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Abstract: The regulatory functions of microRNA (miRNA) are involved in all processes contributing
to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by
the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human
papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could
be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial
lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns
at various stages of cervical pathology. The aim of this review is to systematize current reports
on miRNA capacity that can be utilized in personalized diagnostics of cervical precancerous and
cancerous lesions. The analysis of the resources available in online databases (National Center
for Biotechnology Information—NCBI, PubMed, ScienceDirect, Scopus) was performed. To date,
no standardized diagnostic algorithm using the miRNA pattern in cervical pathology has been defined.
However, the high sensitivity and specificity of the reported assays gives hope for the development
of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes.
Due to this variability resulting in difficult to predict clinical outcomes, precise molecular tools are
needed to improve the diagnostic and therapeutic process.

Keywords: cervical cancer; cervical neoplasia; HPV; microRNA biomarkers; miRNA; molecular
diagnostics; prognostic factors

1. Introduction

Cancer is a group of diseases that in the age of molecular biology development is regarded as the
genome disease at the cellular level. It arises from one cell containing an initial set of mutations, and the
accumulation of mutations over time with genome instability is common. This leads to intra-tumor
genetic heterogeneity characteristic for all types of cancer [1]. The hallmarks of carcinogenesis
include cell functional changes: the ability to produce growth factors and lack of sensitivity to
their suppressors, inhibition of apoptosis, unlimited replication potential, angiogenesis, invasion,
metastasis, changed stress response, metabolic rewiring, and immune modulation. The significant
factor contributing to the development of the disease, especially for the cancer caused by infectious
agents, is long-lasting inflammation [2–4].

Human papillomavirus (HPV) is the second infectious agent in terms of the frequency of inducing
oncogenesis in the world [5], and remains a causative agent of cervical, vulvar, anal canal, penile,
and head and neck malignancy [6,7]. Cervical cancer (CC) is the fourth most common cancer among
women worldwide [8], and high-risk human papillomavirus (HR-HPV) DNA is detectable in over
90% of affected tissues [9]. CC most frequently originates from squamous epithelium (squamous cell
carcinoma—SCC) or glandular tissue (adenocarcinoma—AdC). Regardless of the histological type,
CC is often asymptomatic and predominantly diagnosed in advanced stage, despite of the occurrence
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of preceding stages (cervical intraepithelial neoplasia—CIN 1-3) and their long-term development.
Late diagnosis limits the effectiveness of available therapeutic methods, including surgical treatment,
and chemo- and radiotherapy. Metastatic CC remains incurable and is characterized by 16% 5-year
survival rates [10].

CC is preceded by several consecutive cervical intraepithelial lesions that are contributed to
HPV-induced persistent infection [11]. The key event associated with the progression to high-grade and
tumorigenic changes is the integration of viral DNA into host cell genetic material. This leads
to over-expression of viral oncogenes that affect genetic instability and uncontrolled cell cycle
progression [12]. Host genetic factors, including alterations in levels of oncogenes and tumor
suppressors as well as chromosome aberrations and mentioned lifestyle factors have additional
influence on disease development [13,14].

Since the 1950s, the gold standard in the screening of cervical intraepithelial lesions was cytological
examination (Pap smear). Due to low sensitivity of these assays, an HR-HPV based preventive system
(or co-testing with cytology) has been introduced in developed countries [15]. It was proved to be
more effective for early detection of AdC, the frequency of which demonstrates a growing trend in
highly developed countries [16]. It was estimated that the proportion of AdCs in relation to SCCs
increases from 10% up to 25% of CC cases and becomes more common in younger women [17,18].

In the last decade, research based on explaining the molecular basis of oncogenesis and its utility in
diagnostics has been extensively provided. Intensive investigations into the progression of tumorigenic
changes are focused on the non-coding regions of the human genome. The central dogma of molecular
biology assumes that genetic information transfers from DNA to RNA and then from RNA to proteins
in transcription and translation processes. Although 70% of the genome can be transcribed into RNA,
the protein-coding sequences represent at most 2% of the human genome [19]. It turned out that
nonprotein-coding regions of the genome exhibit crucial regulatory functions involved in the cell
and tissue homeostasis. They are transcribed into the non-coding RNAs (ncRNA) from exon, intron,
or intergenic sequences and play a key role in the post-transcriptional regulation of gene expression [20].
The most widely studied ncRNAs are microRNAs (miRNA)—RNA molecules up to 25 nt length that
strongly regulate the expression of the hundreds target genes at the post-transcriptional level. miRNA
affects mRNA by complete or partial hybridizing the seed sequence to the 3′ end of the untranslated
region (3′UTR) of the target mRNA. It results in degradation of mRNA or block of translation [21].

It is well documented that miRNAs play an important role in processes that correspond to all the
hallmarks of cancer [22]. Well confirmed variability of miRNA expression in a wide range of tumors
has revealed significant correlations with the risk of cancer development, advancement of disease,
metastasis ability, and therapeutic response to chemo- and radiotherapy [23,24]. Furthermore, in the
cases of cervical pathology, specific aberrations in miRNA levels are characteristic for each stage of
neoplasia and cancer [25].

Commonly used primary screening assays (exfoliative cytology and HR-HPV) are insufficient
to detection of viral persistency and present small predictive value, especially in the risk prognosis
of CIN 3 progression to cancer. Furthermore, inconclusive results of screening tests are effective in
overusing of invasive diagnostic methods including colposcopy-directed biopsy to perform histological
classification of changes [26]. Therefore, it is necessary to develop more efficient solutions, search for
new diagnostic approaches to detect precancerous stages, and assess prognostic factors in advanced
intraepithelial lesions and cancer.

miRNA pattern is considered as a specific fingerprint of cellular condition and a promising
tool with great capabilities in development of personalized medicine. Advances of individualized
diagnostics is particularly important in the case of tumors, due to the high heterogeneity even within
the same histological type. To date, there has not been an algorithm established that incorporates
the alterations of miRNA expression to CC screening. This review is focused on the current state
of knowledge about the diversity of potential applications of human miRNA patterns in modern
diagnostics at various stages of cervical lesions related to HPV infection and its progression to cancer.
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2. Pathogenesis of Cervical Cancer and Its Precursor Stages

2.1. Histological Subtypes

The cervix contains two types of epithelium: stratified non-keratinizing squamous (ectocervix)
and columnar—including glandular cells (endocervix). Both types are joined in squamocolumnar
junction (SCJ), called the transformation zone. SCJ is the place where most neoplastic and cancerous
lesions originate. It has been described that cells prone to HPV infection are highly consistent with
the phenotype observed in high grade precancerous lesions and SCC. They display a characteristic
cuboidal columnar phenotype with embryonic origin characterized by specific gene expression [27].
Subsequent studies have shown that these SC junctional cells may be a source of HPV persistency,
CINs, and cancer [28]. However, HPV persistency may be involved in all of the cervical sites;
infection in glandular cells located close to the metaplasia zone is associated with a higher risk for
neoplasia development [29]. The classification of cervical neoplasia is based on histological assessment
performed in colposcopy-directed biopsy samples. Abnormal results of cytological assays do not
have direct counterparts in histological diagnoses of cervical squamous intraepithelial neoplasia (CIN).
Low-grade neoplasia (CIN 1) refers to mild dysplasia that involves up to one-third of the cervical
epithelium thickness. About 60% of mild dysplasia is reversible. CIN 2 includes medium-grade
dysplastic lesions in one-third to two-thirds of the epithelial layer. The dysplasia affecting more than
two-thirds of the epithelium thickness is classified as high-grade dysplasia (CIN 3). CIN 2 and CIN 3
are regarded as direct CC precursors [30].

The majority of cervical cancer cases develop from squamous epithelial tissue —SCC, and from
glandular tissue AdC. Low percentage of CC cases represents adenosquamous carcinoma. The epithelial
cancers were divided into groups, which included SCC. The most prevalent is large cell cancer
(non-keratinizing and keratinizing) and other epithelial cancers, i.e., neuroendocrine cancer [31].
On the basis of histological features, the most prevalent AdC is HPV-dependent mucinous
carcinoma. Rare non-mucinous subtypes seem to have less relationship with HPV infection [32,33].
Histological diagnosis is strongly associated with surveillance and susceptibility for treatment. AdC is
characterized by worse prognosis relative to SCC. Lymph node involvement or distant metastases
occur more frequently and resistance for available treatment methods is common [34].

Strong molecular heterogeneity of CC is related to diversified expression levels of phosphorylated
growth factors and cell cycle regulators in different histological subtypes, which promote variable
kinases activation. These processes underlie of changes in metabolic signaling pathways and differential
activating profiles between SCCs and AdCs [35].

Cervical carcinogenesis is mostly associated with dysregulation of Apolipoprotein B mRNA
Editing Catalytic Polypeptide-like (APOBEC)_cytidine deaminases family members [35,36]. It is likely
the main source of mutations that have also been described in other tumors [37,38]. According to
The Cancer Genome Atlas, mutations occur in CC with a density of about four per megabase
on average. The most prevalent genomic alterations in cervical cancers involves PI3K/MAPK
(phosphoinositide 3-kinase/mitogen-activated protein kinase) and TGF-β (transforming growth factor
beta) signaling pathways. It was estimated that mutations in one or both of them occur in 70%
of CC cases. Moreover, mutations observed in genes TGFBR2 (transforming growth factor beta
receptor 2), MAPK1 (mitogen-activated protein kinase 1), SHKBP1 (SH3KBP1-binding protein 1),
HLA-A (major histocompatibility complex, class I, A), HLA-B (major histocompatibility complex,
class I, B), and NFE2L2 (nuclear factor, erythroid 2 like 2) are strongly correlated with SCC. Aberrations
in the HLA-A gene in AdC cases was not observed [35]. Differential expressed genes (DEGs) identified
in patients may turn out the potential targets for immunotherapy, which is an important alternative to
available treatment methods.
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2.2. HPV as an Infectious Agent

2.2.1. Characteristics

HPV is double-stranded DNA virus classified as part of the Papillomaviridae family, and is
infectious to humans and animals. More than 200 types of HPV have been identified to date. On the
basis of their DNA sequence, biological function, and pathological effect, they are classified into several
genera—alpha, beta, gamma, mu, and nu [39]. Alphapapillomaviruses exhibit epithelial tropism.
Of these, a high-risk oncogenic group (HR-HPV) has been defined, including HPV-16, -18, -31, -33, -35,
-39, -45, -51, -52, -56, -58, and -59 [40]. The infection initially leads to low-grade intraepithelial lesions
that represent slightly changed differentiation patterns. Infected cells in the majority of cases are
removed by the immune system within 1 year, likely associated with increased Langerhans cells and
vaginal microbiota [41]. Some of low-grade lesions do not spontaneously regress and infection persists
for many years, which is closely correlated with the risk of CC development [42]. Persistent HR-HPV
infection is asymptomatic and characterized by immune evasion—in particular by interferon pathway
that leads to block host’s T cell response [43]. HPV-16 and HPV-18 are the most oncogenic and their
presence is identified in over 70% of SCCs and 90% of HPV-positive AdCs [44]. HPV-16 represents
several intra-type variants (European, African, and Asian lineages) that are associated with risk of
neoplasia developing and histological type of cancer. Accordingly, non-European lineages are more
pathogenic and are responsible for more cases of AdC than SCC [45,46]. HPV infection is probably
not sufficient to induce neoplastic progression, as evidenced by a low proportion of CCs that have no
association with viral infection [47].

2.2.2. Viral Integration into Host Genome and Cell Cycle Affecting

The molecular mechanism of HPV contribution in inducing (pre)cancerous lesions is multifactorial
and includes the complex of viral–host interactions. The HPV genome contains regulatory long control
region (LCR) with two functional regions consisting of open reading frames (ORFs) for early and
late genes [6]. The virus may exist in the host cell nucleus in two physical states—episomal and
integrated. Predominantly, both states are observed in HPV-positive cervical tissues simultaneously [48].
The integration process occurs within the early stage of infection and is associated with the progression
from low-grade to high-grade intraepithelial lesions. The frequency of total integrations increases
with their advancement [48–50]. The factors favoring the integration process are correlated with
unrepaired damage to host DNA. The DNA damage response (DDR) pathways, which play a key role
in genome integrity maintenance, are modified by multidirectional interactions with HPV oncogenes.
HPV does not have its own polymerase and employs DDR machinery for replication of the viral
genome by involving ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related
(ATR) proteins pathways corresponding to DNA double-stranded break reparation and replication
stress response, respectively [51,52].

The detailed mechanism of integration is still the subject of discussion. However, microhomology
regions from two to six nucleotides of length between viral/host genome at (or near) the area of
integration breakpoints has been noticed in several studies [53,54]. It provides evidence that the
theory based on microhomology-mediated DNA repair pathways [55] supported by local genomic
instability associated with accumulation of chromosomal changes at the fragile sites is the most
probable. Viral DNA may integrate into all chromosomes, as well as intronic and exonic sequences.
This process does not occur randomly due to the fact that hotspot genes with an increased frequency of
integration sites was identified in independent studies (i.e., tumor-suppressive fragile histidine triad
gene—FHIT, or transcriptional factor Kruppel-like factor 5—KLF5) [53,56]. The majority of integration
sites are transcriptionally active, however, different patterns of DNA and RNA integration breakpoints
have been noticed [56]. Importantly, expression of viral-cellular transcripts increases stability of HPV
oncogenes [57,58]. HPV integrations exhibit features of enhancers or activators of flanking genes that
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can act on their target genes over long distances [59,60]. As described recently, the HPV integration
site may contribute to metastasis ability in advanced stage of cancer [61].

Integration events mostly proceed with the viral E1 or E2 ORFs disruption; however, E6 and E7
ORFs always remain unimpaired. This leads to overexpression of E6 and E7 oncogenes or destruction
of cellular transcripts [53]. Increased expression of oncogenes may be also caused by genetic and
epigenetic LCR modifications in episomal state [62]. Interestingly, recent analysis of DEGs revealed that
among HPV positive CCs, integrated and episomal cases must be considered as individual molecular
subtypes [63].

E6 and E7 accumulation contributes to cell cycle modifications by affecting key tumor suppressors
and chromosomal rearrangements, leading to genome instability [54]. Deregulation of oncogene
expression mainly contributes to the disruption of the G1/S cell cycle checkpoint and degradation of
fundamental tumor suppressor proteins p53 and pRB (Retinoblastoma protein) by ubiquitin-dependent
proteolysis. The decrease in pRB and p53 levels respectively results in bypassing the cell G1 checkpoint
and entrance to the S phase, directing cellular processes to allow further viral replication and
suppression of apoptosis. Reduced pRB level is associated with releasing E2F transcription factor
from suppressive transcriptional RB–E2F complexes. E2F enhances minichromosome maintenance
complex component 7 (MCM7) level, which is suppressive for cyclin D expression by associating
cyclin-dependent kinase 4—CDK4 [64]. This also leads to reduction of the suppressive effect of
inhibitors that affect cyclin-dependent kinase 4 and 6—CDK4/6, such as p16INK4a. It causes cellular
accumulation of p16INK4a by activation of a negative feedback loop that is utilized as a high-grade
cervical neoplasia marker [65].

In summary, persistency of HPV infection, due to the multidirectional actions, significantly impairs
cell functioning, which leads to the accumulation of adverse changes and inhibition of apoptosis.

3. miRNA and Cervical Lesions and Cancer

3.1. miRNA Biogenesis, Function, and Expression—Modulating Factors

In the last decade, differential miRNA expression profiles have been identified as the possible novel
biomarkers in oncology. In the dominant miRNA biogenesis pathway, primary miRNAs (pri-miRNA)
are transcribed in the nucleus by polymerase II. Then, pri-miRNA is cleaved into 60–70 nucleotide
hairpin precursor (pre-miRNA) by Drosha nucleases. This nuclear processing is followed by the
transport of pre-miRNA from the nucleus into the cytoplasm, which takes place through exportin-5 and
then by the further processing for mature miRNA by Dicer complexes. Mature miRNA is incorporated
into an effector complex—RNA-induced silencing complex (RISC)—which binds to mRNA and affects
the translation and stability of mRNA. Expression of the target mRNA is regulated, either by mRNA
cleavage or by translational repression, depending on the complementarity of “seed” sequences [66].
Changed miRNA expression is observed in a wide range of cancers versus normal tissues [67–71].
Although altered miRNA profiles in cancer has been established, it is yet to be explained as to whether
it is a causative factor or a consequence of malignancy progression.

miRNA regulates crucial processes related to oncogenesis, i.e., stem cell differentiation and
maturation, tissue development, cell proliferation, differentiation, growth, survival, invasion,
and metastization ability [72]. These molecules are also involved with maintaining metabolic
homeostasis and the response to viral infections [73]. Altering expression can lead to it going
up or down. miRNAs play a twofold role as tumor suppressors (downregulated in cancer) or
oncogenes (oncomiRs, upregulated in cancer). Likewise, miRNAs can act as oncogenes and tumor
suppressors simultaneously through interactions in various signal networks [74]. Some of them may
influence occurrence of metastasis (metastamiRs) [23,75]. miRNAs exist intracellularly or may be
secreted outside the cell in exosomes that play an important role in intercellular communication of
cancer cells. As a consequence, repression of target genes in recipient cells and increasing tumor
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growth and invasiveness is observed. Moreover, exosomal miRNAs are detectable in body fluids,
which creates the prospect of developing less invasive diagnostic tests for cancer markers [76,77].

In CC, decrease in tumor-suppressive miRNAs is associated with several factors.
Commonly observed in cancer chromosomal aberrations trigger miRNA alterations by a mutational
way linked to miRNA loci. Genetic aberrations affect the Drosha expression, whereby the global
miRNA profile in CC may be disturbed. A large impact for carcinogenesis was established for
hypermethylation of miRNA loci [78]. A particularly important factor of the carcinogenesis process is
single nucleotide polymorphism (SNP) occurring in miRNA sequence or in the binding site of their
target gene. It is involved in aberrant expression and maturation of these regulatory molecules. Up- or
downregulated expression of miRNAs also results from regulation by defects of miRNA pathway or
transcriptional factors for which their level is altered in affected cells [72,79]. It is also established that
decreased miRNA expression can be the result of the action of other RNA molecules (long non-coding
RNAs—lncRNAs, circular RNAs—circRNAs) that associate with them as a sponge [80–84].

3.2. Aberrant Expression of miRNA in Cervical Neoplasia and Cancer

In cervical lesions, increased oncomir expression and decreased tumor suppressors has been
recorded in both cell/tissue cultures and clinical samples [85]. Furthermore, various miRNA molecules
are correlated with advancement of intraepithelial neoplasia, HPV infection-related processes,
or histological subtype [86,87]. Moreover, miRNAs are increasingly recognized as factors with
predictive and prognostic potential for determining survival and metastatic risk in cancer patients.
Various reports indicate that the level of certain miRNAs may be an indicator of a patient’s response to
conventional treatment.

3.2.1. Dynamics of miRNA Expression Observed in Cervical Lesions and Cancer

Over 250 significantly dysregulated miRNAs were identified in CC cell lines on the basis of microarray
and real-time polymerase chain reaction (real-time PCR) assays. Substantially, miRNA tendency to be
up- or downregulated was found to be similar in several studies, creating a possibility to establish a suitable
diagnostic pattern [86,88–91]. miRNAs show altered expression that is dependent on the advancement
stage of cervical lesion. Some species have an early transient character. This means that differential
expression level is observed in CIN 2 and CIN 3 versus normal tissue. No significant differences occur
with CC compared to normal tissue. Secondly, miRNA molecules may be altered continuously with
increasing or decreasing expression level, beginning with early lesions. The highest changes are detectable
between normal tissue and cancerous tissue. Late expression changes of miRNAs are identified in CC,
and variability in normal tissue in comparison to cervical neoplasias is not significant. These dependencies
were described by Wilting et al., presenting a detailed miRNA profile obtained by a microarray assay [86].

One pioneer study showed that overexpression of miR-15a, miR-26b, miR-195, miR-200c,
and miR-223 and underexpression of miR-143 and miR-145 is significant in precancerous raft tissues
(HPV infected). Then, miRNA profile was investigated in CC tissues, demonstrating compliancy
with results obtained in rafts in the cases of miR-15a, miR-143, miR-145, and miR-223 expression
levels. Moreover, miR-15b, miR-16, miR-126, miR-146a, miR-155, and miR-424 were significantly
altered in CC tissues [85]. In other research, decreased expression of miR-10a, miR-26a, miR-29a,
miR-99a, miR-143, miR-145, miR-196a, miR-199a, miR-203, and miR-513 and increased expression
of miR-16, miR-27a, miR-106a, miR-142-5p, miR-197, and miR-205 was observed in the course of
development of (pre)cancerous lesions [88]. McBee et al. demonstrated a profile of 10 differentiated
miRNAs, including miR-16, miR-21, miR-106b, miR-135, miR-141, miR-223, miR-301b, miR-449a,
miR-218, and miR-433 [92]. In another report, similar results to miRNA expression described earlier
was confirmed, and altered expression was additionally demonstrated for upregulated miR-17,
miR-20b, miR-25, miR-92a, and miR-224 and downregulated miR-10b, miR-34a, miR-100, miR-195,
and miR-375 [89]. Cheung et al. found that 12 altered miRNAs: miR-9, miR-10a, miR-20b, miR-34b,
miR-34c, miR-193b, miR-203, miR-338, miR-345, miR-424, miR-512-5p, and miR-518a may distinguish
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high-grade CIN from normal cervical tissues [93]. Rao et al. reported 18 upregulated and 19
downregulated miRNAs in CC biopsies. Among them, the highest fold changes (> 2, 5) compared to
normal adjacent tissues was observed for oncomiRs miR-7, miR-20b, miR-31, miR-141, miR-142-5p,
miR-200a, miR-224, and miR-429 and tumor-suppressive miR-10b, miR-99a, miR-100, miR-143, miR-145,
miR-195, miR-218, miR-376, and miR-497 [94]. The results of further investigations provide strong
evidence of the previously undertaken research validity, showing the same direction of changes in the
miRNA profile depending on the stage of cervical pathology [87,90,91,95–101]. Results reported in
cervical tissues that were repeated at least twice are summarized in Table 1.

Table 1. Dynamics of microRNA (miRNA) expression revealed in cervical biopsies or exfoliative cells.

Early Transient [References] Early Continuous [References] Late
[References]

O
ve

re
xp

re
ss

ed

miR-10a
[86,93]

miR-10a
[88]

miR-9
[86,90,93,95,102]

miR-34b
[93]

miR-34b
[86]

miR-15a
[86,90]

miR-28
[86,102]

miR-15b
[85,86,89,90,102]

miR-92a
[86,87,89,103]

miR-17
[86,89,90]

miR-93
[89,103]

miR-20b
[86,89,90,93,94,104]

miR-16
[92]

miR-16
[85–90,97]

miR-21
[86,92,98,105]

miR-21
[90,95,97]

miR-25
[86]

miR-25
[87,89]

miR-141
[92]

miR-141
[86,90,94]

miR-155
[89]

miR-155
[85,86,95]

miR-196a
[88,96]

miR-27a 1

[87,88]
miR-200a
[86,94,97]

miR-31
[90,94,99]
miR-106a
[86,88,89]
miR-106b
[90,92,97]
miR-124
[91,92]

miR-142-5p
[88,94]

miR-223
[85,92,97]
miR-224
[89,94]
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Table 1. Cont.

Early Transient [References] Early Continuous [References] Late
[References]

U
nd

er
ex

pr
es

se
d

miR-100
[87]

miR-100
[89,94,106]

miR-100
[86,102]

miR-29a 1

[87–89]
miR-10b
[89,94]

miR-34a 1

[89,103]
miR-34a 1

[100,107,108]
miR-99a
[88,89]

miR-99a
[86,94,97]

miR-125b
[108]

miR-125b
[86,89,97,102]

miR-195
[89,90,94]

miR-195
[86]

miR-199a
[88]

miR-199a
[86]

miR-218
[89,90,92,103,109]

miR-218
[86,91,94,107]

miR-375
[89,101,103]

miR-375
[86,102]

miR-497
[90,94]

miR-497
[86]

miR-513
[88]

miR-513
[86]

miR-143 1

[88,94]
miR-143 1

[85]
miR-145

[88]
miR-145

[85]
miR-424

[89,93,103]
miR-424

[85]
miR-145 1

[88,89,94]
miR-376
[86,90,94]

miR-149
[86,102]

miR-193b 2

[86,97]
miR-203

[86,88,97,100,102]
1 miRNA showing the opposite direction in Wilting et al. [86], 2 miRNA showing the opposite direction in
Jimenez-Wences et al. [91]. Marked in color—miRNAs showing the same direction in close related stages of cervical
pathology; bold—miRNAs showing the same direction in at least four cited reports.

3.2.2. Differential Expression of miRNA between HPV-Positive and -Negative Cases

HPV infection plays a fundamental role for miRNA differential expression. Firstly, miRNAs are
regulated by HR-HPV oncogenes, in particular E6/E7, through acting on p53 and pRB level. Due to
this, all miRNAs regulated by p53 and pRB pathway signaling factors are considered to be modulated
by these oncogenes. miR-218 expression is reduced in patients infected by HR-HPV and it decreases
continuously on the basis of lesion advancement [109]. E7-encoded protein interaction with E2F leads
to increased miR-15a and miR-16-1 expression level [110]. Panel of HR-HPV-dependent miR-34a,
miR-21, miR-27a, miR-155, miR-203, and miR-221 has a significant prognostic value for HPV-positive
SCC samples. However, the same set of miRNAs turned out to be non-indicative for HPV-positive
AdCs [100]. Wang et al. reviewed miRNAs responding to E6/E7 in organotypic raft cultures by
microarray and microRNA sequencing (miRNA-seq). Consistent results of responsive miRNAs was
received for oncogenic miR-16, miR-25, miR-92a, miR-93, miR-106b, miR-210, miR-224, and miR-378
and tumor-suppressive miR-22, miR-24, miR-27a, miR-29, and miR-100. Most of them presented similar
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fold changes in CINs an CC tissues compared to non-infected culture [87]. Honegger et al. revealed
significant upregulation of miR-143-3p, miR-23a-3p, miR-23b-3p, and miR-27b-3p and downregulation
of miR-17-5p, miR-186-5p, miR-378a-3p, miR-378, miR-629-5p, and miR-7-5p after E6/E7 silencing
in HeLa and SiHa cells, which was correlated with promoting cell growth, inhibiting apoptosis and
senescence [76]. According to The Cancer Genome Atlas, the most aberrant expression between
HPV-positive and -negative tissues is detectable for miR-944, miR-767-5p, and miR-105-5p [35].
Aberrant expression of miR-148a-3p, miR-199b-5p, and miR-190a-5p may be indicative for HPV-16
infection in cervical tissues [111]. Aberrant expression of four miRNAs investigated by Kawai et al.
(miR-126-3p, miR-20b-5p, miR-451a, miR-144-3p) showed significant correlation with HPV-16/18
infection in clinical samples [104]. HPV-16 and HPV-18 oncogenes downregulate miR-375 expression
in cervical cancer, promoting cell proliferation, migration, and invasion in CC cell lines [112].
Mandal et al. demonstrated that miR-16 is overexpressed in HPV-16-induced cervical cancer and
downregulated in HPV-16-positive non-malignant tissues versus normal samples. miR-181c increased
expression level is correlated with HPV-16-positive cervical cancers with episomal state of virus.
miR-323 and miR-203 dysregulation is strongly associated with E7 expression, whereas downregulation
of miR-34a, miR-143, miR-196b, and miR-203 is progressive to lesion advancement [63].

HPV frequently integrates into the part of the host genome where miRNA loci are localized.
Altered expression of miR-9, miR-15b, miR-28-5p, miR-100, and miR-125b in cervical cancer tissues
is established to be directly associated with chromosomal aberrations [86]. Other mechanisms are
associated with E6/E7 overexpression that may lead to epigenetic modifications of miRNA’s promoter
region or affecting important molecular pathways regulators.

Increasing importance in carcinogenesis is attributed to the occurring of E6 in several splice
isoforms (E6*I, E6*II, E6*III, and unspliced E6fl), which has been described only for HR-HPV types [113].
Li et al. reported that miR-875 and miR-3144 impact on splice isoforms of E6 and can modulate its
ratio directly or by the EGFR pathway [114].

Interestingly, several HPV-encoded miRNAs have been identified and validated [115,116], although
they seem to have no diagnostic potential due to low expression in various cervical samples. However,
they probably play important functions in the pathogenesis of infection, in particular in latency
establishment and immune evasion [117].

In summary, the expression of several cellular miRNAs can be a significant indicator of HPV
stability and determination of virus-induced aberrations of key cell cycle pathways.

3.2.3. Variability in CC Histological Subtypes

Wilting et al. showed that 17 miRNAs exhibit significantly differential expression between SCC
and AdC. Among them, eight were upregulated and nine downregulated. The highest significant fold
changes (> 1,5) were observed in oncomiR’s expression, including miR-205, miR-222, miR-210, miR-27a,
and miR-224. In the case of tumor-suppressive miRNAs, fold changes were lower. Reduced expression
was the most significant for let-7g, miR-199b-5p, miR-215, miR-145, miR-194, and miR-375 [86].
Gocze et al. compared expression profiles between SCC and AdC with the same HR-HPV status.
From seven miRNA analyses, they revealed an opportunity to distinguish two of the most common
histological subtypes by miR-21, miR-27a, miR-34a, miR196a, and miR-221 [100]. The Cancer Genome
Atlas Research Group study displayed upregulation of miR-375 and downregulation of miR-205-5p
and miR-944. Furthermore, miR-99a-5p and miR-203a variability was determined for keratin-high
and -low clusters of SCC [35]. Babion et al. tested eight candidate miRNA species to discriminate CC
lesions. As a result, they obtained an unambiguous differentiation between SCC and AdC cases by
analyzing different levels of miR-15b-5p/miR-375 expression [38].

3.2.4. Prognostic Value—The Risk of Metastization

miRNA profiling, with a suitably selected set, may have a strong prognostic value in women
affected by CC. It may verify advancement of disease and predict its development. According to several
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studies, some miRNAs’ altered expression level may increase the feasibility of poor clinical outcome.
Fundamentally, the risk is associated with metastization and number of metastases resulting from
the cell’s ability for proliferation, migration, invasion, and modulation of epithelial-to-mesenchymal
transition (EMT) (Table 2). Dysregulation of metastamiRs correlates with FIGO (International Federation
of Gynecology and Obstetrics) stage advancement and tumor size [118]. Upregulated in invasive CC
miR-21 (detectable in body fluids), miR-20b, miR133b, miR-155, miR-205, and miR-499a are involved
in a higher risk for lymph node metastasis and poor clinical stage. Overexpression of these miRNAs
leads to higher proliferation, migration, colony formation, and invasion abilities by targeting genes
associated with metastasis [119–123]. Furthermore, miR-205 and miR-20b influence the EMT processes
and may become valuable therapeutic targets in the future [121,123].

Table 2. Impact of metastamiRs contributing to cervical cancer.

miRNA Target Processes Related to
Metastization Reference

O
ve

re
xp

re
ss

ed

miR-20b TIMP metallopeptidase inhibitor 2 (TIMP2)
Migration,
invasion,

EMT modulation
[123]

miR-21 RAS p21 protein activator 1 (RASA1) Migration,
invasion [122]

miR-133b

Mammalian sterile 20-like kinase 2 (MST2),
Cell division control protein 42 homolog

(CDC42),
Ras homolog gene family member A (RHOA)

Proliferation,
colony formation [120]

miR-155

Tumor protein p53 (TP53),
mothers against decapentaplegic homolog 2

(SMAD2),
cyclin D1 (CCND1)

Epidermal growth factor (EGF)

Migration,
invasion

EMT modulation
[119]

miR-205 Connective tissue growth factor (CTGF),
cysteine-rich angiogenic inducer 61 (CYR61)

Proliferation,
migration [121]

miR-499a Sex-determining region Y-box 6 (SOX6)
Proliferation,

migration,
invasion

[124]

miR-944 HECT domain ligase W2 (HECW2),
S100P-binding protein (S100PBP)

Proliferation,
migration,
invasion

[125]

U
nd

er
ex

pr
es

se
d

miR-23b Urokinase plasminogen activator (uPA) Migration,
EMT modulation [126]

miR-34a
Notch receptor 1 (NOTCH1),

jagged canonical notch ligand 1 (JAGGED1),
E2F transcription factor 3 (E2F3)

Invasion,
EMT modulation

[127]
[128]

miR-125a

Signal transducer and activator of transcription
3 (STAT3)

Microtubule affinity regulating kinase 1
(MARK1),

ABL proto-oncogene 2, non-receptor tyrosine
kinase (ABL2)

Migration,
proliferation,

EMT modulation

[129]
[130]
[131]

miR-195
Cyclin D1,

mothers against decapentaplegic homolog 3
(SMAD3)

Proliferation,
migration,
invasion

[132]
[133]

miR-218

Laminin subunit beta 3 (LAMB3),
baculoviral IAP repeat-containing 5 (BIRC5),
Scm-like with four Mbt domains 1 (SFMBT1),

defective in cullin neddylation 1
domain-containing 1 (DCUN1D1)

Migration,
invasion,

EMT modulation

[134]
[135]
[136]

miR-223 Forkhead box O1 (FOXO1) Proliferation,
EMT modulation [137]

miR-375 Sp1 transcription factor (SP1),
Astrocyte elevated gene-1 (AEG-1)

Proliferation,
migration,
invasion,

EMT modulation

[138]
[112]
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miR-195, miR-375, miR-34a, miR-23b, miR-125a, and miR-223 downregulation is observed in
invasive cervical cancer and leads to increased metastasis ability. Most are dependent from direct or
indirect E6 action on the p53 regulation pathway. miR-375, miR-34a, and miR-23b may be silenced by
promoter hypermethylation [112,126–129,131,132,137,138]. According to a recent study, overexpressed
miR-21 and miR-16 contribute to downregulation of Kruppel-like factor 4 (KLF4) and estrogen receptor
1 (ESR1), which may be critical for invasive CC development [139]. Recently, Chen et al. identified a
prognostic signature of four miRNAs—miR-502, miR-145 (downregulated), miR-142, and miR-33b
(upregulated) in a data mining study. An established set is involved with high risk of lymph node
metastasis in CC [140], although it is a model that requires further studies using clinical specimens.

3.2.5. Prognostic Value—Susceptibility to Conventional Therapy

There is no doubt that a fundamental prognostic factor in the therapeutic process is to determine
the applicability of treatment with chemotherapeutics or with the radiotherapy method. Recent studies
performed in CC cell lines indicate that some miRNA dysregulated expression may be a factor
specifying predictable response to cancer treatment (Table 3). It has been established that miR-155,
miR-181a, miR-214, miR-497, miR-499a, and miR-664 are involved in the regulation of sensitivity to
cisplatin [119,124,141–144]. miR-125a promotes sensitivity to paclitaxel, while upregulated miR-375 is
associated with increased resistance to this chemotherapeutic [145,146]. Downregulation of miR-122-5p,
miR-375, and miR-449b and upregulation of miR-21 and miR-125 are related to radioresistance of CC
cells [147–151].

Table 3. Impact of dysregulated miRNA on standard cervical cancer (CC) treatment.

miRNA Target Response to
Treatment Reference

O
ve

re
xp

re
ss

ed

miR-21 Phosphatase and tensin homolog
deleted on chromosome 10 (PTEN) Radioresistance [148]

miR-125 p21 Radioresistance [149]

miR-181a Protein kinase C delta (PRKCD) Resistance to
cisplatin [142]

miR-375 Not specified Acquired resistance
to paclitaxel [145]

miR-499a SRY-box transcription factor 6 (SOX6) Resistance to
cisplatin [124]

U
nd

er
ex

pr
es

se
d

miR-122-5p Cell division cycle 25A (CDC25A) Radioresistance [151]

miR-125a Signal transducer and activator of
transcription 3 (STAT3)

Resistance to
cisplatin and

paclitaxel
[146]

miR-155
Epidermal growth factor (EGF)

SMAD family member 2 (SMAD2)
Cyclin D1 (CCND1)

Resistance to
cisplatin [119]

miR-214 BCL2-like 2 (Bcl2L2) Resistance to
cisplatin [141]

miR-375 Ubiquitin protein ligase E3A (UBE3A) Radioresistance [147]
miR-449b-5p Forkhead box P1 (FOXP1) Radioresistance [150]

miR-497 Transketolase (TKT) Resistance to
cisplatin [144]

miR-664 E-cadherin Resistance to
cisplatin [143]

Determination of biomarkers contributing to metastasis ability and susceptibility to standard
treatment may significantly increase the positive outcomes of the disease by individualized choice of
effective therapeutic method. Moreover, the data suggest that the above miRNAs may be targets for
the development of new therapeutic strategies for a more effective treatment of invasive CC.
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Accordingly, the reports outlined above (Section 3.2.2, Section 3.2.3, Section 3.2.4 and Section 3.2.5)
attempt to select the best-studied miRNAs with the broadest known prognostic potential (Figure 1).
The individual collections include miRNA species, the expression of which is (I) dependent on
HPV oncogenes, (II) shows variability between the two most common histological types of CC,
(III) determines the risk of metastasis, (IV) or may be related to compliance with conventional therapy.
miRNAs included in each group are shown in Table S1. As a result, four miRNA species with the widest
known diagnostic and prognostic potential were identified. The most universal markers, included in
all groups, seem to be continuously upregulated miR-21, and miR-375 downregulated in high grade
lesions, followed by miR-155 (upregulated) and miR-34a (downregulated) that are common to three
groups (I, III, IV, and I, II, III, respectively).
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3.3. miRNAs as Biomarkers

It is assumed that the ideal cancer biomarker should create possibility and full reliability to
distinguish patients affected by cancer from all patients without cancerous lesions. In the case of
cervical cancer, it is also important to identify people from risk groups who have developed (or are
presumed to develop) precancerous lesions (CIN 2–3). Therefore, the cervical pathology biomarker
should have good discrimination rates for neoplastic lesions, characterized by high sensitivity and
specificity of the determinations (both near 100%). When performing determination in blood samples,
the biomarker should have tissue specificity in order to properly locate lesions. Great importance
is also drawn to the possibility of predicting the probability of specific clinical conditions related
to malignancy, such as the risk of lymph node involvement, local recurrence, distant metastases,
or the patient’s possible reaction to treatment method that can be established on the basis of the level
of biomarker. The cancer biomarker level should also have a high prognostic value, allowing for
the assessment of the patient’s further fate after the implementation of treatment, for example, the
assessment of the likelihood of asymptomatic or overall survival in cancer patients [152].

Standard Testing versus miRNAs as Cervical Pathology Biomarkers—Diagnostic Accuracy

In developed countries, screening tests are based on the detection of infection caused by HR-HPV,
which is the main risk factor for the development of cervical (pre)cancerous lesions. HPV assays replace
cytology-based primary screening or are utilized as a follow-up test for the patients with abnormal
cytology results. However, the greatest level of efficacy is observed when both tests are performed
simultaneously (co-testing), with this being the most recommended for primary screening [15].
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Gynecological cytology is limited by low sensitivity of determination, ranging from 40% to 75%
for precancerous lesion detection (specificity 84–96%) [153–155]. Currently, cytological preparations
can be evaluated in two ways—as conventional Pap smear and as liquid-based cytology (LBC).
Some comparative studies did not show significantly increased sensitivity or specificity of LBC; therefore,
the clinical significance of the method selection is questionable [65,156,157]. Wentzensen et al. reported
that sensitivity and specificity of LBC tests are 76.6% and 49.6% for CIN 2+ detection and 83.8 and
48.7% for CIN 3+ detection, respectively. Patients with established intraepithelial lesions, depending
on the stage of their advancement, await re-examination (6–12 months) or undergo colposcopy and
histopathology evaluation. Importantly, cytology testing alone does not detect a certain number of
adenocarcinoma cases that are frequently observed in women who test negative for cytology and
positive for HR-HPV infection [158,159]. HR-HPV test accuracy depends on the evaluation method,
but essentially is characterized by higher sensitivity (69.1% vs. 40,6%) and lower specificity (94% vs.
97.3%) for CIN 3 detection in comparison to cytology [153].

Taking into account the imperfections of primary screening tests related to the risk of inconclusive
results (cytology) or the inability to quickly assess the persistence of HPV infection, molecular
tests discriminating high-grade squamous intraepithelial lesion (HSIL) from non-dysplastic lesions
(negative for intraepithelial lesion or malignancy—NILM) and reducing the risk for misclassifications
are approved for diagnostic use. p16INK4a and Ki-67 dual immunostaining in combination with
cytology increase its sensitivity and specificity (83.4% vs. 76.6% and 58.9% vs. 49.6% respectively) [160].
Recently, an innovative test for HR-HPV-positive patients was introduced. The assay is based on
multiplex quantitative polymerase chain reaction (qPCR) and indicates methylation levels of FAM19A4
and mir124-2 loci to predict the risk of CIN 3+ development. Simultaneous application of the test with
HPV-16/18 genotyping achieves 88.5% sensitivity of CIN 3+ and is characterized by high prognostic
value [161,162]. Despite the achievement of an increase diagnostic accuracy in the detection of lesions
at risk of developing towards cancer, none of above assays meet the criteria for an ideal cervical
pathology biomarker.

The promising compliance of miRNA expression in cell lines and biopsy material prompted
researchers to look for new, less invasive solutions for the construction of diagnostic tests in the future.
Tian et al., according to results obtained by Li et al. [106], constructed a panel of six miRNAs (miR-424,
miR-375, miR-34a, miR-218, miR-92a, and miR-93) to analyze HPV-positive exfoliated cytological
samples. Research revealed that the test exhibits higher potential for CIN 2+ and CIN 3+ discrimination
than conventional cytology [103]. Ribeiro et al. analyzed miR-34a and miR-125b as potential invasive
CC biomarkers, obtaining results proving good diagnostic utility for miR-125b. They suggest that this
species may be a promising predictive and prognostic CC biomarker [108]. Kawai et al. analyzed 2588
miRNAs by microarray in biopsy cervical tissues and selected 22 upregulated candidates for validation
by qPCR. From these, four oncomiRs with the highest fold changes observed in CIN 3 and CC versus
normal samples—miR-126-3p, miR-20b-5p, miR-451a, and miR-144-3p—which were then investigated
in cervical exfoliated cells. Utilization of these four miRNAs revealed high sensitivity and specificity
in distinguishing NILM from precancerous and cancerous lesions, with the best performances for
miR-451a and miR-144-3p [104]. The most promising study utilizing exfoliative cells was performed
by Liu et al. They selected six miRNAs for testing as potential biomarkers in cervical lesions: miR-20a,
miR-92a, miR-141, miR-183, miR-210, and miR-944. The best diagnostic performance for a single
miRNA was observed for miR-183 in CIN discrimination, and for miR-141, which was the most
effective to differentiate CC patients. For both CINs and CCs, the use of a combination of all six miRNA
species improved diagnostic accuracy [163]. Table 4 presents the diagnostic parameters (sensitivity,
specificity) obtained in studies on the use of miRNA as biomarkers in the development of cervical
lesions. Reports using exfoliating cells have been taken into account.
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Table 4. Diagnostic accuracy of miRNA-based exfoliative cytology testing in differentiating of
cervical lesions.

Clinical Stage Tested miRNA AUC Sensitivity (%) Specificity (%) Reference

LSIL
miR-451a

miR-144-3p
0.850
0.850

76.0
68.0

82.0
89.0 [104]

miR-183
6 miR pattern

0.990
0.998

95.0
97.9

97.0
98.6 [163]

HSIL

miR-451a
miR-144-3p

0.870
0.870

80.0
75.0

82.0
88.0 [104]

miR-424
miR-424/375/218

0.840
0.874

76.0
74.4

78.1
85.3 [103]

miR-183
6 miR pattern

0.980
0.996

92.0
97.2

92.0
96.6 [163]

CC

miR-451a
miR-144-3p

0.940
0.930

83.0
87.0

91.0
89.0 [104]

miR-125b 0.802 88.0 69.0 [108]
miR-141

6 miR pattern
0.942
0.959

82.8
91.4

91.7
87.6 [163]

Bold—trials with the best diagnostic performance. Abbreviations: AUC—area under the curve (receiver operating
characteristic (ROC) analysis, LSIL—low-grade squamous intraepithelial lesion, HSIL—high-grade squamous
intraepithelial lesion, CC—cervical cancer.

Circulating miRNA profiling in serum samples also provides promising results and creates
new opportunities to reduce invasiveness of sample collection. Jia et al. determined a valuable
diagnostic set of five miRNAs overexpressed in CC in serum (miR-21, miR-29a, miR-25, miR-200a,
miR-486-5p) identified by quantitative reverse transcription PCR (RT-qPCR) analysis. This test
may be utilized in CC diagnosis with indication of histological grade and advancement stage [164].
Nagamitsu et al. found a significantly increased level of exosomal miR-483-5p, miR-1246, miR-1275,
and miR-1290 in CC. Furthermore, they revealed that miR-29 may be a crucial element in miRNA
network [165]. Xin et al. showed the potential for early detection of CINs by serum profile of four
miRNAs: miR-9, miR-10a, miR-20a, and miR-196a. This panel displayed high accuracy in distinguishing
CINs and correlation with HPV infection status [166]. A recent study established that miR-30d-5p and
let-7d-3p may have diagnostic utility to screen CC and cervical neoplasia. However, equivocal tissue
and serum miRNA profiles were obtained. Presumably, it is an effect of selective secretion of miRNAs
in exosomes and specific tumor environment interaction [167]. Exosomal miRNA species may not be
tissue-specific, meaning that different processes of any location may cause fluctuations in serum of
miRNA expression level.

4. Summary and Conclusions

Cervical cancer continues to be at the forefront of mortality among middle-aged women,
as evidenced by cancer statistics [5,8]. As most cervical cancers, especially in developing countries,
are detected at an advanced stage, exploiting the potential of miRNAs as prognostic factors and as
indicators of treatment susceptibility is well-founded. An effective screening of women from risk
groups also remains extremely important.

miRNA, despite the intensification of research on their functionality and clinical utility, are still
relatively poorly understood. However, it is known that their dynamic expression changes are
associated with key determinants of neoplastic diseases [72]. Their impact on series of cell signaling
pathways related to tumorigenesis creates a wide research field towards their use as diagnostic and
prognostic (pre)cancer biomarkers [73,100,118,140,163]. miRNAs are relatively easy to measure under
laboratory conditions due to the much greater stability of the molecules compared to other RNA
fractions [168]. However, the techniques of isolation, determination, normalization, and analysis
of results require standardization in order to obtain repeatability and comparability of test results
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obtained in various research centers. This comparability is also not fully effective due to different study
designs; different criteria for selecting the reference group; not taking into account other cancer risk
factors; and the individual variability, which remains extremely difficult to reliably assess.

Expression levels of miRNAs at different stages of cervical pathology usually fluctuate continuously,
or statistically significant changes appear only at an advanced stage of cancer progression [86].
Moreover, the variation ranges of the expression level may overlap to a large extent, which can
be problematic in establishing clear cut-off values. As presented in Table 1, the best confirmed
differential miRNA species in cervical lesions noted in the most of reports are upregulated miR-21,
miR92a (early continuous increasing), miR-9, miR-15b, miR-16, miR-20b, miR-141, and miR-155 (late
expression) and downregulated miR-100, miR-195, miR-203, miR-375, miR-424 (continuous decreasing
of expression), miR-34a, miR-99a, and miR-125 (reduced commonly in cervical cancer). Moreover, the
demonstrated discrepancies in the dynamics of changes in miRNA expression may indicate earlier
disturbances in the cell balance, at a time when cytological/histological changes are still elusive. Such
a feature, if confirmed in future research, could represent a significant advantage in terms of high
predictive value of potential biomarkers.

Variation of the expression of miRNA is multifactorial [22]. Therefore, the search for one miRNA
as the perfect marker seems to be a rather limited approach. It seems more reasonable to create a
miRNA signature that takes into account most of these factors, corresponding to the patient’s clinical
condition, which could be a specific fingerprint of cervical pathology [100,164]. As described in Liu et al.,
a pattern of six miRNA species (miR-20a, miR-92a, miR-141, miR-183, miR-210, miR-944) achieved great
diagnostic performance in differentiating cervical (pre)cancerous lesions [163]. Therefore, combination
of several miRNAs can significantly improve the diagnostic accuracy of the assays, and, with the
establishment of clear criteria for the results’ interpretation, provide an efficient way to discriminate
between various precancerous conditions. Furthermore, miRNA profile can be determined from the
same sample as cytology and HR-HPV test, namely, from exfoliated cells noninvasively collected on
the LBC medium [103,104,108,163].

Consideration of predictive and prognostic factors seems to be a big challenge, as there are still not
enough reports of extensive studies in the reference group of women with various cervical pathological
conditions. However, researchers are getting closer to establishing the relationship between miRNA
expression levels and sensitivity to conventional methods of cervical cancer treatment that requires
confirmation of results received in CC cell lines.

In view of heterogeneity of CC molecular features, it should not be treated as a single disease,
both in the diagnostic and therapeutic process, and requires a personalized approach. Introducing
new diagnostic solutions for personalized medicine is challengeable and requires accurate knowledge
about a cell’s dysregulation at the molecular level.

miRNA profiling may provide a detailed fingerprint of a cell’s condition and, in reference to
current reports, seems to have high potential to be the marker-determining multifactorial process
with relation to cervical neoplasia and cancer development, having strong predictive and prognostic
value. However, the satisfactory preliminary results of scientists in this matter requires confirmation
in standardized, extensive clinical trials conducted in experienced research centers to develop clear
determination algorithms and introduce a new, broad-spectrum and noninvasive biomarker into the
clinical use.
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