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Introduction
In the past two decades, advancements in cytometry technolo-
gies give us unprecedented opportunity to characterize cell 
populations by surface and intracellular protein markers at the 
single-cell level. As flow cytometry continues to rapidly expand 
in system biology and medicine, it plays a role as a significant 
tool at all levels of drug discovery, translational, and clinical 
medicine.1

Considering the increasing dimensionality of datasets, tradi-
tional manual gating of multi-parameter flow cytometry data is 
tedious and resource-demanding. In addition, manual gating can 
be subjective and time-prohibitive for a large amount of high-
throughput data that is characteristic in a clinical setting.2,3

In response to these issues, FlowCAP projects took the ini-
tiative to advance the development of computational methods 
for identification of cell populations and sample classification. 
A number of computational methods have been proposed to 
tackle these challenges and show that the level of computa-
tional analysis is matured for reliable use in data analysis.4

A series of software packages for automatic analysis imple-
mented with different algorithms such as dimensionality 
reduction,5,6 mixture model-based clustering,7-9 artificial neu-
ral network,10 density-based clustering,11,12 and various novel 
algorithms12-14 have been published and expected to be widely 
used in the flow cytometry research community. For example, 
viSNE maps high-dimensional, single-cell data to lower 
dimension, typically two-dimensional (2D) plots, with the 
maintenance of data integrity. Non-Gaussian models such as 

t-distribution and generalized t-distribution were adopted in 
flowClust and FLAME (FLow analysis with Automated 
Multivariate Estimation) to cluster cell populations automati-
cally. FlowSOM equipped with a self-organizing map algo-
rithm demonstrated superior performance with faster runtimes 
on test dataset compared with several methods.15 The current 
trend in data analysis software is shifted to automated popula-
tion identification from multidimensional data using machine 
learning and statistical models.16-22 However, for clinical diag-
nostics, manual gating analysis is widely preferred and there are 
few published reports that apply automated gating on clinical 
data in large-scale studies. Gating rare cell populations with 
low cell counts is heavily dependent on Fluorescence Minus 
One (FMO) controls which contain all the fluorophores except 
for the one of negative controls.

In this article, we describe an automated gating pipeline, 
built using a number of open-source packages to extract all 
negative controls from FMO controls and apply these to fully 
stained samples to mimic manual gating process. We have ana-
lyzed 1698 samples of a T cell effector/memory panel and 1908 
samples of regulatory T cell panel and evaluated the perfor-
mance of automated gating analysis by comparison to standard 
manual gating analysis. Our primary goal is not to propose new 
clustering algorithms or novel automated gating algorithms. 
Instead, we demonstrate that the fast and reproducible auto-
matic gating analysis of multi-parameter flow cytometry data 
can be reliably accomplished by open-source packages with 
additional monitoring steps in a workflow.
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Materials and Methods
Panel information, sample staining, and acquisition

Two 12-color panels were developed and validated for clinical 
use and evaluated in this study: A T effector/memory panel 
including CD45, CD3, CD4, CD8, CD27, CD45RA, CCR7, 
PD1, HLA-DR, CTLA-4, CD38, and Ki67 and a regulatory 
T cell including CD45, CD3, CD4, CD25, CD127, CCR4, 
CD45RA, HLA-DR, CD39, ICOS, PD1, and CTLA-4. 
Fluorescence Minus One controls were set up for continuous 
expression markers such as PD1, HLA-DR, CTLA-4, and 
ICOS. Blood samples were collected in Streck Cyto-Chex 
BCT tubes, then stained for the above two panels, as described 
in our previous publication.23 A Beckman Coulter’s CytoFLEX 
S flow cytometer was used to acquire data from stained sam-
ples. The performance of each instrument is regularly moni-
tored by beads to minimize the technical variation of samples. 
We collected each fully stained sample with more than 10 
FMO samples in a same well to prevent technical variations.

Central manual gating

Manual gating was carried out with FlowJo version 10.2. For 
the T effector/memory panel, first, CD45+ leucocytes were 
gated based on CD45+ area versus side scatter area. After cell 
doublets were excluded using forward scatter area versus for-
ward scatter width, CD3+ cells were gated, and then divided 
into CD3+CD4+ and CD3+CD8+ cells. For either 
CD3+CD4+ or CD3+CD8+ cells, CCR7 and CD45RA 
were used to further divide them into four subsets: naïve (N; 
CD45RA+CCR7+), central memory (CM; CD45RA 
−CCR7+), effector memory (EM; CD45RA−CCR7−), and 
terminally differentiated effector memory CD45RA 
+ (TEMRA; CD45RA+CCR7−). Continuous expression 
markers such as PD1, HLA-DR, and CTLA-4 were gated 

based on 0.5% of their respective FMOs for each subset. For 
the regulatory T cell panel, similar approach was used to define 
CD4+ cells. Then, Treg populations were gated as 
CD25highCD127low from CD4+ cells. CD39, HLA-DR, 
CCR4, and CD45RA were used to further define the Treg 
populations. Again, “0.5% rule” was applied when continuous 
expression markers PD1, CTLA4, and ICOS were gated. All 
the defined reportable results were exported to comma- 
separated values (csv) files by FlowJo. All personnel performing 
manual gating were trained to follow standard guidelines and 
met appropriate requirements to be considered qualified. In 
addition, all manual gating was reviewed by an additional team 
member to verify the results.

Automated gating

The automated gating pipeline was built with multiple open-
source packages and in-house post-processing modules (Figure 1).

Flow Cytometry Standard (FCS) files were transformed by 
bi-exponential function and compensated by a spillover matrix 
by an R package, flowCore.

Pre-defined hierarchical gating strategies were implemented 
in OpenCyto gating templates24 where gating populations, 
gating methods, and parameters were declared. Generally, one-
dimensional (1D) gating for FMO controls was done by the 
estimation of probability density function, followed by deter-
mining a cut-off point based on slopes. Those cut-off points 
for 1D gating from FMO controls were transferred to fully 
stained samples for population gating. To adopt the “0.5% rule” 
from our central manual gating, “adjust” and “tolerance” param-
eters of density function (R base) were tuned.

Two-dimensional gating for CD3+ populations in both T 
effector/memory panel and the regulatory T cell panel and for 
Treg populations in the regulatory T cell panel was carried out 
by flowClust.9

Figure 1.  Schematic diagram of automated gating pipeline. The gating pipeline was composed of open-source packages with some customized 

modifications. Two gating templates, one for FMO and the other for fully stained sample, were prepared for hierarchical gating. Gating results including 

tables and PDF layout were repackaged as a FlowJo wsp file.
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flowClust was used to gate CD3+ and Treg populations 
with pre-calculated parameters such as “number of clusters,” 
“mean vector of centroid,” “covariance matrix,” and “degree of 
freedom.” One set of pre-calculated parameters for Treg and 
two sets of parameters for CD3+ populations were obtained.

Two gating templates for OpenCyto were made for each 
panel, one for FMO controls and the other for fully stained 
samples. The gating templates for FMO controls were used to 
extract negative controls for populations, and those negative 
controls were transferred to gate corresponding populations in 
fully stained samples (Figure 2). The cut-off points of the neg-
ative controls were determined by “tolerance” parameter applied 
on the slopes of probability density functions. The quality con-
trol of automated gating results was done by applying two fil-
ters. Since most populations were gated based on FMO 
controls, automated gating results without negative controls 
were flagged as a “failure.”

The second filter was applied to monitor whether target 
populations were correctly identified by clustering, for example, 
clustering with pre-calculated parameters incorrectly identified 
“CD3+” populations when the coordinates of the “CD3+” 
populations were significantly different from pre-calculated 
cluster centroid coordinates (Supplemental Figure S1). “CD3+” 
populations were incorrectly identified in 10.7% of the T effec-
tor/memory panel (182 out of 1698) and 6.8% of the regulatory 
T cell panel (129 out of 1908). Those CD3+ populations were 
re-gated with another set of pre-calculated parameters.

The automated gating results were reformatted into FlowJo 
(version 10.2) workspace (wsp) files using Perl XML module. 
Additional statistics tables and PDF layouts were also included 
in wsp file by editing FlowJo wsp files with Perl XML module.

Data and statistical analysis

The coefficient of variation (CV) of a cell population was cal-
culated to show the robustness of gating methods. The R pack-
age, boot, (version 3.2.2) was used to perform bootstrapping 

procedures with replications of 10 000 to calculate the standard 
error of CV for automated gating and manual gating results. 
The average cell event of a population was calculated from 
automated gating analysis.

Correlation analysis of frequencies of populations from 
automated gating compared with manual gating was per-
formed by an R package, stats. We analyzed the fold changes of 
cell populations in time-course data obtained from manual 
gating and automatic gating. Fold changes of cell populations 
compared with baseline levels were analyzed. Data with more 
than three time-points were used to calculate the similarity by 
cosine similarity scores (R package, lsa).

Results and Discussions
Automated gating strategy

To emulate manual gating process, the automated gating pipe-
line addresses three major points: (a) how to emulate bivariate 
manual gating of populations on two markers (eg Treg popula-
tions and CD3+ populations); (b) how to determine the cut-
off points of negative controls from FMO controls and apply 
them to fully stained samples; and (c) data portability and 
visualization.

Previously published methods such as OpenCyto,24 flow-
Clust,9 flowDensity,16 and FlowSOM10 were tested to opti-
mize the overall performance of the pipeline. We used 
OpenCyto as a main template which allowed users to define 
hierarchical gates with the selection of gating functions. One-
dimensional (1D) gates were performed by gating functions 
provided by OpenCyto such as mindenisty and tailgate (Quad 
gates were a combination of two 1D gates). Clustering by 
FlowSOM based on a self-organizing map could be used to 
mimic manual gating, but did not give exact populations 
defined by pre-defined hierarchical gates, which hindered the 
direct comparison with the manual gating analysis.

The first point was addressed by flowClust (Figure 3). flow-
Clust employed a t-mixture model-based clustering approach 
and needed the number of clusters to initiate the EM algo-
rithm and returned the clusters with centroids and covariance 
matrix. In general, mixture model-based clustering did not 
scale well to large datasets because the EM algorithm was 
computationally expensive. As expected, automatic clustering 
by flowClust was a bottleneck step to process large number of 
cell events. To process our gating strategies for two T cell pan-
els, we needed to run flowClust multiple times for around 10 
FMO control FCS files. Furthermore, flowClust often incor-
rectly detected target populations that were not clearly sepa-
rated from the rest of populations, which entailed fine-tuning 
of flowClust parameters (Figure 3). Therefore, we pre- 
calculated the parameters for multivariate t-distribution with 
“training sets” iteratively, for example, CD3+ populations and 
Treg populations, and provided those parameters to flowClust 
for facilitating the EM algorithm. Generally, for CD3+ popu-
lations in the 2D dimension of SSC and CD3, two sets of 
parameters were obtained. There are outstanding unsupervised 

Figure 2.  Scheme for applying FMO controls to a fully stained sample. 

For example, the cut-off of negative control for “CD3+/CD4+/PD1+” (fully 

stained sample) is obtained from “CD3+/CD4+/PD1+” population in FMO 

without PD1 marker.

https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
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methods for data clustering published10,12 and recently con-
strained clustering is also available,22 but it is unlikely that a 
single method can fit the diversity of samples.

As for the second point, the cut-off points of negative con-
trols from FMO controls were determined by the slopes of 
probability density functions and transferred to the fully stained 
samples. It is generally recommended to adopt the negative 
controls for gating of “rare populations” which are loosely 
defined by low frequencies of populations (as % of parent 
<5).21 Rare populations are often of biological importance, 
and the use of negative controls is critical to identify those 
populations with accuracy compared with the manual gating 
analysis. To extract all negative controls for cell populations, 
the automated gating was applied to all FMO controls to 
determine cut-off points for populations, and those cut-off 
points were saved in temporary holders and subsequently 
applied to fully stained samples (Figure 3; Supplemental Figure 
S2). As probability density functions were estimated by kernel 
density function, it was natural that a smoothing parameter 
needed to be tuned for the rare populations. We found that 
most of rare populations could be estimated well enough by the 
“adjust” parameter in R density function. To determine the cut-
off point, the “tolerance” parameter needed to be set appropri-
ately. For example, OpenCyto sets the default “tolerance” at 
0.01 to gate a shoulder peak population from a main peak 
population. The manual gating analysis using FMO controls 
was carried out. To reduce the technical variability from man-
ual gating, “0.5% rule” is applied for negative gate placement. In 
the automated gating analysis, we use the “tolerance” parameter 
to emulate the manual gating rule of “0.5%.” Different func-
tions such as quantileGate function (OpenCyto) could be used 
to determine the cut-off points, and the gate transfer from 
FMO controls to fully stained samples could be also done by 
other packages such as flowDensity.16

The last important point of the automated gating pipeline 
was an effective method of data portability and the visualiza-
tion of automated gating analysis. The increased complexity of 
data required the visualization of the automated gating analysis 
for data interpretation and for a better communication with 
experimental scientists. Even though CD3+ populations were 
correctly identified by two sets of pre-calculated parameters, it 
is critical to provide visualization tools due to the diversity of 
samples. We generated FlowJo wsp files to contain automatic 
gating results of FMO controls and fully stained samples along 
with additional tables and PDF layout using Perl XML mod-
ule to facilitate quick visual examination of results (Figure 4). 
Currently, there is also an open-source package (CytoML) pro-
viding methods to export automatic analysis to FlowJo wsp 
files, but more customized steps might be necessary for indi-
vidual study.25

Post-process of a large-scale automated gating

Quality control in a large-scale automated gating is crucial in 
both manual analysis and automatic analysis because of high 
diversity of samples.

No single model can fit all data with high variation, and it 
was not feasible to check thousands of automated gating results 
visually for quality control. Therefore, setting QC filters was 
crucial in the automated gating analysis.

In our automatic pipeline, the transference of FMO cut-off 
points to fully stained samples for 1D gates and identification 
of target populations by flowClust for 2D gates were often 
main causes of the discrepancy from the manual gating analy-
sis. Therefore, we applied two filters to flag a “failed” analysis: 
(a) automated gating failed to determine the cut-off points for 
populations from FMO controls mainly due to the poorly 
defined kernel density estimate of cell populations and (b) 

Figure 3.  CD3+ gate by flowClust (normal line), flowClust with prior information (heavy line), and flowDensity (thick line): Three different methods gate 

CD3+ correctly (A) and clustering with prior information is better for weak CD3+ populations than flowClust and flowDensity (B).

https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
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automated gating incorrectly identified target cell populations 
due to the significant coordinate difference of target popula-
tions from pre-calculated parameters. For example, the detec-
tion of CD3+ populations in our panels was dependent on the 
side scatter channel value and the CD3 fluorescence value 
(coordinates). When there were samples with abnormal coor-
dinates due to the diversity of samples, the failed automated 
gating could be detected by monitoring the frequency of 
CD3+ populations (Supplemental Figure S1).

In our panels, around 10% of CD3+ populations with high 
diversity of samples were completely missed and detected by 
the filter (Supplemental Figure S1). Those failed populations 
were gated correctly by applying flowClust with other prior 
parameters.

The design of hierarchical gating strategy was important to 
apply the automated gating to large-scale immunology human 
study. For example, gating strategy where populations with 
high variability were gated by 1D gate rather than 2D gate and 
the selection of appropriate bright fluorophores for rare popu-
lations would make the automated gating analysis more robust 
and reliable.

Performance evaluation of automated gating

The robustness of automated gating was evaluated by comparing 
the CV of manual gating and automated gating of baseline clini-
cal samples (Figure 5). Due to different ways for negative gate 
placement of manual gating (“0.5% rule” based on cell counts) 
and automated gating (“adjust” and “tolerance”), the CV in 

Figure 5 is considered as indirect comparison of two gating 
results, but the CVs of most populations from the automated 
gating analysis were comparable to those from the manual gat-
ing analysis. Generally, the CVs from automated gating were 
similar to those of manual gating for most populations such as 
CD3+, CD4+, and CD8+ as previously reported elsewhere.26,27 
The rare populations typically with low cell counts showed much 
higher CV in the automated gating analysis, implying that either 
probability density functions were not well defined or cut-off 
points were determined differently from those by the manual 
gating analysis. Memory T cells such as CD4 CM/EM and 
CD8 CM/EM were known as poorly resolved cell populations 
and were likely to be subjected to individual interpretation.26 In 
our study, automated gating for those memory T cells is compa-
rable to central gating (Supplemental Figure S3). Another nota-
ble observation was made with Treg populations. The Treg 
populations were labeled as reliable populations according to the 
Human ImmunoPhenotyping Consortium (HIPC) panel,27 but 
classified as “poorly resolved” with high CVs due to the lack of 
clear markers and FOXP3 was suggested.26 In our case, the CVs 
of Treg populations from manual gating and clustering by pre-
calculated parameters were comparable as reported in HIPC.

It was known that both automated and manual gating of 
most cell populations with high cell events were in good agree-
ment. In our analysis, automated gating was also in good agree-
ment with manual gating for high event cell populations 
(Figure 6; Supplemental Figure S3). The poorly resolved popu-
lations or rare populations with low cell events often result in 
subjective and non-reproducible gating.

Figure 4.  FlowJo workspace file generated by automated gating pipeline. Automated gating results were packaged into a FlowJo wsp file with all 

information including statistics, gating hierarchy, tables, and PDF layout.

https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
https://journals.sagepub.com/doi/suppl/10.1177/1177932219838851
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As authors in flowLearn21 illustrated an analysis bias per 
center of the manual gating analysis on FlowCAP data, the 
discrepancy between automated gating results and manual 

gating results was expected to be persistent especially for poorly 
resolved populations and rare populations. Thus, it was reason-
able to compare alternative metrics, such as in our case, fold 

Figure 5.  Coefficient of variation from automated and manual gating. X-axis represents cell populations sorted by CV of automated gating. Coefficients 

and standard errors of automated gating and manual gating are shown in cyan bar and orange bar, respectively. The populations are sorted by 

abundance. A total of 72 clinical baseline samples were used.

Figure 6.  Linear regression plots of population frequencies from automated gating (x-axis) and manual gating for (A) CD4+/PD1+ which were gated 

based on FMO (149 samples) and (B) Tregs (CD25, CD127) (211 samples) are shown.
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Figure 7.  Comparison of time-course data. (A) X-axis represents time-points, and Y axis shows the fold change of cell populations in a regulatory T cell 

panel (CD3+/CD4+/Treg/CCR4+). Fold change from the baseline(t0) are plotted in cyan line (manual gating) and orange line (automated gating). (B) The 

similarities of time-point data for cell populations from manual gating and automated gating of a T effector cell panel are measured by cosine similarity score. 

The mean and standard deviation of cosine similarity scores from 44 subjects are plotted. The poorly resolved populations such as “CD45+/singlet/CD3+/

CD8+/CD8 TEMRA” and “CD45+/singlet/CD3+/CD8+/CD8 CD27+CD45RA+” show high similarity scores. (C) The similarity scores for the regulatory T cell 

panel from 30 subjects are plotted. The cell subsets less than 50 cell events and subjects who have less than three time-points are not included.
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changes of populations, to evaluate the automated gating 
analysis.

To determine whether automated gating and manual gating 
were comparable in terms of data interpretation, we analyzed 
the time-course data of multiple data points (at least 3) from 
44 subjects. The fold changes of cell populations to baseline 
level from manual gating and automated gating were compared 
by cosine similarity scores (Figure 7). Even poorly resolved 
populations or rare populations typically with low cell counts 
showed high similarity scores in fold changes (Figure 7B), 
indicating that manual gating and automated gating could 
draw similar interpretation of gated data.

Poorly resolved populations such as “CD8+/CD8 TEMRA” 
and “CD8+/CD8 CD27+CD45RA+” (Supplemental Figure 
S4) showed higher CV in manual gating (Figure 5), clearly 
indicating that automated gating could help reducing subjec-
tive bias of manual gating. In general, as the average cell counts 
for populations decreased, CV showed a gradual increase as 
expected.

The measurable number of markers increases with recent 
advance in instrumentation, and pre-defined hierarchical gat-
ing will play an important role in clinical trials. There are a 
number of elegant unsupervised algorithms and semi- 
supervised methods to analyze multi-parameter cytometry 
data, but we found that it was unlikely to fit all biological sam-
ples with high variations (Figure 3). The gating discrepancies 
of rare populations, especially gated by FMO controls, could 
stem from either incorrect density estimation of cell events in 
automated gating or inconsistent application of “0.5% rule” in 
manual gating. Those discrepancies can be reduced by fine-
tuning parameters with the help of manual gating operators 
(Supplemental Figure S2).

In our study, relatively simple fine-tuning of parameters 
such as “adjust” and “tolerance” and parameters for mixture 
model-based clustering such as “centroids” and “number of 
clusters” allowed us to analyze a large number of clinical data 
with precision comparable to manual gating analysis. However, 
based on our high-throughput analysis of clinical data using 
the automated gating pipeline, we suggest that it should be 
essential to have additional steps to detect outliers stemmed 
from the diversity of samples, for example, monitoring certain 
populations, and also provide visualization tools for quick 
manual examination.

Conclusions
It is impossible to monitor changes in immune profiles of sub-
jects in large-scale ongoing clinical trials with traditional man-
ual data analysis, which necessitated the development of a 
robust alternative computational method. Multi-parameter 
cytometry becomes an essential technique for characterizing 
individual immune traits, and automated gating will be essen-
tial to handle large-scale datasets with comparable precision 
and accuracy to the manual gating with reproducibility. In 

addition, numerous reports on human immune trait variations 
have been published, suggesting non-inheritable factors such 
as the shared environmental factors and microbes were account-
able for immune cell profiles to a larger extent than we 
expected.28-30 Systematic discrepancies for populations, espe-
cially gated by FMO controls, between the manual gating anal-
ysis and the automated gating analysis could be reduced by 
tuning “adjust” or “tolerance” parameters. As authors in flow-
Learn paper clearly showed the variability of the manual gating 
analysis on FlowCAP data, we believed that the reproduction 
of manual gating analysis was not an ultimate metric for evalu-
ation of automated gating analysis. The automated gating anal-
ysis could deliver robust, reproducible, and faster analysis than 
manual gating analysis did. However, fine-tuning of parame-
ters and selection of gate functions were essential due to high 
diversity of samples which also showed the importance of 
proper quality check for the automated gating analysis.

In conclusion, we built automated gating pipeline incorpo-
rating FMO control gating and demonstrated the feasibility of 
robust automated gating to process large-scale datasets with 
reproducibility in comparison with manual gating.
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