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Citation: Ercan, İ.; Sütgöl, Z.D.;

Özhan, F.O. Physical Limitations on

Fundamental Efficiency of SET-Based

Brownian Circuits. Entropy 2021, 23,

406. https://doi.org/10.3390/

e23040406

Academic Editor: Tomasz Kapitaniak

Received: 31 January 2021

Accepted: 24 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
2 Electrical and Electronics Engineering Department, Boğaziçi University, İstanbul 34342, Turkey;
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Abstract: Brownian circuits are based on a novel computing approach that exploits quantum
fluctuations to increase the efficiency of information processing in nanoelectronic paradigms. This
emerging architecture is based on Brownian cellular automata, where signals propagate randomly,
driven by local transition rules, and can be made to be computationally universal. The design aims to
efficiently and reliably perform primitive logic operations in the presence of noise and fluctuations;
therefore, a Single Electron Transistor (SET) device is proposed to be the most appropriate technology-
base to realize these circuits, as it supports the representation of signals that are token-based and
subject to fluctuations due to the underlying tunneling mechanism of electric charge. In this paper,
we study the physical limitations on the energy efficiency of the Single-Electron Transistor (SET)-
based Brownian circuit elements proposed by Peper et al. using SIMON 2.0 simulations. We
also present a novel two-bit sort circuit designed using Brownian circuit primitives, and illustrate
how circuit parameters and temperature affect the fundamental energy-efficiency limitations of
SET-based realizations. The fundamental lower bounds are obtained using a physical-information-
theoretic approach under idealized conditions and are compared against SIMON 2.0 simulations.
Our results illustrate the advantages of Brownian circuits and the physical limitations imposed on
their SET-realizations.

Keywords: Brownian circuits; SET transistors; fundamental bounds

1. Introduction

The design of future computers focuses on minimizing fluctuations, as they are per-
ceived as an impediment to be avoided at any cost. A wide range of computing proposals
are presented which utilize noise for increased performance efficiency in computing [1–7].
Among these novel approaches, an emerging paradigm stands out as it implements Brow-
nian motion in electronic circuit architectures that can exploit fluctuations to reduce energy
dissipation in computing [8–10]. Brownian circuit technology is designed to efficiently and
reliably perform primitive logic operations in the presence of noise and fluctuations, and
Single-Electron Transistor (SET) technology is proposed as an appropriate technology-base
to realize these circuits, as it has been studied extensively and meets the conditions needed
to process token-based signals that are subject to fluctuations [9]. Other technology bases,
such as nanophotonics or skyrmions, are proposed as suitable alternatives [11]. The foun-
dations of Brownian circuits, along with their potential realization via SET technology, is
studied in a wider context in the existing literature. However, the efficiency limitations of
this technology proposal and its performance against existing paradigms has still not been
completely revealed.

There is an ongoing effort to assess the fundamental limitations of novel circuit
paradigms, to help assess upcoming trends in the future of computing [12–26]. Recent
experiments show that we can obtain energy dissipation in the kBT-level [27]. However, in
order to calculate the fundamental efficiency limitations of emerging computing paradigms,
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we need foundational approaches that allow for the incorporation of intricate details of the
circuit operation and physical structure. There is an attempt to treat nanoelectronic circuits
using a physical-information-theoretic framework, where the circuit and its surroundings
are treated as composite quantum systems. These analyses provide us with fundamental
lower bounds on the performance efficiency of post-CMOS technologies.

The fundamental lower bounds of a given technology-base allow us to obtain best-case
scenarios of performance projections based on the underlying computing strategy by taking
the inefficiencies that are imposed by the nature of computing paradigms into account. In
our earlier work, we laid out the foundations of a methodology to obtain fundamental
efficiency limits for complex computing structures and calculated the fundamental lower
bounds on energy dissipation at the circuit level for non-transistor-based [15,16], transistor-
based nanoelectronic technology proposals [17], and optical microring resonator-based
logic circuits [24,25], as well as at the nanoprocessor level [18,26]. The approach has also
been implemented in finite-state machines [19]. Such a methodology, providing paradigm-
dependent fundamental energy dissipation bounds, is a powerful tool, which can be used
to obtain performance projections of post-CMOS devices and provide valuable insight into
the upcoming challenges in emerging technologies [20,28,29]. Earlier applications of our
methodology consist of the study of fundamental limitations of emerging nanoelectronic
technologies with low energy dissipation, including a Brownian half adder designed by
Peper et al. in [23] under idealized conditions.

In this paper, we study physical conditions that affect the efficiency of Brownian
circuits and discuss the parameters for SET-based implementations from a fundamental
point of view. We first provide an overview of SET-based Brownian circuit primitives and
study the physical conditions that affect their efficiency using SIMON 2.0 simulation results.
Then, we present a Brownian two-bit sort circuit design and illustrate the fundamental
lower bounds on energy dissipation associated with information processing in these circuits.
We compare our findings with the simulation results obtained in SIMON 2.0 and show how
the additional effects incorporated in the bound capture the essential functional features of
the circuit further, before concluding with our final remarks.

2. Simulating SET-Based Brownian Circuit Primitives on SIMON 2.0
2.1. Fundamentals

Brownian circuits are proposed by Peper et al. as a novel approach that utilize noise
and fluctuations in the circuit in order to find computational paths through a random
search, and therefore improve the efficiency of information processing. These circuits
represents signals in terms of tokens—positive charges—propagating randomly in the
network. The building blocks of Brownian circuits are Ratchet, Hub and Conservative
Join (CJoin). Token flow in a Ratchet is unidirectional, whereas the transitions in Hub
and CJoin are bidirectional. Figure 1 illustrates the direction of token flow in these circuit
primitives based on the description provided in the literature. As compared to Hub and
CJoin primitives, Ratchet performs asymmetric operation, allowing tokens to flow only
in the forward direction; tokens are not allowed to tunnel backwards, which leads to
deadlocks, a phenomenon commonly seen in conventional token-based circuits. Based on
the functional description of these primitives, for a technology to be suitable for Brownian
circuit implementations, it is necessary for it to support the representation of signals that
are token-based and subject to fluctuations. If these conditions are met, then the universal
logic operations can be obtained based on the transition rules associated with each element,
and hence can be realized as illustrated in the SET transistor application. Further details on
local transition rules used to drive Brownian circuit primitives are provided in [9].
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Figure 1. Brownian circuit primitive Ratchet (top), Hub (left) and CJoin ( right), where the inputs and outputs are designated
based on the token follow direction shown in the figure.

An SET transistor is composed of a conducting island or quantum dot, and two
electrodes known as the drain and the source, connected through tunnel junctions to one
common electrode with a low capacitance, the island. The electrical potential of the island
can be controlled by a third electrode,the gate, which is capacitively coupled to the island.
Since electron tunneling is a quantum mechanical process, the wave function of an electron
expands over potential barriers of tunneling junctions, and the electron is circulated in
an SET circuit. If this effect was dominant, there would be no controlled charges, and
computations by using localized electrons would not be possible. In order to obtain a
discretized charge of an electron on each island, the tunneling junctions should have a high
tunneling resistance. Moreover, the charging energy (Coulomb energy) must dominate
over the quantum fluctuations. This condition can be expressed as [9]

(q2
e /2Cj).Rj.Cj >> h => Rj >> h/q2

e = 25.8 kΩ

h is the Planck’s constant, Cj is the tunneling capacitance, and Rj is the tunneling resistance.
Thus, the resistance of all the tunneling junctions in recent studies is taken as 100 kΩ [9].
Another condition which has to be considered is the thermal energy. If the thermal energy
is greater than the Coulomb energy in an SET circuit, Ec, the quantum tunneling effects
become ineffective. The condition can be expressed as

Ec = q2
e /2C >> kBT

kB is Boltzmann’s constant and T is the temperature. In order to realize Brownian circuits
in SET transistors, we need to use the token-based character of electrons by making the
tunneling resistance and capacitance values convenient with these conditions.

The circuit parameters for the SET implementation of Brownian circuit primitives are
optimized for operation at T = 1 K in [30]. In an effort to understand the impact of physical
circuit parameters on the operation of these primitives, we studied each circuit element
under varying temperatures. We used SIMON 2.0 to illustrate the circuit behaviour for
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different parameters. There are three fundamental approaches to the simulation of single-
electron circuits: the Monte Carlo method, SPICE macromodeling and solving Master
Equation [31,32]. SIMON 2.0 is a single-electron tunnelling device and circuit simulator
that is based on a Monte Carlo method. The program provides a transient and stationary
simulation of SET-based circuits consisting of tunnelling junctions, capacitors, and voltage
sources. SIMON 2.0 has a graphical user interface and a circuit editor. It is mostly used to
understand the behavior of the Coulomb blockade and SET oscillations. Below, we present
the SIMON 2.0 simulation results obtained for Brownian circuit primitives.

2.2. Brownian Ratchet

Brownian Ratchet is a deterministic circuit primitive and the simplest building block
of Brownian circuits. It is also linked to the Maxwell’s demon since it enables deterministic
computation by indeterministic means, as illustrated by Serreli et al. [33]. SET implementa-
tion of a racthet circuit primitive is similar to that of a single SET structure with a different
capacitative coupling value. The source and drain, included in Ratchet, are capacitatively
coupled to electrodes. Thus, source and drain potentials can be controlled, just like the
island. The deterministic nature of the Ratchet distinguishes it from other circuit primitives
as its operation does not involve Brownian search. Brownian search is a random process
and included in other two building blocks, Hub and CJoin, which significantly affects
the stability of these circuit primitives in high temperatures. The simulations involving
Hub and CJoin circuit elements involve Brownian search and are therefore probabilistic
in nature.

In an effort to study the impact of temperature on Ratchet’s behaviour, we illustrated
the tunneling pattern for different junction capacitances at varying temperatures, as shown
in Figure 2. At V2 = 30 mV, we change the junction capacitance from J1 = J2 = 10−17 F
(black line), to J1 = J2 = 10−18 F (red line). For J1 = J2 = 10−18 F, the maximum
temperature of the Ratchet can function can reach 8.125 K as desired. Increasing the
junction capacitances, however, also has an impact on the circuit stability.

(a) (b)

Figure 2. Tunneling behaviour of a Brownian Ratchet at T = 4 K (a) and 9 K (b) for J1 = J2 = 10−17 F (black line), to
J1 = J2 = 10−18 F (red line).

The stability plots for SET transistors are obtained in SIMON 2.0 by determining
the regions where Coulomb blockade occurs, as shown in [34,35]. These figures are
often plotted with respect to the gate voltage and bias voltage as shown in Figure 3.
A Brownian Ratchet is simple a SET circuit with additional capacitors on either side, C1
and C3 capacitors. We replicated stability plots for a Brownian racthet in Figure 3 with
the following circuit parameters C1 = C2 = C3 = 3× 10−18 F, J1 = J2 = 3× 10−17 F and
R1 = R2 = 105 Ω, where V1 and V2 correspond to the bias and gate voltage, respectively.
The white diamond shaped regions mark the areas where the Coulomb blockade holds,
referring to the bias values where the number of charges in the island is fixed and no current
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flows. The dark lines designate the values where the number of electrons fluctuate and
the current flows, due to its overcoming the coulomb blockade. The size of the diamond
depends of the ratio between the capacitance values of the junction and the capacitors.

Figure 3. A Brownian Ratchet (left), as depicted in SIMON 2.0, and its stability plot with respect to bias voltage Vb = V1

and gate voltage Vg = V2 (right).

We observed that as temperature increases, the unstable region dominates over the
stable region. However, our simulations on the affect of junction capacitance on Coulomb
blockade regions illustrate that we can choose appropriate circuit parameters at a given
temperature that will accommodate the desired tunneling behaviour for the Brownian
circuits often obtained at the boundary between these regions.

We also observed the affect of temperature on tunneling behaviour. Figure 4 illustrates
the impact of temperature increase on current. Our findings are in line with Figure 9
of [31] presented by Wasshuber et al. The discrete tunneling behaviour seems to be
maintained at relatively higher temperatures; however, given the stability patterns, the
desired Ratchet circuit behaviour is observed to deteriorate above 5K. Therefore, we
restricted our observations to lower temperatures.

We also study the impact of bias voltage on the tunneling events. SIMON 2.0 is a
Monte Carlo based simulator, where the obtained results depend heavily on the number
of events, which include a range of probabilistic scenarios. We set the event number
sufficiently highly, to obtain a consistent picture of the circuit behavior. We can see that,
for a given Ratchet circuit element implemented using SET transistors, for the same bias
voltage, the average timepoint at which tunneling occurs remains fixed; however, the
time interval marked by the first and last tunneling events included in the probabilistic
scenarios of the Monte Carlo simulation increases with temperature. In addition to the
temperature, increasing the bias voltage causes the first tunneling event to occur at an
earlier point in time, i.e., the temperature increases the probability of the tunneling events
taking place at an earlier point in time. These findings confirm that by increasing the bias
voltage, tunneling events may occur at an earlier point in time. This also suggests that, for
higher temperatures, Vbias needs to be increased to avoid prolonged computation times. In
Figure 5, we show the time at which the first tunneling event occurs in a Ratchet element at
different temperatures and bias voltages. We show that the first tunneling event takes place
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at an earlier time point for higher voltages, and this initial tunneling event time occurs
even earlier at higher temperatures.

Figure 4. The change in current as a function of temperature.

Figure 5. The time at which the first tunneling event occurs changes as a function of bias voltage
Vbias and temperature T = 1, 2 and 4 K, for Vgate = Vbias.

In addition to shifting the time of the first tunneling event, increasing the bias voltage
also increases the frequency of tunneling. Furthermore, the bias voltage required for
tunneling to occur is fixed; for instance, for T = 1 K, Vbias is 15 mV and for T = 2 K Vbias is
21 mV. The minimum voltage for a higher tunneling probability increases with temperature
as expected.

2.3. Brownian Hub

The hub circuit primitive is more complex in nature than the Ratchet element, as it
incorporates Brownian search into its operation. When a token arrives at the input port of
the Hub, it fluctuates between the three bidirectional ports, each of which can equally serve
as output nodes, until the token is recognized as an input token by the following module,
connected to the hub in one of the aforementioned ports [9]. The circuit parameters for the
SET implementation of Hub circuit element are optimized for operation at T = 1 K of Hub,
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as given in [30]. Operation of hte Hub physically starts when the input voltage exceeds a
certain value and forces an electron to tunnel away from the first input node, creating a
token. The omission of an electron at the node in question then forces another electron to
tunnel from one of the other nodes to the input node and the token starts fluctuating in this
manner. Figure 6 depicts the schematic of an SET-based Hub circuit. Hub circuit element
can be described as follows: If Va is high, an electron departs from n1 and tunnels through
J2 and J1. Since there is a vacancy on the node n1, the junctions J3, J4 or J5, J6 supply an
electron to node n1, from n2 or n3, respectively. On occasion, once Cs3 reaches a low enough
value, the thermal energy of the electron is enough to overcome the voltage differences and
the electron tunnels back to the node n2 or n3. Thus, the electron randomly jumps from
the node n1 to n2 or n3 and then back to n1. In order to obtained the desired functionality,
the capacitance and resistance values for the tunnel junctions in a Brownian hub are
given in the literature as C1 = C3 = C5 = Cg = Cs1 = 10 aF, C2 = C4 = C6 = 0.1 aF,
Cs2 = 0.5 aF, Cs3 = 0.2 aF, and R1 = R2 = R3 = R4 = R5 = R6 = 100 kΩ, respectively,
and Va = Vs = 16 mV [9].

Figure 6. SET-based Brownian Hub circuit element.

Unlike Ratchet, the default operation of the Hub requires it to remain unstable; there-
fore, stability plots in SIMON 2.0 do not provide any insightful information regarding
its operation. The parameters that mainly control how input token is provided are the
input voltage Va and input capacitance Cs2 values. Our simulations show that, with the
parameters specified in [30], a Brownian search can only be conducted at a temperature
of T = 1 K. The operating temperature increases the values of Va, and/or Cs2 must be
increased for the same behaviour to be replicated at T = 1 K. However, when we increase
the value of the temperature from T = 8 K to T = 9 K, simulations showed that the Hub
is deemed incapable of executing Brownian search regardless of the values of Va and Cs2.
Changing the different capacitance values of the circuit may allow the Hub to operate at
higher temperatures values; however, it remains as an unexplored territory in our research.
Our research concludes that any Brownian circuit containing an SET implementation of the
Hub primitive cannot operate above T = 8 K.
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2.4. Brownian CJoin

The CJoin circuit primitive moves the tokens on its two input lines to the two output
lines in a pairwise manner. Unlike the Ratchet element, the tokens at the output of a
CJoin can move in the reverse direction, making CJoin bidirectional in operation. For two
input tokens to be processed by the CJoin element, they have to arrive simultaneously.
Tokens arriving at the inputs asynchronously are not operated by the CJoin circuit primitive
and may, therefore, fluctuate along the input–output lines. In the literature, CJoins are
designed to operate in unidirectional or bidirectional manner. The original bidirectional
CJoin design in [36] is improved so it can operate unidirectionally, in order to tackle routing
problems and requirements for unrealistically small capacitance values in [30]. CJoins
are used in conjunction with Hubs to obtain Boolean expressions [9]. The existing SET
transistor implementations of the redesigned CJoin are optimized for 1 K temperature. Our
simulations in SIMON 2.0 based on this design have proven to exhibit stable behaviour
up to 6K temperature. Between 0.7 K and 1.5 K temperature, CJoin operates without
charge fluctuations at the output. As the temperature increases, these fluctuations become
dominant, and the net charge values at the output nodes does not reach 1qe, as shown
in Figure 7. An increase in temperature effects CJoin stability, such that, beyond 2.1 K
temperature, the charge is transported to the output lines, even when there is no supply
in the input lines. CJoin operation starts with electron tunneling at the junctions that are
connected to the quantum island in the input. Increasing the input capacitance on this node
pulls the temperature range of CJoin functionality upwards. SIMON 2.0 simulations also
showed that the time delay between two input tokens is decisive for the pairwise behavior
of CJoin. Above a certain time duration, CJoin no longer waits for the second token to
arrive before an already present token is moved to the output line of that branch. This
duration is correlated to the temperature, such that, at 1 K , the input delay can be as long
as 50 miliseconds; while the temperature increases up to 1.5 K , the inputs need to arrive at
the nodes almost simultaneously for the circuit to maintain the CJoin functionality.

Figure 7. Cont.
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Figure 7. Net charge (in Coulombs) at the outputs of a CJoin at T = 1 K, 5 K and 50 K illustrating the
increase in fluctuations with temperature.

3. An Illustrative Example: Brownian Two-Bit Sort

We use the aforementioned Brownian circuit primitives to design a Brownian two-bit
sort. Figure 8 depicts a Brownian two-bit sort constructed from four CJoins, eight Hubs
and twelve Ratchets. The four CJoins (squares) and nearest neighboring Hubs (circles),
along with associated Ratchets (triangles), form a 2× 2 CJoin structure, shown by a small
square box with a cross inside in [9].

The inputs of the two-bit sort are represented by 0s and 1s at the top and the right,
according to dual-rail encoding. As shown in Figure 8 and the associated truth table
in Table 1, each input is presented to the circuit with its complement. The work of the
2× 2 CJoin, i.e., the four CJoins (squares) and nearest neighboring Hubs (circles), along
with associated Ratchets (triangles), is to generate four minterms which will be used by
Hubs to obtain the desired functionality. Hubs combine the minterms and produce outputs.
However, output O1 is produced from the top-right CJoin and output O2 is produced from
the bottom-left CJoin.
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Table 1. The truth table of the Brownian two-bit sort presented in Figure 8 with inputs A, B and
output O, along with their complements.

INPUTS OUTPUTS

A A′ B B′ O1 O′
1 O2 O′

2

1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1

Figure 8. Brownian two-bit sort (left) constructed from four CJoins (squares), eight Hubs (circles) and twelve Ratchets
(triangles) and its Petri net (right).

The circuit elements that are involved in computation vary depending on the input,
i.e., only junctions along the path leading to the associated output are activated, leaving the
junctions that are not on the path to the output inactive. Some of the constituent parts of the
circuit work for each input configuration. When we apply input A = B = 1, four Ratchets,
only the bottom left CJoin and two Hubs are activated to obtain the output O1 = O2 = 1.
A Ratchet has two tunneling junctions, a Hub has six tunneling junctions and a CJoin has
fourteen tunneling junctions [9]. Although the whole circuit has 112 tunneling junctions,
some of them are used in a logic operation.

4. Energy Dissipation Analyses

In our approach, identifying the particle supply cost associated with the processing of
an input has proven to be crucial to accurately determine the lower bound of the energy
dissipated in computation. The bounds obtained using our approach are radically different
than that of Landauer’s [37,38], as our methodology is rooted in quantum dynamics and
thermodynamics [16]. We also introduce a referent system that holds the memory of initial
input that is presented to the information processing artifact during computation. This
fictitious system allows us to identify any logically irreversible loss of information as a
result of computation by calculating the loss of correlation between these two systems, i.e.,
the referent system provides us with a reference of how much information is irreversibly
lost during computation.

Figure 9 depicts the globally closed and isolated universe in which the physical
information processing artifact, i.e., the circuit of interest, and its surrounding subsystems
are situated. This physical abstraction allows us to incorporate all of the interactions that
take place in a complete computational cycle of a single input. This physical abstraction
enables us to assume unitarily evolution via Schrödinger’s equation. However, it is
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important to note that we do not solve the Schrödinger’s equation or define a Hamiltonian
for the system; the state transformations of the density matrix based on the composite
quantum system description shown in Figure 9 allow us to obtain energy and von Neumann
entropy changes in the complete system.

Figure 9. Physical abstraction of the information processing artifact and its surrounding subsystems
situated in a globally closed and isolated universe based on [16].

In addition to the physical abstraction of the computing structure, we also develop
a process abstractions. The referent system, R, is a physical system that keeps track of
the input string and allows us to identify the amount of irreversible information loss
as a result of computation without ambiguity. The separation of the complete universe
into two domains, computational and environmental, also distinguishes this irreversible
loss through the thermalization and resetting of the information-processing artifact via
interaction with the environment. Here, the bath, B, is a heath bath in direct thermal
contact with the artifact and is nominally at temperature T, and the environment includes
reservoirs that “rethermalize” B.

The departure point of our calculations is the fundamental lower bounds on energy
dissipated into the bath as a result of computation, which are obtained using the gener-
alized L-machine approach for quantum systems, introduced by Anderson in [39]. The
bound given in Equation (66) of [39] is applied to nanoelectronic circuits in [16]. Below, we
expand the bound obtained in [16] and incorporate the effect of non-idealized circuit oper-
ation in SET, such as inelastic cotunneling through junctions, which leads to unavoidable
energy change.

4.1. Fundamental Bounds

The density matrix evolution of the composite quantum system representing the
circuit and its surroundings depends both on physical- and logic-state changes. In order
to accurately evaluate this evolution, we study the dynamics of information and identify
steps of computation that lead to a change in either physical- and logic-states of any of
the subsystems. In our previous work [16], we show that, for a given class of dynamically
clocked circuits, a complete computational cycle of processing a given ηth input may span
across more than one clock cycle. For such transistor-based circuits, if each logic-state
change corresponds to a distinct change in the physical system, i.e., if there is one-to-one
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mapping between the physical- and logic-state evolution, and if we can obtain the reduced
density matrices, then we can obtain the expected energy of the bath B during a given
computational step k as

∆
〈

EB
〉

k
≥ −kBT ln(2)×

(
∆IRηTk +

〈
∆STk

i

〉
+
〈

∆SSi
〉

k
+
〈

∆SDi
〉

k

)
where IRηTk is the amount of information erasure due to irreversible loss of correlation
between the ηth input referent, Rη , and the part of the transistor network that is active

during the kth computational step;
〈

∆STk
i

〉
is the expected entropy change in the associated

part of the transistor network;
〈
∆SSi

〉
k and

〈
∆SDi

〉
k are the expected entropy changes in

source, S , and drain D, associated with the given input.
In earlier circuits we analyzed, such as NASICs, under idealized conditions, the term〈

∆STk
i

〉
does not contribute to the fundamental lower bounds as we do not include any

imperfection in the circuit operation. The transport of the electron from Source, S , to Drain,
D, captures the essential functional features of computation in such circuits. In order to
obtain fundamental lower bounds that are technologically relevant, we incorporate non-
idealized interactions. It is important to note here that the Brownian circuits work without a
clocking scheme, i.e., the analysis presented here differs from our previous work, given the
asynchronous nature of the paradigm. Here, we calculate the fundamental bounds based
on the difference between post-computation (final) and pre-computation (initial) states,
and therefore cannot capture additional dissipation that occurs during intermediate steps.
Our aim is to study the physical and computational characteristics of SET implementation
of Brownian circuits on an equal footing. Therefore, our approach varies significantly from
pure thermodynamic analyses of Brownian computation such as the one developed by
Strasberg [40] using the stochastic Turing machine approach.

4.2. Free Energy Calculations

In order to determine the factors that play a key role in the performance of Brownian
circuits, we use SET theory [31,32,35] and calculate free energy change and transition rate
of electron tunneling, respectively, as

∆F = −q(|Vj| −Vc) (1)

Γ(∆F) = ∆F/q2R[e∆F/kBT − 1] (2)

where q is electric charge, Vj and Vc are junction and critical voltage, respectively, R is
junction resistance, kB is Boltzmann constant, T is temperature. Based on these equations,
we calculated the free energy change in the circuit as a result of each tunneling event for
all four inputs combinations. In addition to the theoretical calculations, we also used the
interactive analysis on SIMON 2.0, as shown in Figure 10. A comparison between our
theoretical and simulation results is laid out on Table 2.

Table 2. Input dependence of tunneling events and associated free energy values for the SET-based
Brownian two-bit sort circuit.

IN # of Tunneling ∆Ftheory ∆Fsimulation ∆Einter
Events (meV) (meV) (meV)

00 22 51.49 10.76 40.73
01 26 69.73 −1.25 70.98
10 22 52.06 5.53 46.53
11 22 51.78 −1.97 53.75

Average 23 56.27 3.27 53.00
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Figure 10. Interactive analysis results from SIMON 2.0 of the Brownian Two-Bit Sort Circuit for all four inputs as a function
of each tunneling event required to process for input-00 (top left), -01 (top right), -10 (bottom left), -11 (bottom right).

The theoretical results for the change in free energy as a result of the computation of
a single input, ∆Ftheory, is obtained by considering every single tunneling event for that
input. The change in free energy for a given input, as simulated in the interactive analysis,
∆Fsimulation, is obtained by taking the difference between the final and initial free energy
values. As depicted in Figure 10, the interactive analyses show the free energy value at
a given tunneling step required to perform computation. Figure 10 shows that the inter-
mediate changes in free energy are much higher than the free energy difference between
the final and initial steps for a given input. This suggests that the random fluctuations
add to the energy cost of computation, hinting at the difficulty of capturing dissipation
involved in asynchronous paradigms. The right-most column of Table 2 represents the
energy change as a result of the intermediate steps, ∆Einter that take place during this
asynchronous computation. It is important to note that, at T = 0 K, tunneling events that
lead to a decrease in free energy ∆F ≤ 0 are allowed; therefore, we see that, for certain
inputs, the simulations give us negative values. Our simulations confirm that the free
energy increases during tunneling events where the tokens need to overcome a Coulomb
blockade. Our analyses show that, with increasing temperature, the free energy increase
reduces, since thermal energy provides some additional energy to tokens.

The comprehensive analyses we perform here combine the fundamental lower bounds
introduced above with the theoretical free energy calculations, as well as the interactive
analysis on SIMON 2.0. In our earlier work [23], we only focused on the lower bound
of the energy required to perform computation based on the charge transport involved
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in token displacement and the thermodynamic cost of irreversible information erasure.
However, in this study, we show that, due to the asynchronous nature of computation
of Brownian circuits, the intermediate steps add to the cost of the unavoidable energy re-
quired to perform computation. Using a physical-information-theoretic approach proposed
in [23,39], a generalized form of the fundamental lower bound on the energy dissipated
during a complete cycle of a Brownian circuit is proposed as

∆E ≥ kBT ln 2∆I + f qVDD∆N + ∆Einterm (3)

where f is a fraction of the energy required to transport ∆N many tokens with the applied
bias to perform the computation. In order to obtain numerical values for this bound, we
can take the drain voltage as VDD = 16 mV, the amount of tokens carrying a given input
as ∆N = 2 and the information irreversibly lost as ∆I = 1 for the two-bit sort circuit,
on average, for all possible input transition scenarios calculated similarly to that of [23].
Therefore, at T = 1 K, the first term in the RHS corresponding to the thermodynamic cost of
information erasure is ∼ 86µeV, whereas the particle supply costs in the 32 meV (for f = 1)
and the energy dissipated in the intermediate steps, ∆Einterm, is, on average, for all inputs,
∼ 53 meV; indicating that SET-based Brownian circuits cannot inherently allow us to reach
kBT ln(2)-level dissipation, despite the reversibility inherent in its circuit primitives and
randomness embedded in the workings of this computational approach.

5. Conclusions

Fluctuations are seen as an impediment to be avoided at any cost in future computers;
however, the design of Brownian circuits exploit fluctuations. Actively searching through
the state space, Brownian circuits can efficiently and reliably perform primitive logic
operations in the presence of noise and fluctuations. Brownian circuit design proposes a
decreased complexity for circuit primitives and topologies. As compared to earlier versions
of Brownian Cellular Automata, recent designs enable the use of added circuitry to avoid
the deadlocks common in conventional token-based circuits.

In the literature, SET-based Brownian cirucits are studied only for T = 1 K temperature.
Here, we perform physical analyses that illustrate the extreme temperature sensitivity of
the Brownian circuit primitives. The Hub and CJoin elements use Brownian search in
their function and can operate at higher temperatures with suitable device parameters.
However, Ratchet’s unidirectional (irreversible) characteristic restricts its operation to
low temperatures. Therefore, as Ratchet is necessary for obtaining accurate outputs and
speeding up the circuits, our study shows that it is the key element in determining the
temperature range within which a Brownian circuit can operate.

The particle supply cost dominates the fundamental lower bound in transistor-based
circuits in general, far exceeding the cost of the irreversible logic operations. At cryogenic
temperatures, kBT ln(2) becomes negligible. Implementations based on SET technology
promise lower fundamental limits compared to other transistor-based circuits; however,
this technology-base is restricted to low-temperature operations for Brownian circuits.
Furthermore, the area required for Brownian circuits is small, despite the dual-rail encoding;
however, the time required for computation is long. Therefore, power dissipation may be
relatively high.

The manufacturing techniques proposed for SET technology allow aggressive scaling,
which can mean higher performance, density, and power efficiency that can go far beyond
the performance of CMOS technology. Employing an approach that incorporates physical
interactions embedded in asynchoronous circuit operation is the key in revealing tighter
fundamental bounds, as illustrated in contributions by inelastic tunneling events. In
short, despite the reversibility and randomness embedded in Brownian circuits, our results
indicate that we cannot reach kBT ln(2)-level dissipation in SET-based implementations of
Brownian circuits.
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would like to thank Anıl Çağatay for his generous support in preparing Figure 9, and to former
students Enes Suyabatmaz, Veysel Cemil Çolak and Ege Eren for their contribution to the preliminary
part of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Korkmaz, P.; Akgul, B.E.S.; Palem, K.V. Ultra-low energy computing with noise: Energy performance probability. In Proceedings

of the IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures (ISVLSI’06), San Diego, CA,
USA, 7–11 June 2004.

2. Murali, K.; Sinha, S.; Ditto, W.L.; Bulsara, A.R. Reliable logic circuit elements that exploit nonlinearity in the presence of a noise
floor. Phys. Rev. Lett. 2009, 102, 104101. [CrossRef]

3. Worschech, L.; Hartmann, F.; Kim, T.Y.; Höfling, S.; Kamp, M.; Forchel, A.; Ahopelto, J.; Neri, I.; Dari, A.; Gammaitoni, L.
Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode. Appl. Phys. Lett. 2010, 96, 042112.
[CrossRef]

4. Guerra, D.N.; Bulsara, A.R.; Ditto, W.L.; Sinha, S.; Murali, K.; Mohanty, P. A Noise-Assisted Reprogrammable Nanomechanical
Logic Gate. Nano Lett. 2010, 10, 1168–1171. [CrossRef]

5. Dari, A.; Kia, B.; Bulsara, A.; Ditto, W.L. Logical stochastic resonance with correlated internal and external noises in a synthetic
biological logic block. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 047521. [CrossRef] [PubMed]

6. Duan, L.M.; Raussendorf, R. Efficient Quantum Computation with Probabilistic Quantum Gates. Phys. Rev. Lett. 2005, 95, 080503.
[CrossRef] [PubMed]

7. Aharonov, D.; Kitaev, A.; Preskill, J. Fault-Tolerant Quantum Computation with Long-Range Correlated Noise. Phys. Rev. Lett.
2006, 96, 050504. [CrossRef] [PubMed]

8. Peper, F.; Lee, J.; Carmona, J.; Cortadella, J.; Morita, K. Brownian Circuits: Fundamentals. ACM J. Emerg. Technol. Comput. Syst.
2013, 9, 3. [CrossRef]

9. Lee, J.; Peper, F.; Cotofana, S.D.; Naruse, M.; Ohtsu, M.; Kawazoe, T.; Takashi, Y.; Shimokawa, T.; Kish, L.; Kubota, T. Brownian
circuits: Designs. Int. J. Unconv. Comput. 2016, 12, 341.

10. Peper, F.; Lee, J. On Non-polar Token-Pass Brownian Circuits. In Reversibility and Universality. Emergence, Complexity and
Computation; Adamatzky, A., Ed.; Springer: Cham, Switzerland, 2018; Volume 30.

11. Jibiki, Y.; Goto, M.; Tamura, E.; Cho, J.; Miki, S.; Ishikawa, R.; Suzuki, Y. Skyrmion brownian circuit implemented in continuous
ferromagnetic thin film. Appl. Phys. Lett. 2020, 117, 082402. [CrossRef]

12. Anderson, N.G. Information as a Physical Quantity. Inf. Sci. 2017, 397, 415–416. [CrossRef]
13. Natori, K.; Sano, N. Scaling limit of digital circuits due to thermal noise. J. Appl. Phys. 1998, 83, 5019–5024. [CrossRef]
14. Gammaitoni, L. Noise limited computational speed. Appl. Phys. Lett. 2007, 91, 224104. [CrossRef]
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