systematic Reviews* 3 (2008): CD004183, https://doi.org/10.1002/14651858.CD004183.pub3.

- 21. H. Zhang, Y. Zhou, G. Yuan, et al., "Antiviral Therapy Improves the Survival Rate and Decreases Recurrences and Fatalities in Liver Cancer Patients Following Curative Resection: A Meta-Analysis," *Molecular and Clinical Oncology* 3 (2015): 1239–1247.
- 22. M. Y. Khan, A. Aslam, A. B. Mihali, et al., "Effectiveness of *Helicobacter pylori* Eradication in Preventing Metachronous Gastric Cancer and Preneoplastic Lesions. A Systematic Review and Meta-Analysis," *European Journal of Gastroenterology & Hepatology* 32 (2020): 686–694.
- 23. S. Fang, S. Guo, S. J. du, et al., "Efficacy and Safety of Berberine in Preventing Recurrence of Colorectal Adenomas: A Systematic Review and Meta-Analysis," *Journal of Ethnopharmacology* 282 (2022): 114617.
- 24. L. Yang, Y. Wang, S. Hu, and X. Wang, "Eflornithine for Chemoprevention in the High-Risk Population of Colorectal Cancer: A Systematic Review and Meta-Analysis With Trial Sequential Analysis," *Frontiers in Oncology* 13 (2023): 1281844.
- 25. E. M. Ibrahim and J. M. Zekri, "Folic Acid Supplementation for the Prevention of Recurrence of Colorectal Adenomas: Metaanalysis of Interventional Trials," *Medical Oncology* 27 (2010): 915–918.
- 26. H.-N. Chen, Z. Wang, X. Li, and Z.-G. Zhou, "Helicobacter pylori Eradication Cannot Reduce the Risk of Gastric Cancer in Patients With Intestinal Metaplasia and Dysplasia: Evidence From a Meta-Analysis," Gastric Cancer 19 (2016): 166–175.
- 27. A. C. Ford, Y. Yuan, D. Forman, R. Hunt, and P. Moayyedi, "*Helicobacter Pylori* Eradication for the Prevention of Gastric Neoplasia," *Cochrane Database of Systematic Reviews* 7, no. 7 (2020): CD005583, https://doi.org/10.1002/14651858.CD005583.pub3.
- 28. I. B. Riaz, H. Riaz, T. Riaz, et al., "Role of Vitamin K2 in Preventing the Recurrence of Hepatocellular Carcinoma After Curative Treatment: A Meta-Analysis of Randomized Controlled Trials," *BMC Gastroenterology* 12, no. 1 (2012): 170, https://doi.org/10.1186/1471-230X-12-170.
- 29. B. F. Cole, R. F. Logan, S. Halabi, et al., "Aspirin for the Chemoprevention of Colorectal Adenomas: Meta-Analysis of the Randomized Trials," *Journal of the National Cancer Institute* 101 (2009): 256–266.
- 30. L. Wang, R. Zhang, L. Yu, et al., "Aspirin Use and Common Cancer Risk: A Meta-Analysis of Cohort Studies and Randomized Controlled Trials," *Frontiers in Oncology* 11 (2021): 690219.
- 31. R. W. Zeng, J. N. Yong, D. J. H. Tan, et al., "Meta-Analysis: Chemoprevention of Hepatocellular Carcinoma With Statins, Aspirin and Metformin," *Alimentary Pharmacology & Therapeutics* 57 (2023): 600–609.
- 32. E. Khajeh, A. D. Moghadam, P. Eslami, et al., "Statin Use Is Associated With the Reduction in Hepatocellular Carcinoma Recurrence After Liver Surgery," *BMC Cancer* 22 (2022): 91.
- 33. L. Alexandre, A. B. Clark, E. Cheong, M. P. N. Lewis, and A. R. Hart, "Systematic Review: Potential Preventive Effects of Statins Against Oesophageal Adenocarcinoma," *Alimentary Pharmacology & Therapeutics* 36 (2012): 301–311.
- 34. Y. Chen, X. Cheng, C. Sun, et al., "Is Metformin Use Associated With a Reduced Risk of Oesophageal Cancer? A Systematic Review and Meta-Analysis," *Postgraduate Medical Journal* 98 (2022): 866–870.
- 35. K. Sugano, "Effect of *Helicobacter pylori* Eradication on the Incidence of Gastric Cancer: A Systematic Review and Meta-Analysis," *Gastric Cancer* 22 (2019): 435–445.
- 36. S. Singh, S. K. Garg, P. P. Singh, P. G. Iyer, and H. B. El-Serag, "Acid-Suppressive Medications and Risk of Oesophageal Adenocarcinoma in Patients With Barrett's Oesophagus: A Systematic Review and Meta-Analysis," *Gut* 63 (2014): 1229–1237.
- 37. A. S. F. Lok, B. J. McMahon, R. S. Brown, et al., "Antiviral Therapy for Chronic Hepatitis B Viral Infection in Adults: A Systematic Review and Meta-Analysis," *Hepatology* 63 (2016): 284–306.
- 38. M. Yi, X. Feng, W. Peng, F. Teng, Y. Tang, and Z. Chen, "Aspirin for the Prevention of Hepatocellular Carcinoma: An Updated Meta-Analysis

- With Particular Focus on Patients With Chronic Liver Disease," European Journal of Clinical Pharmacology 78 (2022): 647–656.
- 39. Y.-C. Lee, T. H. Chiang, C. K. Chou, et al., "Association Between *Helicobacter pylori* Eradication and Gastric Cancer Incidence: A Systematic Review and Meta-Analysis," *Gastroenterology* 150 (2016): 1113–1124.
- 40. S. Wang, Y. Yu, P. M. Ryan, et al., "Association of Aspirin Therapy With Risk of Hepatocellular Carcinoma: A Systematic Review and Dose-Response Analysis of Cohort Studies With 2.5 Million Participants," *Pharmacological Research* 151 (2020): 104585.
- 41. S. Zhang, X. Q. Zhang, X. W. Ding, et al., "Cyclooxygenase Inhibitors Use Is Associated With Reduced Risk of Esophageal Adenocarcinoma in Patients With Barrett's Esophagus: A Meta-Analysis," *British Journal of Cancer* 110 (2014): 2378–2388.
- 42. F. H. Lui, Z. Moosvi, A. Patel, et al., "Decreased Risk of Hepatocellular Carcinoma Recurrence With Direct-Acting Antivirals Compared With no Treatment for Hepatitis C: A Meta-Analysis," *Annals of Gastroenterology* 33 (2020): 293–298.
- 43. R. C. Heine-Bröring, R. M. Winkels, J. M. S. Renkema, et al., "Dietary Supplement Use and Colorectal Cancer Risk: A Systematic Review and Meta-Analyses of Prospective Cohort Studies," *International Journal of Cancer* 136 (2015): 2388–2401.
- 44. X. Ye, J. Fu, Y. Yang, and S. Chen, "Dose-Risk and Duration-Risk Relationships Between Aspirin and Colorectal Cancer: A Meta-Analysis of Published Cohort Studies," *PLoS One* 8 (2013): e57578.
- 45. Y. Chen, J. Zhang, Y. Zhang, and L. Zhu, "Effect of Statin Use on Risk and Mortality of Gastric Cancer: A Meta-Analysis," *Anti-Cancer Drugs* 34 (2023): 901–909.
- 46. F. Fan, Z. Wang, B. Li, and H. Zhang, "Effects of Eradicating *Helicobacter pylori* on Metachronous Gastric Cancer Prevention: A Systematic Review and Meta-Analysis," *Journal of Evaluation in Clinical Practice* 26 (2020): 308–315.
- 47. C. S. Bang and I. H. Song, "Impact of Antiviral Therapy on Hepatocellular Carcinoma and Mortality in Patients With Chronic Hepatitis C: Systematic Review and Meta-Analysis," *BMC Gastroenterology* 17 (2017): 46.
- 48. Q. Li, H. Xu, C. Sui, and H. Zhang, "Impact of Metformin Use on Risk and Mortality of Hepatocellular Carcinoma in Diabetes Mellitus," *Clinics and Research in Hepatology and Gastroenterology* 46 (2022): 101781.
- 49. X. Li, Y. Yu, and L. Liu, "Influence of Aspirin Use on Clinical Outcomes of Patients With Hepatocellular Carcinoma: A Meta-Analysis," Clinics and Research in Hepatology and Gastroenterology 45 (2021): 101545.
- 50. X. He, Z. Zhao, X. Jiang, and Y. Sun, "Non-Selective Beta-Blockers and the Incidence of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-Analysis," *Frontiers in Pharmacology* 14 (2023): 1216059.
- 51. Z. Zhu, Z. Mei, Y. Guo, et al., "Reduced Risk of Inflammatory Bowel Disease-Associated Colorectal Neoplasia With Use of Thiopurines: A Systematic Review and Meta-Analysis," *Journal of Crohn's & Colitis* 12 (2018): 546–558.
- 52. S. Wang, L. Zuo, Z. Lin, Z. Yang, R. Chen, and Y. Xu, "The Relationship Between Aspirin Consumption and Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis," *European Journal of Medical Research* 28 (2023): 226.
- 53. Q. Wang and M. Shi, "Effect of Metformin Use on the Risk and Prognosis of Colorectal Cancer in Diabetes Mellitus: A Meta-Analysis," *Anti-Cancer Drugs* 33 (2022): 191–199.
- 54. Y. Liu, Q. Yu, Z. Zhu, et al., "Vitamin and Multiple-Vitamin Supplement Intake and Incidence of Colorectal Cancer: A Meta-Analysis of Cohort Studies," *Medical Oncology* 32 (2015): 434.
- 55. X. Li, S. Wu, and Y. Yu, "Aspirin Use and the Incidence of Hepatocellular Carcinoma in Patients With Hepatitis B Virus or Hepatitis C Virus Infection: A Meta-Analysis of Cohort Studies," *Frontiers in Medicine* 7 (2020): 569759, https://doi.org/10.3389/fmed.2020.569759.

- 56. N. A. Terrault and T. I. Hassanein, "Management of the Patient With SVR," *Journal of Hepatology* 65 (2016): S120–S129.
- 57. K. Kozbial, S. Moser, R. Schwarzer, et al., "Unexpected High Incidence of Hepatocellular Carcinoma in Cirrhotic Patients With Sustained Virologic Response Following Interferon-Free Direct-Acting Antiviral Treatment," *Journal of Hepatology* 65 (2016): 856–858.
- 58. F. Conti, F. Buonfiglioli, A. Scuteri, et al., "Early Occurrence and Recurrence of Hepatocellular Carcinoma in HCV-Related Cirrhosis Treated With Direct-Acting Antivirals," *Journal of Hepatology* 65 (2016): 727–733.
- 59. S. M. Rutledge, H. Zheng, D. K. Li, and R. T. Chung, "No Evidence for Higher Rates of Hepatocellular Carcinoma After Direct-Acting Antiviral Treatment: A Meta-Analysis," *Hepatoma Research* 5 (2019): 31, https://doi.org/10.20517/2394-5079.2019.19.
- 60. G. Wang and Z. Duan, "Guidelines for Prevention and Treatment of Chronic Hepatitis B," *Journal of Clinical and Translational Hepatology* 9 (2021): 769–791.
- 61. A. T. Chan, S. Ogino, and C. S. Fuchs, "Aspirin Use and Survival After Diagnosis of Colorectal Cancer," *JAMA* 302 (2009): 649–658.
- 62. A. T. Chan, S. Ogino, and C. S. Fuchs, "Aspirin and the Risk of Colorectal Cancer in Relation to the Expression of COX-2," *New England Journal of Medicine* 356 (2007): 2131–2142.
- 63. J. M. Guirguis-Blake, C. V. Evans, L. A. Perdue, S. I. Bean, and C. A. Senger, "Aspirin Use to Prevent Cardiovascular Disease and Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force," *JAMA* 327 (2022): 1585–1597.
- 64. US Preventive Services Task Force Recommendation Statement, "US Preventive Services Task Force Aspirin Use to Prevent Cardiovascular Disease," *JAMA* 327 (2022): 1577–1584.
- 65. S. K. Veettil, S. T. Kew, K. G. Lim, et al., "Very-Low-Dose Aspirin and Surveillance Colonoscopy Is Cost-Effective in Secondary Prevention of Colorectal Cancer in Individuals With Advanced Adenomas: Network Meta-Analysis and Cost-Effectiveness Analysis," *BMC Gastroenterology* 21 (2021): 130.
- 66. T. G. Simon, A. S. Duberg, S. Aleman, R. T. Chung, A. T. Chan, and J. F. Ludvigsson, "Association of Aspirin With Hepatocellular Carcinoma and Liver-Related Mortality," *New England Journal of Medicine* 382 (2020): 1018–1028.
- 67. A. Khalifa and D. C. Rockey, "Lower Gastrointestinal Bleeding in Patients With Cirrhosis Etiology and Outcomes," *American Journal of the Medical Sciences* 359 (2020): 206–211.
- 68. T.-Y. Lee, Y. C. Hsu, H. C. Tseng, et al., "Association of Daily Aspirin Therapy With Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis B," *JAMA Internal Medicine* 179 (2019): 633–640.
- 69. X. Qiu, F. Gao, K. Wang, Z. Zhang, C. Shao, and X. Xu, "Aspirin in Hepatocellular Carcinoma: Is It an Out-Of-Date or Promising Treatment?,"  $iLIVER\,1$ , no. 1 (2022): 55–64, https://doi.org/10.1016/j.iliver.2022.03.003.
- 70. R. Niikura, Y. Hirata, Y. Hayakawa, T. Kawahara, A. Yamada, and K. Koike, "Effect of Aspirin Use on Gastric Cancer Incidence and Survival: A Systematic Review and Meta-Analysis," *JGH Open* 4, no. 2 (2019): 117–125, https://doi.org/10.1002/jgh3.12226.
- 71. Y.-P. Zhang, Y.-D. Wan, Y.-L. Sun, J. Li, and R.-T. Zhu, "Aspirin Might Reduce the Incidence of Pancreatic Cancer: A Meta-Analysis of Observational Studies," *Scientific Reports* 5 (2015): 15460.
- 72. C. Bosetti, V. Rosato, S. Gallus, J. Cuzick, and C. La Vecchia, "Aspirin and Cancer Risk: A Quantitative Review to 2011," *Annals of Oncology* 23 (2012): 1403–1415.
- 73. A. T. Chan, "Metformin for Cancer Prevention: A Reason for Optimism," *Lancet Oncology* 17 (2016): 407–409.
- 74. X. Sui, Y. Xu, X. Wang, W. Han, H. Pan, and M. Xiao, "Metformin: A Novel but Controversial Drug in Cancer Prevention and Treatment," *Molecular Pharmaceutics* 12 (2015): 3783–3791.

- 75. M. N. Pollak, "Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning," *Cancer Discovery* 2 (2012): 778–790.
- 76. T. Higurashi, K. Hosono, H. Takahashi, et al., "Metformin for Chemoprevention of Metachronous Colorectal Adenoma or Polyps in Post-Polypectomy Patients Without Diabetes: A Multicentre Double-Blind, Placebo-Controlled, Randomised Phase 3 Trial," *Lancet Oncology* 17 (2016): 475–483.
- 77. H. Yu, X. Zhong, P. Gao, et al., "The Potential Effect of Metformin on Cancer: An Umbrella Review," *Frontiers in Endocrinology (Lausanne)* 10 (2019): 617.
- 78. Y. Shuai, C. Li, and X. Zhou, "The Effect of Metformin on Gastric Cancer in Patients With Type 2 Diabetes: A Systematic Review and Meta-Analysis," *Clinical & Translational Oncology* 22 (2020): 1580–1590.
- 79. S. Singh, P. P. Singh, A. G. Singh, et al., "Anti-Diabetic Medications and Risk of Pancreatic Cancer in Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis," *American Journal of Gastroenterology* 108 (2013): 510–519.
- 80. J. Zhang, S. Fu, D. Liu, Y. Wang, and Y. Tan, "Statin Can Reduce the Risk of Hepatocellular Carcinoma Among Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis," *European Journal of Gastroenterology & Hepatology* 35 (2023): 353–358.
- 81. T. H. Tran, S.-K. Myung, and T. T. K. Trinh, "Proton Pump Inhibitors and Risk of Gastrointestinal Cancer: A Meta-Analysis of Cohort Studies," *Oncology Letters* 27, no. 1 (2023): 28, https://doi.org/10.3892/ol.2023. 14161.

### **Supporting Information**

Additional supporting information can be found online in the Supporting Information section.