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Abstract

Childhood maltreatment (CM) has a long impact on physical and mental health of chil-

dren. However, the neural underpinnings of CM are still unclear. In this study, we

aimed to establish the associations between functional connectome of large-scale

brain networks and influences of CM evaluated through Childhood Trauma Question-

naire (CTQ) at the individual level based on resting-state functional magnetic reso-

nance imaging data of 215 adults. A novel individual functional mapping approach

was employed to identify subject-specific functional networks and functional net-

work connectivities (FNCs). A connectome-based predictive modeling (CPM) was

used to estimate CM total and subscale scores using individual FNCs. The CPM

established with FNCs can well predict CM total scores and subscale scores including

emotion abuse, emotion neglect, physical abuse, physical neglect, and sexual abuse.

These FNCs primarily involve default mode network, fronto-parietal network, visual

network, limbic network, motor network, dorsal and ventral attention networks, and

different networks have distinct contributions to predicting CM and subtypes. More-

over, we found that CM showed age and sex effects on individual functional connec-

tions. Taken together, the present findings revealed that different types of CM are

associated with different atypical neural networks which provide new clues to under-

stand the neurobiological consequences of childhood adversity.
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1 | INTRODUCTION

Childhood maltreatment (CM) is a common public health and social

problem. It has a serious impact on physical and mental health across

life course (Gilbert et al., 2009), including the development of behav-

iour problems, high risk of mental disorders, and abnormal neural

development (Morgan & Gayer-Anderson, 2016). CM not only

increases the risk of developing mental disorders, but also is a major

risk factor for depression (Arseneault et al., 2011; Dannlowski

et al., 2012; Morgan & Gayer-Anderson, 2016; Nelson et al., 2017). In

addition, a previous study found that depressed patients with child-

hood neglect displayed a widespread reduction of functional connec-

tivity strength suggesting CM causing damage to brain functions

(Wang et al., 2014). Although the serious lifelong consequences of

CM have been widely reported, the neural mechanisms underlying the

consequences remain controversial. Delineating the impact of mal-

treatment on the developing brain paves a new way in gaining insight

into how to provide protection and care for the child, as well as

reduce their risk of adult mental disorders.

Emerging evidence suggests that CM experiences alter trajectories

of brain development with impaired structure and function in specific

regions (e.g., frontal-limbic regions and cerebellum), especially with the

abnormal neural circuits involved in threat detection, emotion regulation,

and cognition control (Pang, Zhao, et al., 2022; Teicher et al., 2016). Pre-

vious studies reported that CM was associated with abnormal functional

connectivity (FC) within salience network (SN) and between the default

mode network and SN (Marusak et al., 2015). Individuals with CM

showed increased FC within theory of mind network which was associ-

ated with the severity and type of abuse (Pang, Zhao, et al., 2022;

Pruessner et al., 2019; Stanton et al., 2020). Furthermore, adults with

CM showed increased amygdala connectivity with the hippocampus and

prefrontal cortex during emotion processing (Jedd et al. 2015). It is not

surprising that a large number of brain regions and circuitry are related to

CM due to the diverse influences on the social cognition-emotion pro-

cessing of CM. The documented evidence demonstrated that the brain is

organized as a network (Bullmore & Sporns, 2009; Li et al., 2022; Wang

et al., 2021), which likely better captures the functional reality of brain

activity and provides a promising new avenue for research into complex

systems of disordered function in childhood trauma (Ross et al., 2021). A

recent study used whole-brain functional connectivity and connectome-

based predictive modeling (CPM) to succeed in predicting aggression in

maladaptive childhood (Ibrahim et al., 2021). Thus, whole-brain large-

scale functional network connectivities (FNCs) measurement may pro-

vide more holistic insight into how CM experiences affect functional net-

works' couplings.

The existing FC methods maintain the cross-subject correspon-

dence necessary for group-level analyses while sacrificing subject-

specific variation (Canario et al., 2021). Recent advance in individual

functional network mapping allows for investigating brain-behaviour

relationship at the individual level (Dickie et al., 2018; Wang

et al., 2015). Compared with group-level analyses, individual FC has

better predictive performance for cognitive abilities in healthy individ-

uals (Li et al., 2019; Zhang et al., 2021) or clinical symptoms in psychi-

atric illnesses (Brennan et al., 2019; Wang, Li, et al., 2020). Moreover,

group-level functional networks failed to reflect individual variation in

functional topography, which is hard to characterize the real func-

tional topography of each individual inducing differences in measure

of inter-regional functional connectivity, potentially biasing both infer-

ence and interpretation (Bijsterbosch et al., 2018; Cui et al., 2020; Li

et al., 2019). Recently, using non-negative matrix factorization (NMF)

method (Lee & Seung, 1999), Li et al. (2017) developed a brain decom-

position approach for mapping subject-specific, sparse, non-negative

function networks with high functional coherence. The individual

large-scale functional network mapping approach proposed by Li and

colleagues has been used to establish the associations between indi-

vidual functional topography variations and individual differences in

brain maturity and executive function (Cui et al., 2020). Thus, using

the individual-specific functional mapping may facilitate identifying

functional abnormalities by CM.

In the current study, with resting-state functional magnetic reso-

nance imaging (fMRI) data of 215 healthy adults, seventeen individual

brain functional networks were first delineated using regularized NMF

method and the individual functional connections were obtained

between each pair of individual networks. Then, a data-driven CPM

with relevance vector regression (RVR) was applied to examine the

relationships between individual-level large-scale FNCs and CM expe-

riences. As different types of maltreatment present clinical differences

and likely have different effects on behavior and neurobiology

(Ackerman et al., 1998), thus the effects of different CM subtypes on

large-scale FNCs were further examined. Based on previous findings,

we hypothesized that the CM experience can affect the large-scale

FNCs involved in social cognition and emotion. In addition, the influ-

ences on large-scale FNCs were different based on different subtypes

of early adversity.

2 | MATERIALS AND METHODS

2.1 | Subjects and behavioral assessments

A total of 215 young, healthy, right-handed volunteers (122 female,

age range from 18 to 44, mean age = 25.5, SD of age = 6.3, mean

CM scores = 34.6) without mental disorders were recruited. The

details for all the subjects are shown in Table 1. All subjects were
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thoroughly examined through DSM-5-structured clinical interviews by

two experienced psychiatrists to ensure lifetime absence of mental

disorders. The CM experience which is before the age of 16 was

assessed using a short form of the self-reported retrospective child-

hood trauma questionnaire (CTQ) of 28 items (25 clinical items and

three validity items) (Bernstein et al., 2003). There were five CTQ sub-

scales to assess five aspects of childhood trauma: emotional abuse,

emotional neglect, sexual abuse, physical abuse, and physical neglect.

The 5-Likert scale was used for responses ranging from 1 (never cor-

rect) to five (usually correct). The five sub-scales have their specific

question items, using the previously mentioned five-level evaluation

indicators, and the score of each subscale is between 5 and 25 points

(Pang, Zhao, et al., 2022). When the subscale score exceeds a certain

threshold value (emotional abuse ≥13, emotional neglect ≥15, sexual

abuse ≥8, physical abuse ≥10, physical neglect ≥10), childhood trauma

is considered moderate to severe (Bernstein et al., 1994). Totally,

there are 57 subjects including six emotional abuse, 28 emotional

neglect, seven sexual abuse, seven physical abuse, and 37 physical

neglect were considered moderate to severe CM. If all subscales are

below a certain value at the same time, childhood trauma is not con-

sidered to be accompanied (emotional abuse ≤8, physical abuse ≤7,

sexual abuse ≤5, emotional neglect ≤9, physical neglect ≤7) (Bernstein

et al., 1994). The reliability and validity of CTQ have previously been

demonstrated (He et al., 2019). This study was approved by the local

Medical Ethics Committee of the Affiliated Brain Hospital of Guang-

zhou Medical University. Prior to the commencement of any study

procedure, the written informed consents were provided and

obtained from all the participants.

2.2 | Resting-state fMRI data acquisition

Resting-state fMRI data were acquired on a 3 T Philips MRI scanner.

All participants were instructed to relax with their eyes closed but stay

awake, and to remain motionless. Foam pads and headphones were

used to minimize head movement and scanner noise. Functional

images were scanned using an echo-planar imaging sequence with the

following parameters: repetition time (TR) = 2000 ms, echo time

(TE) = 30 ms, slices = 33, matrix size = 64 � 64, flip angle = 90�, field

of view = 220 � 220 mm2, thickness = 4 mm with 0.6 mm gap, and a

total of 240 volumes.

2.3 | Image preprocessing

The resting-state fMRI data preprocessing steps were as follows:

(1) removing the first 10 time points; (2) head motion correction by

realigning to the first volume; (3) registration to EPI template and

resample to 3 � 3 � 3 mm3 and smoothed with 6 mm full-width half

maximum Gaussian kernel; (4) nuisance regression including Friston

24-parameter model of head motion, mean white matter, cerebrospi-

nal fluide, and global signals; (5) filtering with bandpath of 0.01–

0.1 Hz; To further exclude head motion effects, scrubbing method

was used to delete bad images (2 volumes before and 1 volume

behind) exceeding the predefined threshold (frame-wise displacement:

FD <0.5). To explore whether the number of deleted volumes affects

prediction, correlation analysis between the number of deleted vol-

umes and CTQ scores, CTQ subscale scores, and age were performed.

No significant correlations were found (for details, please see

Table S1 in Supporting Information).

2.4 | Define subject-specific functional networks

It has been shown that the individual differences existed in the spatial

distribution of large-scale functional networks in the cerebral cortex,

and individualized parcellations provide a better data fitting for each

participant than standard atlases that ignore functional neuroanatomi-

cal differences (Cui et al., 2020). Emerging evidence has demonstrated

that the human brain could be stablly and reproduceablely parcellated

into seven or fine-grained 17 functional networks belonging to visual,

somatomotor, limbic, dorsal and ventral attention, frontoparietal, and

default mode networks (Cui et al., 2020; Li et al., 2017; Yeo

et al., 2011). Thus, in our study, regularized NMF method (Li

et al., 2017) was employed to define 17 large-scale brain functional

networks in each individual for further analysis. The processes to

define individual large-scale brain networks mainly included three

steps: group network initialization, group network atlas creation, and

personalized network definition (Li et al., 2017). The first step was to

randomly select 50 subjects and the time course of each voxel of the

brain was first shifted linearly to make all time points have positive

values if necessary, and then the time course is normalized by its max-

imum value so that all the time points have values in the range of 0–1.

Next, the time courses of the selected subjects were combined into a

matrix with 11,500 time points and 67,541 voxels. Then, an alterna-

tive optimization method and random nonnegative initialization were

used to decompose the matrix (Lee & Seung, 1999). This process was

repeated 50 times to enhance robustness. In the second step,

TABLE 1 Demographic and behavioral characteristics of
participants

Variables CM subjects (n = 215)

Age (years) 25.50 ± 6.29

Gender (M/F) 93/122

Education (years) 14.04 ± 2.60

CTQ

Total score 34.60 ± 7.70

Emotional abuse 6.55 ± 2.10

Physical abuse 5.84 ± 1.49

Sex abuse 5.33 ± 0.83

Emotional neglect 9.64 ± 4.00

Physical neglect 7.25 ± 2.48

Abbreviations: CM, childhood maltreatment; CTQ, childhood trauma

questionnaire; F, female; M, male.
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50 groups of functional networks were joined to a matrix with

850 rows (i.e., functional networks) and 67,541 columns (i.e., voxels).

Then, a normalized-cut (Jianbo & Malik, 2000) divided 850 functional

networks into 17 clusters based on spectral clustering method. In

each cluster, the most representative functional network which has

the highest overall similarity with all other FNs in the same cluster

was selected. The final population network map consisted of these

17 representative FNs. All the analyses were performed using codes

provided by the authors (https://github.com/hmlicas/Collaborative_

Brain_Decomposition).

In the last step, we used the group networks obtained previously

as the initialization networks to decompose all the voxels' time series

matrix using regularized NMF to obtain the individual functional net-

work for each individual. A network load matrix (17 � 67,541) repre-

senting the soft probability that 67,541 voxels belonged to

17 networks and a network time series matrix (230 � 17) were

acquired, respectively. Finally, functional network connectivity (FNC)

analyses were performed based on the time series of the identified

subject-specific functional networks to generate individual-specific

FNCs. A 17 � 17 FNCs matrix was obtained for each subject.

To test whether the reconstructed signal can restore the original

signal, the similarity was calculated using Pearson’s correlation coeffi-

cient. For each voxel, a Pearson’s correlation coefficient was calcu-

lated between original and reconstructed signals in each subject.

Then, the voxel was assigned to one of the 17 networks in which this

voxel has the maximum load. Finally, the mean correlation coefficient

was obtained across all voxels and subjects for each network.

To quantify individual variations of the 17 functional networks in

the brain, the median absolute deviation was used as an indicator to

evaluate the variability of the brain functional networks across sub-

jects as Cui et al. (2020). First, a load matrix with size of 67,541 � 17

representing the loadings of each voxel in 17 networks was obtained

using the NMF method. The median loading of each voxel in each net-

work was calculated across all the 215 subjects, and the absolute

deviation between the load of this voxel in each subject and the

median loading was calculated. Next, the median value of the absolute

deviation was used to characterize individual variation for each net-

work. Finally, the average value of the median absolute deviation

across all the 17 networks was used to evaluate the variability of the

brain functional networks across subjects.

2.5 | Prediction analyses

Based on the FNCs among subject-specific brain networks, a RVR

model was trained to predict the scores of CM (Cui & Gong, 2018).

The RVR model used kernel vector as basis function, independent

hyperparameters as parameter precision, and applied empirical bayes

and automatic correlation decision mechanism to obtain sparse solu-

tions. The RVR code can be found in this linkage (https://github.com/

ZaixuCui/Pattern_Regression_Clean/tree/master/RVR). Before train-

ing, feature selection was carried out by identifying significantly corre-

lated FNCs with CM scores (p < .05). The ten-fold cross-validation

(CV) approach was used to avoid biased estimates and overfitting.

Specially, the data set was randomly divided into ten folds. In each

CV, nine folds of the data were selected as the training sets and the

remaining fold was used as a testing set. After repeating the proce-

dure ten times, predicted CM scores were obtained for all subjects.

The correlation coefficient between actual and predicted scores was

calculated to evaluate the prediction performance. To determine the

significance of the prediction model, 5000 times permutation test

which disrupted all CM scores and all subjects was performed, and

the distribution of the permutated correlations between actual and

predicted scores was obtained. The position of the real correlation

coefficient before permutation in the distribution was recorded. The

statistical p value was defined as the [1-(location/5000)]. A p < .05

was used as the cutoff for significance. To evaluate the prediction

results, the R2, adjust R2, root mean square error (RMSE), and mean

absolute error (MAE) were also calculated. In addition, to further eval-

uate whether the individual FNC could predict CM subtypes, the same

procedures as predicting CM total scores were performed to predict

the five subcategories of CTQ.

To determine the contribution of each network during prediction,

the identified networks through NMF method were classified into

eight networks including seven cortical networks (visual network (VS),

motor network (Dauvermann et al., 2021), limbic network (LMB,

Cheng, Roberts, et al., 2022), default mode network (Dannlowski

et al., 2012), ventral attention network (Cui et al., 2020), dordal atten-

tion network (Tomoda et al., 2009), frontoparietal network (FPN), and

a cerebellum network in according to the Yeo group atlas (Yeo

et al., 2011). Feature weights of each FNC were assigned to the corre-

sponding connected networks, and the positive weights which made

contribution for prediction were included. Since small and negative

weight indicated less contribution to predicting, thus the negative

weights were not considerd in this study. Finally, the sum of positive

weights of each network was calculated to obtain the contribution of

each network.

For feature selection in the above prediction analyses, the FNCs

correlated with behaviors were identified in all subjects as features.

To evaluate the influence of feature selection for prediction, we also

selected the features only based on the training dataset (nine-folds

data) for prediction during ten-folds cross-validation. The correlation

coefficient between real CTQ total scores and predicted CTQ scores

was calculated.

To further validate the prediction model, we splitted all subjects

into two-folds and one half was used for training and the other was

used for testing. The correlation coefficient between real CTQ total

scores and predicted CTQ scores was calculated to assess the predic-

tion result.

2.6 | Age and sex effects

Previous studies have reported age and gender effects on CM

(Ancelin et al., 2021; De Bellis & Keshavan, 2003; O’Shields &

Gibbs, 2021). To further investigate the age and gender effects on
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FNC, all the CM subjects were divided into different groups to iden-

tify FNC differences. To evaluate age effects, we divided the subjects

into two groups. One is the subjects over 30 years old (44 subjects)

and the other is under 20 years old (44 subjects) to better differenti-

ate CM duration effects on the brain. Two-sample t-tests were used

to identify the difference of FNCs between 17 subject-specific brain

networks between the different age groups. In addition, we also

divided all the subjects into female and male groups; the difference of

inter-network FNCs between males and females was also evaluated

through two-sample t-tests. A corrected p < .05 was set for statistical

significance using false discovery rate (FDR) correction.

We also performed prediction of CM total scores by including the

age and gender factors as features to test age and gender effects. The

correlation between actual and predicted CM scores and the weights

for all the features were also calculated (See Table 2).

3 | RESULTS

3.1 | Individual functional networks

Using NMF approach, we identified 17 individual-level large-scale

functional networks for each subject. By comparing with the Yeo atlas,

these identified networks were classified into the visual network (VIS:

VIS-1 and VIS-2), somatomotor network (MOT: MOT1, MOT2, and

MOT3), dorsal attention network (DAT: DAT1 and DAT2), ventral

attention network, frontoparietal network (FPN: FPN1, FPN2, and

FPN3), defalt mode network (DN: DN1, DN2, DN3, and DN4), limbic

network (LMB), and cerebellum network (Figure 1). The parcellation

results were compared at the group level and individual level, respec-

tively. At the individual level, two subjects, including one participant

with minimum CM scores and the other participant with maximum

CM scores, were selected to show the individual-level functional net-

works. There were obvious differences in most of the parcellation

results of the 17 brain networks at the group level and individual level

except VIS, LMB, and CR networks. In addition, there were also obvi-

ous differences in the DAT, DN, VIS, VAT, and FPN networks between

the two participants with minimum or maximum CM scores (Figure 1).

To determine whether the reconstructed signals could restore the

original signals, the mean Pearson’s correlation coefficient for each

network was obtained. For all the 17 networks, the similarities were

higher than 0.7 suggesting that the reconstructed signals could well

mimic the original signals (for details, please see Figure S1 in Support-

ing Information).

To quantify networks' variability, cross-subject variability of func-

tional network topography was shown, and the primary visual and

sensorimotor cortices showed small while high-order cortices such as

prefrontal, parietal, and temporal cortices showed large individual var-

iations (for details, please see Figure S2 in Supporting Information).

3.2 | Individual-level FNCs predict CM scores

With a set of individual FNCs, the total CM scores of each participant

could be predicted (r = .385, p = 4.58 � 10�10) (Figure 2a).

Individual-specific connections that largely contributed to the total

CM score prediction were mainly involved in FNCs within DN,

between VIS and FPN, MOT, LMB, and between FPN and VAT, MOT

(Figure 2b). In all these networks, the contributions of FPN, DN, and

VIS networks were relatively higher while the contributions of CR and

DAT networks were relatively lower during prediction (Figure 2C).

The prediction results evaluated by R2, adjust R2, RMSE, and MAE

were also shown in Table 2.

To test the influence of feature selection, we performed feature

selection in each CV. Although the prediction result is a little lower

than that obtained using the features selected with all the subjects,

the predicted scores still showed a significant correlation with actual

CTQ scores (for details, please see Figure S3 in Supporting

Information).

Using half subjects as test, we found that the prediction model

still works (predicted CTQ scores were significantly correlated with

actual CTQ scores), but the prediction accuracy is much lower than

that using ten-folds cross-validation (for details, please see Figure S4

in Supporting Information).

3.3 | Individual-level FNCs predict CM subtypes

With individual-level FNCs of the large-scale functional networks, the

five subtypes of CM can be well predicted: physical neglect (r = .25,

p = .0006), physical abuse (r = .28, p = 2.4 � 10�5), emotional

neglect (r = .35, p = 6.9 � 10�8), emotional abuse (r = .27,

p = 6.4 � 10�5), and sexual abuse (r = .17, p = .0115) (Figure 3). By

calculating the contribution weights of each network, we found that

FPN and DN networks made large contribution to predicting emo-

tional abuse and physical neglect, FPN, DN, and VIS networks made

large contribution to predicting emotional neglect, FPN, DAT, and

VAT networks made large contribution to predicting sexual abuse,

and VIS, DN, FPN, and VAT showed large contribution to predicting

physical abuse. These results demonstrated that each subtype of CM

was associated with specific networks. The prediction results for all

the CM subtypes evaluated by R2, adjust R2, RMSE, and MAE were

also shown in Table 2.

TABLE 2 CTQ and subtypes prediction results assessment

CTQ R2 Adjust-R2 RMSE MAE

Total score .2125 .1779 3.07 5.56

Emotional abuse .1196 .0809 2.02 1.44

Physical abuse .1030 .0636 1.45 1.03

Sex abuse .6278 .0216 0.82 0.50

Emotional neglect .1776 .1415 3.70 2.96

Physical neglect .0644 .0233 2.45 3.03

Abbreviations: CTQ, childhood trauma questionnaire; RMSE, root mean

square error; MAE, mean absolute error.
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3.4 | Age and sex effects on functional
connectivities in CM

To identify the age effects on functional couplings of large-scale func-

tional networks, all the participants were divided into two groups, one

group with age < =20 years, and the other group with age > =30 years.

The old age group showed higher functional connectivities within MOT,

and between MOT and VIS networks than young age groups (Figure 4a).

We also divided the participants into male and female groups to

explore the sex effects on functional couplings between large-scale

networks. FNC analyses identified significantly increased FNCs

between VIS and MOT networks and significantly decreased func-

tional connectivities between DN and FPN, CR in male groups com-

pared to female groups (Figure 4b).

In addition, with age and gender added into features for predic-

tion, we found that the correlation coefficient of the predicted and

F IGURE 1 The group-level and two individual level of the 17 large-scale functional brain networks were delineated using non-negative

matrix factorization (NMF) approach. Two individual functional brain networks include subjects with the minimum and the maximal childhood
maltreatment (CM) total scores

F IGURE 2 Subject-specific functional network connectivities (FNCs) predict individual-level CM total score. (a) the correlation between
actual CM total scores and predicted CM total scores with individual-specific FNCs (r = .385, p = 4.58 � 10�10). (b) the individual FNCs as
features make positive contribution for prediction were mapped. (c) the contribution of each network for prediction was calculated by sum of
weight values of each FNC connected with each network

ZHANG ET AL. 4715



actual CTQ scores was a little lower than that not taking age and gen-

der as features. The weight distribution showed that age and gender

had very low weight for prediction suggesting that the two factors

had little influence on the results (for details, please see Figure S5 in

Supporting Information).

4 | DISCUSSION

Combining individual-specific large-scale FNCs and multivariate pat-

tern analysis techniques, we evaluated the effect of CM on individual

FNCs of 17 large-scale brain networks. We demonstrated that the

FNCs of individual-specific functional networks could predict the CM

total scores and subscale scores, and different types of CM are associ-

ated with differentially atypical neural networks. Emotional abuse and

physical neglect are primarily associated with FPN and DN networks;

emotion neglect is mainly associated with FPN, DN, and VIS net-

works; sexual abuse is mainly related to FPN, DAT, and VAT net-

works, and physical abuse primarily links to VIS, DN, FPN, and VAT.

These findings shed light on the underlaying mechanism for effects of

CM impairing functional interactions of brain networks, and highlight

the importance of accounting for interindividual variability in investi-

gating functional brain organization in individuals.

Although previous studies have reported that early CM induced

abnormal development of neural circuits, these results were inconsis-

tent (Dannlowski et al., 2013; Hart et al., 2018; Jedd et al., 2015;

Rakesh et al., 2021; van der Werff et al., 2012). It is speculated that

using group-level atlas-based FC might underestimate the correspon-

dence between the connectome and behavior (Li et al., 2019).

Recently, using individual FC mapping, Wang, Tian, et al. (2020)

F IGURE 3 Subject-specific FNCs predict different subtypes of CM. (a) the individual FNCs as features which made contribution to prediction
of the five subtypes of CM after feature selection were shown, and the different colors of FNCs corresponded to different features predicting
subtypes of CM. (b)–(F) showed the prediction results of the five subtypes of CM and corresponding networks contributing to prediction. Of

these, the correlations between actual five subtypes and predicted five subtypes of CM with individual-specific FNCs were: Physical neglect
(r = .25, p = .0006), emotional neglect (r = .35, p = 6.90 � 10�8), physical abuse (r = .28, p = 2.40 � 10�5), emotional abuse (r = .27,
p = 6.40 � 10�5), sexual abuse (r = .17, p = .012)
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demonstrated that FC defined using the individually specified func-

tional regions was able to predict baseline verbal memory perfor-

mance and electroconvulsive therapy-induced verbal memory

impairments in major depressive disorder patients, but the same

models using connectivity derived from a group-level atlas completely

lost the ability to predict these behavioral measures. Moreover, Cui

et al. (2020) revealed that individual variability of functional topogra-

phy was associated with fundamental properties of brain organization,

including evolutionary expansion, cortical myelination, and cerebral

blood flow. Recently, Zhang and colleagues developed a new individ-

ual functional parcellation approach to define individual hippocampus

subregions and found that individual functional connections could

better predict aging effect than group-level functional connections

(Zhang et al., 2021). All the evidence indicated that individual func-

tional connectivity mapping might be better to establish brain-

behavior relationship than group-level. In our study, we further dem-

onstrated individual-specific functional connectivity mapping is a use-

ful tool to predict the effects of early CM.

For CM prediction, we found that the functional connections of

DN, FPN, and VIS networks showed a large contribution. DN network

is involved in internally oriented cognitive functions (Cheng, Wang,

et al., 2022; Pang, Wei, et al., 2022; Perkins et al., 2015; Wang

et al., 2019) while FPN is implicated in cognitive control process dur-

ing externally oriented tasks (Cheng et al., 2021; Marek &

Dosenbach, 2018; Wang, Wei, et al., 2018; Wang, Wei, et al., 2020),

sustained attention, and working memory (Liu et al., 2021;

Ptak, 2012). The VIS network is involved in visual information

processing. The relationships between CM and these networks have

been documented in previous studies. For example, CM was associ-

ated with increased DN deactivation during working memory (Philip

et al., 2013), reduced resting-state FNCs within DN and FPN

(Dauvermann et al., 2021), and enhanced morphometric network cen-

trality in DN regions involved in internal emotional perception, self-

awareness (Teicher et al., 2014). Physical abuse/neglect was associ-

ated with the FNCs between VIS and cingulo-opercular network in

patients with major depressive disorder (Yu et al., 2019). Young adults

who witnessed domestic violence during childhood showed reduced

gray matter volume and thickness in the visual cortex (Tomoda

et al., 2012). Childhood sexual abuse was associated with reduced

gray matter volume in the visual cortex involved in facial recognition

in young women (Tomoda et al., 2009). These previous reports

showed that the early adversity experience leads to deleterious devel-

opment of primary and high-order cortical regions. Our findings fur-

ther demonstrated that this effect of early CM continues into

adulthood and spread to other systems showing connectivities with

these regions. The identification of a potentially sensitive period dur-

ing which the brain is maximally vulnerable to CM argues for the value

of early intervention or prevention strategies.

In addition, distinct functional networks had different contribu-

tions to the prediction of different subtypes of CM. In general, the

networks showing major contributions to prediction were concen-

trated in the DN, FPN, VIS, and VAT networks which were also identi-

fied for the prediction of CM total scores. As two core networks of

triple network models (Menon, 2011), FPN and DN exerted large

F IGURE 4 The age (a) and
sex (b) effects on individual FNCs
of large-scale networks. (a) the
old age group showed higher
FNCs within MOT and between
MOT and VIS than young age
groups. (b) Men showed higher
FNCs between VIS and MOT but
lower FNCs between DN and

FPN, CR than women. Red line
represents increased FNCs in
high age group (female) contrast
to low age group (male), while
blue line represents the opposite
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impacts on almost all subtypes of CM. The DN and the FPN habitually

work in opposing directions which are involved in attentional

demands: FPN activation increases while DN activation decreases

when attentional demands increase; conversely, FPN activation

decreases while DN activation increases during periods of rest or

internally focused cognitions (Fox et al., 2005). By extending previous

findings, our result further suggested that the DN and FPN as a basic

“target of attack” no matter what form of CM occurred, with the gen-

erally observed maladaptive high-order cognition function in adults

with CM (Heledd Hart et al., 2017). The VIS network contributed most

to the prediction of physical abuse and emotional neglect. VIS net-

work is the main channel for processing external information, and pro-

cess and conveys the adverse sensory input (such as the facial

expressions of emotion) of CM (Kitada et al., 2010; Tomoda

et al., 2009; Wang, Feng, et al., 2018). The VAT network made major

contributions to the prediction model of physical, emotional, and sex-

ual abuse. Child abuse is associated with increasingly abnormal threat-

related attention bias (Pine et al., 2005), and significantly reduced acti-

vation in the attention network implicated in responding to external

attention demands (Asplund et al., 2010; Scalf et al., 2014; Serences

et al., 2005) during sustained attention were found in young people

with childhood abuse experience (Lim et al., 2016). Our results

explained the neural circuit correlates of different types of CM while

controlling for psychiatric conditions. The novel findings highlighted

the different neurobiology effects of different CM types, and pro-

posed that the impact on the brain development of CM subtypes

should ideally be considered separately.

Finally, the age and gender effects were assessed. The older

subjects exhibited higher FNCs within MOT and between MOT

and VIS networks than younger individuals. During development,

sensory and motor integration is critical for brain and behavior

typical maturity (Chicoine et al., 1992; Kagerer & Clark, 2014).

The increased FNCs within MOT and between MOT and VIS net-

works observed in older individuals might show a compensatory

mechanism for impaired sensorimotor integration. In addition, a

large number of previous studies have reported significant gender

effects on major depressive disorder (Grigoriadis & Erlick

Robinson, 2007; Piccinelli & Wilkinson, 2018). As a high-risk fac-

tor for mental disorders, our study also revealed significant gen-

der differences between men and women. We found that women

showed higher FNCs between DN and FPN, CR networks while

lower FNCs between MOT and VIS networks than that in men.

The high FNCs indicated abnormal functional swithcing between

internal and external states, while low FNCs between MOT and

VIS suggested impaired sensorimotor integration in women. The

differences in FNCs between DN and FPN, CR, and between

MOT and VIS may serve as an early biomarker to predict the pro-

gression of depression state (Cheng, Roberts, et al., 2022; Cheng,

Wang, et al., 2022).

The current study has a few limitations. First, the sample includes

adults with CM scores but without current psychopathology, which

may be a “resilient” sample. Therefore, the findings related to CM

may be specific to those who have experienced CM but lack

psychopathology. Second, the CTQ questionnaire only assessed the

trauma or adversity experience before age 16. The experience after

16 or current was not included in this questionnaire and was not eval-

uated in our study. Third, the CTQ scores were obtained by subjective

evaluation. Due to the relatively large age span of the participants,

recall bias is inevitable and maybe not so objective to reflect

CM. Fourth, to explore the age effects, we simply divided all the par-

ticipants into ages below 20 and above 30 groups to identify FNC dif-

ferences. Whether the identified differences reflect age effects need

to be further validated. Fourth, for the prediction of sexual abuse, the

data distribution was relatively concentrated, which may affect the

prediction results. The data with uniform distribution is needed to fur-

ther validate our model. Fifth, inconsistent distribution of CTQ total

scores may also affect the accuracy of prediction results and generali-

zation of the prediction model. The number of participants with high

CTQ total scores is fewer than that with low CTQ total scores leading

to the prediction model may be only suitable for prediction of low

CTQ total scores. Finally, although there are several methods to

define individual network, whether the large variations in functional

network topology could well characterize individual behavioral differ-

ences is still doubtful. Validating the effectiveness is important for

future individual functional network mapping.

5 | CONCLUSION

This study established the neural correlates of large-scale networks

for CM or its subtypes based on individual-level functional mapping

to better explain the individual differences during development with

childhood adversity experience. Furthermore, the current findings

shed light on the neurofunctional basis of CM or subtypes and high-

light different types of CM have different impacts on brain develop-

ment, which may provide neuromarkers for the classification of CM

subtypes. Further efforts are needed to identify the sensitive period

for each CM subytpe and promote the development of effective pre-

vention and treatment strategies to normalize the CM-induced brain

atypical mature trajectory.
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