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Abstract: G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling
proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins.
GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been
observed in various cancers and their importance in cancer stem cells has begun to be appreciated.
We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein
subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will
discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as
their implications for the development of novel targeted cancer therapies.
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1. Introduction

Stem cells are the cells that have the ability to make identical copies of themselves for the lifetime
of the organism (self-renewal), and can also divide to generate progenitor or precursor cells that
then differentiate into all cell types of a mature tissue (differentiation) [1]. In general, stem cells
are classified into two categories depending on the plasticity of their pluripotent and differentiation
potential. Embryonic stem cells (ESC) are derived from the inner cell mass of the blastocyst stage of
the embryo and are pluripotent, having the ability to generate any tissue in the body but unable to
generate a complete individual on their own [2–4]. Adult stem cells, on the other hand, are multipotent,
exhibiting a more restricted differentiation capacity, and only persist in specific niches throughout
postnatal life [5,6]. Certain adult stem cells such as hematopoietic, mesenchymal and neural stem
cells can differentiate into multiple lineages, while others, such as endothelial and corneal stem cells
are significantly lineage restricted and only possess the ability to differentiate into one cell type [7].
A delicate balance between stem cell self-renewal and differentiation defines major organ development
that results in ordered layers of functional differentiated cells and residual stem cells responsible for
renewal and repair [8,9].

Several studies have now confirmed the central role played by GPCRs in embryonic development
and stem cell maintenance [10–12]. Dysregulation of these fundamental biological processes can have
detrimental consequences including malignant transformation [13,14]. Increasing evidence has now
demonstrated the malignant transformation of normal stem cells into cancer stem cells (CSCs) via
the accumulation of various genetic modifications [15]. CSCs appear to hijack signaling pathways
(e.g., GPCR) and mechanisms that regulate normal stem cells, adapting the ability to self-renew and
thereby regenerating tumors after anti-cancer treatment [16,17]. While current treatment regimens
kill the bulk of tumor cells, they ultimately fail to induce durable clinical responses because CSCs
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develop treatment resistance over time due to their quiescent nature [18–21]. Understanding the
signaling pathways in normal and malignant stem cells will facilitate the use of normal stem cells for
regenerative medicine and the development of new therapies to target CSCs.

2. The Diversity of GPCR Signaling Mechanisms

GPCRs are versatile signaling molecules that modulate the activities of diverse intracellular
signaling via G proteins [22]. G proteins consist of Gα, Gβ and Gγ subunits, and Gα subunits have been
classified into four subfamilies: Gαs, Gαi/o, Gαq/11 and Gα12/13, based on structural and functional
similarities [23]. Each Gα family can relay the GPCR signals to multiple downstream effectors,
consequently triggering different signaling pathways [24]. The Gαs and Gαi/o families function to
activate or inhibit the activity of adenylate cyclase with a consequential increase or decrease in cyclic
AMP (cAMP) production [25]. Members of the Gαq/11 family activates phospholipase-Cβ (PLCβ)
ultimately leading to intracellular Ca2+ mobilization from the edoplasmic reticulum [26]. In addition,
the Gα12/13 family is involved in activation of the Rho family of small GTPases [27]. These downstream
effectors of G proteins subsequently trigger various intracellular signaling pathways that modulate
diverse cellular functions (Figure 1) [26,28]. The major known targets of downstream G protein
signaling include ion channels, calcium-sensitive enzymes, and kinases such as cAMP-dependent
kinase (PKA), protein kinase X and calcium-calmodulin regulated kinases (CAMKs). Many of these
kinases play contributing roles to cancer development and progression [29–31].

Following activation of GPCRs, rapid attenuation or desensitization of receptor responsiveness is
necessary to prevent uncontrolled signaling. Desensitization is initiated by phosphorylation of the
receptor by GPCR kinases [32,33] followed by uncoupling of GPCR-G protein interactions mediated
by members of the β-arrestin protein family [34,35]. In addition to terminating G protein signaling,
β-arrestins also play a role in promoting GPCR signaling by internalizing the receptor and acting
as a molecular scaffold to recruit signaling proteins. In this way β-arrestins are capable of initiating
G protein independent GPCR signaling cascades. This again challenges the traditional concept of
GPCR activation involving a single ligand and receptor pair. It is now apparent that various ligands
can activate a single GPCR to stabilize specific ligand-receptor conformations that promote unique
signaling properties. Another critical point in the negative regulation of GPCR signaling is the
deactivation of Gproteins by GTP hydrolysis, which is enhanced by Regulator of G protein Signaling
Proteins (RGS). RGS proteins are capable of accelerating GTPase activity up to 1000-fold [36] and can
also serve as effector agonists by competitively binding activated Gα-subunits [37,38] or promote rapid
cycling of Gα-subunits between active and inactive states thereby serving as kinetic scaffolds [39].
Complex cross-talk between ligands, receptors, G proteins, second messengers, and accessory proteins
facilitates the diverse range of GPCR signaling as it is recognized today.

GPCR signaling is highly diverse and the engagement of different G proteins and the strength
or duration of signaling differs not only between GPCRs, but also depending on the ligand and
cellular environmental context of any given GPCR. Some GPCRs, such as sphingosine-1-phosphate
receptor 1 (S1P1), exclusively couple to one G protein, whereas other GPCRs, such as lysophosphatidic
acid receptors (LPA), can couple to multiple G proteins triggering diverse downstream signaling
cascades [40,41]. Aberrant activation of GPCR signaling triggered by high-affinity ligands (e.g., LPA
and S1P1) leads to malignant transformation, proliferation, metastasis and drug resistance [42,43].
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Figure 1. GPCRs signal through heterotrimeric G proteins. GPCRs transmit extracellular signals 
across the plasma membrane to intracellular effectors via heterotrimeric G proteins [22]. G proteins 
belong to the GTPase family and are composed of three subunits, α, β and γ, in which the β and γ 
subunits form a stable dimeric complex, the βγ-subunit [44]. Upon agonist stimulation, the GPCR 
undergoes rapid conformational changes that expose intracellular sites that interact with and 
activate G proteins [45]. This catalyzes the dissociation of GDP bound to the Gα subunit and its 
replacement with GTP, in turn leading to the dissociation of Gα from the βγ-subunit [46]. Both Gα-GTP 
and Gβγ-subunit complexes are then freely available to activate downstream effectors [28,47,48]. Gα 
subunits have been classified into four families: Gαs, Gαi/o, Gαq and Gα12/13. The Gα subunits activate 
multiple downstream effectors ultimately leading to alterations in gene expression allowing the cell 
to adapt to external stimuli. The Gαs and Gαi family subunits regulate the activity of adenylate 
cyclase, thereby altering cAMP levels [25]. Gα13 primarily activates the Rho family of GTPases and 
Gαq stimulates phospholipase-Cβ (PLC-β) leading to mobilization of intracellular Ca2+ [26,27]. 
Abbreviations: GDP, guanosine diphosphate; GTP, guanosine triphosphate; cAMP, cyclic adenosine 
monophosphate; Rho, Ras homolog family; Rac, Ras related small GTPase protein; IP3, inositol 
triphosphate; ↓: Signaling activation; ⊥: signaling inhibition.  

2.1. GPCR-Mediated Regulation of Stem Cell Properties 

The role of GPCR signaling in stem cell function, although undoubtedly important, has not 
been fully elucidated. Several lines of evidence are suggestive of a critical role, for instance many of 
the signaling cascades activated by GPCR signaling directly regulate, or are synergistic with, 
pathways that regulate ESC pluripotency and differentiation [49]. General roles for G proteins in 
regulating pluripotency have also been described. Gαs signaling has been shown to promote 

Figure 1. GPCRs signal through heterotrimeric G proteins. GPCRs transmit extracellular signals across
the plasma membrane to intracellular effectors via heterotrimeric G proteins [22]. G proteins belong to
the GTPase family and are composed of three subunits, α, β and γ, in which the β and γ subunits form
a stable dimeric complex, the βγ-subunit [44]. Upon agonist stimulation, the GPCR undergoes rapid
conformational changes that expose intracellular sites that interact with and activate G proteins [45].
This catalyzes the dissociation of GDP bound to the Gα subunit and its replacement with GTP, in
turn leading to the dissociation of Gα from the βγ-subunit [46]. Both Gα-GTP and Gβγ-subunit
complexes are then freely available to activate downstream effectors [28,47,48]. Gα subunits have
been classified into four families: Gαs, Gαi/o, Gαq and Gα12/13. The Gα subunits activate multiple
downstream effectors ultimately leading to alterations in gene expression allowing the cell to adapt to
external stimuli. The Gαs and Gαi family subunits regulate the activity of adenylate cyclase, thereby
altering cAMP levels [25]. Gα13 primarily activates the Rho family of GTPases and Gαq stimulates
phospholipase-Cβ (PLC-β) leading to mobilization of intracellular Ca2+ [26,27]. Abbreviations: GDP,
guanosine diphosphate; GTP, guanosine triphosphate; cAMP, cyclic adenosine monophosphate; Rho,
Ras homolog family; Rac, Ras related small GTPase protein; IP3, inositol triphosphate; Ó: Signaling
activation; K: signaling inhibition.

2.1. GPCR-Mediated Regulation of Stem Cell Properties

The role of GPCR signaling in stem cell function, although undoubtedly important, has not been
fully elucidated. Several lines of evidence are suggestive of a critical role, for instance many of the
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signaling cascades activated by GPCR signaling directly regulate, or are synergistic with, pathways
that regulate ESC pluripotency and differentiation [49]. General roles for G proteins in regulating
pluripotency have also been described. Gαs signaling has been shown to promote proliferation
and pluripotency in self-renewing and differentiating mouse ESCs [11]. Signaling mediated by Gαi

proteins is demonstrated to affect the morphology and organization of human induced pluripotent
stem cells (iPSC) [10]. Dramatic changes in the expression levels of GPCRs in distinct stages of stem
cell differentiation further implicate their involvement in stem cell function [50]. Comprehensive
qPCR analysis of more than 350 GPCR genes between three stages of in vitro neural differentiation
(i.e., pluripotent human ESCs, multipotent neural progenitors, and differentiated neurons) has revealed
striking differences in GPCR expression within the different cell populations [50,51].

The GPCR superfamily is divided into five sub-families, including glutamate, frizzled, adhesion,
rhodopsin and secretin. The specific roles of GPCRs from two of these families (i.e., frizzled and
rhodospin) will be discussed in this review exemplifying GPCR-mediated regulation of normal and
malignant stem cells.

2.2. Wnt-Activated Fzd Signaling

The frizzled (Fzd) family of GPCRs is activated by the Wnt family of lipoglycoproteins [52].
Wnt signaling plays a critical role during development and Wnt ligands are known to regulate
the maintenance of numerous stem cell populations in both developing and adult organisms [53].
Although Fzds have normal GPCR topology, their lack of sequence similarity leads to debate regarding
their classification as GPCRs [54]. Nevertheless, compelling experimental observations show that
heterotrimeric G proteins play a crucial role in Wnt signaling, specifically given that Wnt signaling
activation could be abrogated in human ESCs by a Gαi/o protein inhibitor (pertussis toxin) [55,56].
Furthermore, Gαo has been shown to be essential for Wnt activation in Drosophila [57]. As such, the
Fzd family is listed by the International Union of Pharmacology as a novel and separate family of
GPCRs termed “Class Frizzled” [58].

Nineteen Wnt proteins serve as the primary endogenous agonists for 10 Fzd receptors encoded
in the human genome [59]. There is apparent specificity between individual Fzds and their
ligands with Wnt3a-Fzd1, Wnt5a-Fzd7 and Wnt7-Fzd6 being identified as highly efficient Wnt-Fzd
pairs [60,61]. Three main pathways in Wnt-activated Fzd signaling include: Fzd/Ca2+ pathway,
Fzd/planar cell polarity (PCP) pathway and Fzd/β-catenin pathway. Agonist stimulation of the
Fzd/Ca2+ pathway leads to elevated intracellular Ca2+ levels in a G protein-dependent manner
that activates calcium-dependent protein kinase c (PKC) and Ca2+/calmodulin-dependent protein
kinase [62,63]. The Fzd/PCP pathway tranduces via Dishevelled (Dvl) to small Rho GTPases and
their effectors Rho-associated coiled-coil containing protein kinase (ROCK) and the c-Jun-N-terminal
kinase/c-Jun/AP-1 pathway [64]. Agonist stimulation in the Fzd/β-catenin pathway activates the
phosphoprotein Dvl, leading to inhibition of the destruction complex composed of adenomatosis
polyposis coli protein (APC) and Axin. β-catenin then translocates from the cytoplasm to the nucleus,
where it cooperates with the T-cell factor/lymphoid enhancer factor (Tcf/Lef) transcription factors to
modify transcription of a set of Wnt target genes [53]. The Wnt/Fzd pathways have been classified as
regulators of cell fate determination and control cell movement and tissue polarity, respectively [49].

Fzd receptors play an important role in mammalian development and stem cell self-renewal.
The expression of Fzd5, 7 and 10 has been found in the gastrulating embryos of mice and is implicated
in neural induction [65]. Evidence from knockout mouse studies suggests that Fzd4, 5 and 9 are
important for central nervous system development and self-renewal of B cell populations [66–68].
Various studies suggest that Wnt3a inhibitor or GSK-3 inhibitor (6-bromoindirubin-3’-oxime) maintains
pluripotency in human ESCs [69]. In particular, the mRNA levels of the Wnt receptor Fzd7 are found to
be 200-fold higher in human ESCs compared to differentiated cell types, and Fzd7 knockdown induces
significant morphological changes in ESC colonies with concomitant loss of the pluripotency gene
octamer-binding protein 4 (Oct-4) [70]. In contrast, some studies have reported a pro-differentiation
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role for Wnt/Fzd signaling [71–73] suggesting a cellular context-dependent effect of Wnt signaling on
stem cell self-renewal.

Wnt/β-catenin signaling is evolutionarily conserved and plays critical roles in development and
disease [74]. Inappropriate pathway activation produces uncontrolled cell growth leading to cancer,
and aberrant Wnt signaling has been implicated in different types of cancer, including hepatcellular
carcinomas, ovarian carcinomas, leukemia, prostate cancers, colon cancers and melanoma [75]. Indeed,
the extent to which carcinomas rely on Wnt signaling to drive their development and progression is
exemplified by the observation that approximately 90% of colon cancer and 50% of breast cancer cases
are associated with hyperactivation of Wnt signaling [76,77].

Dysregulation of Wnt/β-catenin signaling occurs in multiple types of CSCs and increasing
evidence has demonstrated a crucial role for Wnt/β-catenin signaling in the self-renewal and
malignant behavior of CSCs [78–81]. We as well as others have previously demonstrated that aberrant
activation of Wnt/β-catenin signaling contributes to the transformation of hematopoietic stem cells
(HSCs) into leukemic stem cells (LSCs) [78,82]. Furthermore, our laboratory has recently identified
GPR84 as a novel regulator of β-catenin signaling in LSCs [83]. GPR84 overexpression induces the
activation of β-catenin transcriptional co-factors Tcf7l2 and c-Fos, as well as a gene set associated
with Wnt signaling [69]. Our functional study shows that GPR84 depletion impairs LSC function
and inhibits the development of an aggressive and drug-resistant subtype of acute myeloid leukemia
(AML) [83]. Importantly, the GPR84-deficient phenotype is β-catenin dependent as re-expression of
active β-catenin is capable of rescuing the deficiency [69]. In addition, levels of GPR84 expression are
significantly upregulated in human and mouse AML LSCs compared to normal HSCs [83], providing a
therapeutic window to selectively target LSCs while sparing normal HSCs. These studies demonstrate
a strong rationale for inhibiting GPCR/β-catenin signaling as a novel therapeutic strategy to target
drug-resistant malignant stem cells in cancer.

In support of this therapeutic rationale, we have recently shown an essential role for G protein
subunit Gαq in the maintenance of AML LSCs [84]. By using both shRNA-mediated silencing and
pharmacological inhibition, our study shows that Gαq regulates LSC growth and survival in vitro and
in vivo, and controls β-catenin activity. Using a commercially available Gαq inhibitor, GP-antagonist
2A, our data indicates that ex vivo pre-treatment of LSCs with the antagonist impairs their proliferative
capacity in mouse bone marrow and prolongs mouse survival [84]. Therefore, further investigations
into the therapeutic applicability of GP-antagonist 2A for the treatment of AML are significantly
warranted. In addition, we have shown that inhibiting Gαq expression leads to suppression of
mitochondrial complex 1 subunits (i.e., Nd2, Nd4l, Nd5) and consequent disruptions in mitochondrial
function and energy metabolism in leukemic cells [84], providing a mechanism linking mitochondrial
dysfunction with leukemogenesis via Gαq signaling activation. Thus, targeting β-catenin signaling
and energy metabolism by blocking Gαq signaling could represent a novel therapeutic approach to
reduce leukemogenesis in aggressive AML.

2.3. Rhodospin Class of GPCRs

The rhodopsin class is by far the largest GPCR family, comprising almost 85% of GPCRs.
The leucine-rich repeat-containing (Lgr) proteins are a distinct subset of evolutionarily conserved
rhodopsin GPCRs containing a large extracellular domain with multiple leucine-rich repeats [85].
The Lgr family member Lgr5 is a known stem cell marker in certain types of tissue [86,87].
In vivo lineage tracing experiments using a heritable-inducible lacZ reporter gene introduced into
Lgr5-expressing cells has shown that Lgr5 is a marker of adult intestinal stem cells. Further examination
of Lgr5 expression patterns in mice has identified discrete populations of Lgr5-expressing cells in
organs including skin, stomach, mammary gland, tongue, kidney and endometrium, indicating that
Lgr5 may function as a universal epithelial stem cell marker [86,88–91].

Epithelial homeostasis in the adult intestine is regulated by several signaling pathways and key
among these is the Wnt signaling pathway [92]. Hyperactivation of the Wnt signaling pathway is
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associated with transformation of the intestinal epithelium [93]. Lgr5 has been identified as a Wnt target
gene and overexpression of Lgr5 antagonizes Wnt signaling [94–96]. The exact mechanism remains
unknown but the potential outcome of Lgr5 antagonism would result in β-catenin phosphorylation
and targeting for degradation [76]. In addition, overexpression of Lgr5 in colon cancer and HEK293
cells decreases cell motility and stimulates cell-cell adhesion [97]. R-spondin proteins (Rspo1-4)
have been identified as ligands of the Lgr family [98]. The inhibitory effect of Lgr5 appears to be
abolished in the presence of Rspo [76], and one potential model for potentiation of Wnt involves
direct interaction and formation of a Wnt-potentiating complex, Rspo/Lgr5/Wnt/Fzd, at the plasma
membrane [94]. Two highly homologous Wnt target genes, Rnf43 and Znrf3, also play a role in the
complex regulation of Wnt signaling at the receptor level. Both Rnf43 and Znrf3 are ubiquitin ligases
found specifically in Lgr5 crypt stem cells and enriched in colon cancer [99–101]. These ubiquitin
ligases mediate multiubiquitination of lysines in the cytoplasmic transmembrane domains of Fzds that
results in rapid endocytosis of Wnt receptors and their destruction by lysosomes. Loss of Rnf43 and
Znrf3 expression results in hyperresponsiveness to Wnt signals leading to the formation of abnormal
adenomas consisting entirely of Lgr5 stem cells [100]. Since Rnf43 and Znrf3 are encoded by Wnt target
genes, this represents an intricate negative feedback loop controlling Wnt receptor expression [81].
Furthermore, it has been demonstrated that the Rnf43/Znrf3-mediated membrane clearance of Wnt
receptors can be reversed by R-spondin [101], and thus Rspo-Lgr complexes neutralize Rnf43/Znrf3 to
allow persistence of Fzds receptors and boosting Wnt signal strength (Figure 2).

Int. J. Mol. Sci. 2016, 17, 707 6 of 18 

 

phosphorylation and targeting for degradation [76]. In addition, overexpression of Lgr5 in colon 
cancer and HEK293 cells decreases cell motility and stimulates cell-cell adhesion [97]. R-spondin 
proteins (Rspo1-4) have been identified as ligands of the Lgr family [98]. The inhibitory effect of Lgr5 
appears to be abolished in the presence of Rspo [76], and one potential model for potentiation of Wnt 
involves direct interaction and formation of a Wnt-potentiating complex, Rspo/Lgr5/Wnt/Fzd, at the 
plasma membrane [94]. Two highly homologous Wnt target genes, Rnf43 and Znrf3, also play a role 
in the complex regulation of Wnt signaling at the receptor level. Both Rnf43 and Znrf3 are ubiquitin 
ligases found specifically in Lgr5 crypt stem cells and enriched in colon cancer [99–101]. These 
ubiquitin ligases mediate multiubiquitination of lysines in the cytoplasmic transmembrane domains 
of Fzds that results in rapid endocytosis of Wnt receptors and their destruction by lysosomes. Loss of 
Rnf43 and Znrf3 expression results in hyperresponsiveness to Wnt signals leading to the formation 
of abnormal adenomas consisting entirely of Lgr5 stem cells [100]. Since Rnf43 and Znrf3 are 
encoded by Wnt target genes, this represents an intricate negative feedback loop controlling Wnt 
receptor expression [81]. Furthermore, it has been demonstrated that the Rnf43/Znrf3-mediated 
membrane clearance of Wnt receptors can be reversed by R-spondin [101], and thus Rspo-Lgr 
complexes neutralize Rnf43/Znrf3 to allow persistence of Fzds receptors and boosting Wnt signal 
strength (Figure 2). 

 
Figure 2. The intensity of Wnt signaling is enhanced by the formation of the Rspo/Lgr-Wnt 
potentiating complex at the cell membrane. The Wnt-activated ubiquitin ligases, Rnf43 and Znrf3, 
function in a negative feedback circuitry to control the intensity of Wnt signaling activation. 
Rnf43/Znrf3 binds to Fzd receptors leading to polyubiquitination, endocytosis and destruction by 
lysomes [87]. In the presence of Rspo Rnf43/Znrf3 is neutralized facilitating the accumulation of Fzd 
receptors at the plasma membrane and enhances the intensity of Wnt signal strength [85]. 

A recent study by Baker et al. has demonstrated the role of Lgr5-expressing cells in the 
development of colon cancer. By applying in situ hybridization (ISH) to a panel of human normal 
colon, adenoma and carcinoma samples, significant increase in levels of Lgr5 mRNA is observed in 
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Figure 2. The intensity of Wnt signaling is enhanced by the formation of the Rspo/Lgr-Wnt potentiating
complex at the cell membrane. The Wnt-activated ubiquitin ligases, Rnf43 and Znrf3, function in a
negative feedback circuitry to control the intensity of Wnt signaling activation. Rnf43/Znrf3 binds
to Fzd receptors leading to polyubiquitination, endocytosis and destruction by lysomes [87]. In the
presence of Rspo Rnf43/Znrf3 is neutralized facilitating the accumulation of Fzd receptors at the
plasma membrane and enhances the intensity of Wnt signal strength [85].

A recent study by Baker et al. has demonstrated the role of Lgr5-expressing cells in the
development of colon cancer. By applying in situ hybridization (ISH) to a panel of human normal
colon, adenoma and carcinoma samples, significant increase in levels of Lgr5 mRNA is observed in
all serrated lesions that is accompanied by expansion of proliferative and invasive compartments,
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suggesting that Lgr5 may support invasion and metastasis [102]. Within the colonic crypts, many
cells are endowed with stem cell potential but only a small percentage of the total Lgr5-expressing
cells actually functions as stem cells at any one time [103]. Within the malignant adenomatous crypts,
however, dysregulation of the processes that govern normal stem cell maintenance results in an
elevated number of functional stem cells [104]. Deducing the connection between Wnt signaling, Lgr5
signaling and cancer cell migration will improve our understanding of the role for GPCR signaling in
migration of normal and malignant stem cells.

Interestingly, Lgr4 and Lgr6, two close family members of Lgr5, have also been implicated
in the regulation of stem cell properties. Lgr6 expression is found to mark hair follicle epidermal
stem cells, whereas Lgr4 expression plays a major role in prostate stem cell function [79,105]. Lgr4
inactivation in mice leads to severe developmental deficiencies in multiple organs. Lgr4 knockout is
associated with embryonic lethality in 60% of mice with surviving mice displaying infertility, delayed
osteoblast differentiation, renal hypoplasia, malformation of the eye anterior segment, disrupted
innate immunity and impaired mammary gland branching morphogenesis and mammary stem
cells [106–111]. Lgr4 is also shown to enhance Wnt signaling through association with R-spondin,
similar to the activity of Lgr5 [94]. These observations indicate a potential role for Lgr4 in regulating
stem cells. Lgr4 is highly expressed during early stages of prostate development and its expression
is restricted to the prostate stem cell (PSC) compartment in adults [79]. Deletion of Lgr4 expression
leads to disrupted PSC cell fate determination resulting in arrested epithelial differentiation during
prostate development [79]. These phenotypic effects are orchestrated by Lgr4-mediated potentiation of
Wnt/β-catenin signaling. Consistently, Lgr4 deletion substantially reduces the intensity of β-catenin
immunofluorescent staining localized to the nuclei of cultured prostate spheres [79]. Lgr4 signaling
is enhanced by stimulation with Rspo3, and it is speculated that modest Wnt/β-catenin activity is
required for PSC self-renewal and maintenance, while robust Wnt/β-catenin activity induced by
combination of R-spondin and Lgr4 regulates PSC differentiation status [79]. Strikingly, the role of
Lgr4 in cancer has been recently recognized, and Lgr4 has been reported to promote tumor metastasis
through a PI3K-Akt-Erk-β-catenin-Tcf signaling axis in colon cancer [112]. Our unpublished data
have also shown a fundamental role for Lgr4 in leukemia development through its regulation of LSC
activity in AML [113]. These data indicate Lgr4 as a potential therapeutic target in cancer therapies.

The importance of GPCR signaling in driving LSC activity is further exemplified by the
prostaglandin E (EP) receptors, another rhodospin class of GPCRs. Prostaglandins are a product
of the cyclooxygenases Cox1 and Cox2 and their functions are initiated following binding of
prostaglandins to their cognate GPCR receptors (EP1-4). EP1 is a Gαq-coupled receptor that promotes
calcium mobilization and PKC activation, whereas EP2 and EP4 couple to Gαs and stimulate cAMP
accumulation and PKA activation [114]. We have previously shown that Cox1 and EP1 are upregulated
in MLL fusion-derived LSCs, and that the Cox inhibitor, indomethacin, reduces β-catenin activity
and impairs in vivo LSC function (i.e., self-renewal and frequency) [78]. Although the mechanism
of EP/Wnt signaling crosstalk in LSCs remains elusive, the complexity of such integrated signaling
mechanisms has been interrogated in the case of colorectal cancers. Using colorectal carcinoma
cells in vitro, it is shown that the EP ligand, PGE2, increases the activation of Tcf/Lef transcription
factors, induces the loss of β-catenin phosphorylation and increases its nuclear accumulation [115].
This process is found to be independent of the PKA-cAMP pathway but rather dependent on the
direct association of Gαs with the β-catenin destruction complex member and Rgs protein, Axin [56].
Overexpression of the regulator of G protein (Rgs) binding domain of Axin, the region capable of
stimulating GTPase activity and serving as a molecular scaffold, inhibits PGE2-induced transcriptional
activation of Tcf/Lef [114]. Since the Rgs domain of Axin also serves as the site of APC binding, it is
presumed that the binding of Gαs to Axin results in the displacement of APC and loss of β-catenin
phosphorylation leading to its nuclear accumulation [56] (Figure 3).
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Figure 3. Diversity in GPCR-mediated regulation of Wnt/β-catenin. Wnt stimulation of the
Fzd/β-catenin pathway activates the phosphoprotein Dvl, leading to inhibition of the β-catenin
destruction complex composed of APC, the serine/threonine kinase glycogen synthase kinase 3β
(GSK-3β) and Axin [116,117]. Cytoplasmic β-catenin then translocates to the nucleus, where it
cooperates with the Tcf/Lef transcription factors to modify transcription of a set of Wnt target genes,
primarily cell cycle regulators [53]. EP, a GPCR, utilizes distinct mechanisms to regulate β-catenin
expression in cancer. EP promotes cancer cell growth by modulating a Gas-Axin-β-catenin signaling
axis [114]. Binding of the PGE2 agonist activates Gαs, which binds to Axin displacing APC from the
destruction complex leading to stabilization and translocation of active β-catenin [56]. The diversity of
GPCR signaling allows cancer cells to harness varying mechanisms to control key oncogenic targets. Ó:
signaling activation; K: signaling inhibition; grey curved arrow indicates translocation; dashed line
represents nucleus.

The EP receptors have demonstrated roles in a variety of malignancies and are widely expressed
in primary invasive ductal carcinomas of the breast [118]. Emerging evidence indicates a role for
EP4/Cox2 in maintaining the breast CSC phenotype. Kundu et al. [118] have observed upregulation of
both EP4 and Cox2 in a sub-population of tumor-initiating cells and in metastatic and/or basal-type
cells but not in non-metastatic or luminal-type cells, implicating association of EP4 and Cox2 with
a malignant phenotype. As a result, a clinically relevant EP4 antagonist (RQ-15986) inhibits breast
CSCs, metastasis and tumorigencity in vivo [118]. A number of clinical trials are currently being
conducted to evaluate the effect of Cox2 inhibition in cancer but such a global targeting strategy
is resulting in potential cardiovascular complications that may limit its applicability [42,119,120].
As such, EP4 antagonism likely represents a safer and more effective treatment strategy than global
Cox2 inhibition [121].
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2.4. The Complexity of GPCR-Mediated Signaling

The complexity of GPCR-mediated signaling is illustrated by its integrative crosstalk with
non-GPCR driven signaling cascades, such as the EGFR (epidermal growth factor) pathway, as reported
in many cell types [122–126]. EGFR controls a wide variety of biological processes such as
proliferation, differentiation, migration and modulation of apoptosis [127]. Aberrant receptor
signaling via overexpression, mutation or autocrine signaling loops has been frequently implicated in
hyperproliferative disorders including cancer [128–132]. EGFR and its ligands are overexpressed and
correlate with poor prognosis in various malignancies, including glioblastoma, breast, ovarian, gastric,
esophageal and cervical cancers [132]. GPCR signaling is capable of transactivating the EFGR pathway
and as such, a combination of the broad diversity of GPCR signaling with the potent signaling capacity
of EFGR could serve as a paradigm for inter-receptor crosstalk [124].

EGFR transactivaton can proceed via several mechanisms (e.g., stimulation of GPCR)
leading to activation of a metalloprotease, inducing pro-HB-EGF processing [133]. Subsequent
release of the mature growth factor activates EGFR and its downstream signaling cascades
(Figure 4) [133]. Metalloproteases are zinc dependent endopeptidases that elicit proteolytic degradation
or activation of cell surface and extracellular matrix (ECM) proteins to modulate both cell-cell and
cell-ECM interactions to influence cell proliferation, differentiation and survival [134]. Recently,
the metalloproteases, which play a crucial role in the ligand-dependent EGFR transactivation
mechanism, have been identified as members of the ADAM (a disintegrin and metalloprotease) family
of zinc-dependent metalloproteases [135]. The widespread occurrence of this signaling mechanism
has been verified in many cancer cell types, for example, HB-EGF shedding and subsequent EGFR
transactivation is mediated by ADAM10 and ADAM17 in lung carcinoma cells [135,136]. ADAM10 is
also involved in the shedding of other receptors such as the HER2 receptor resulting in its constitutive
activation [137] and overexpression of ADAM10 has been reported in several malignancies including
gastric, prostate, liver and breast cancer [138–140].
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Figure 4. GPCR-mediated transactivation of EGFR. GPCRs induce the transactivation of EGFR through
several mediators, including SRC kinases, Ca2+, PKC and PKA [133]. GPCR stimulation leads to
activation of several members of the ADAM family of metalloproteases that generates the mature EGFR
ligand from pro-HB-EGF. The release of the mature growth factor activates the EFGR and its subsequent
downstream signaling cascades including activation of the mitogen-activated protein kinase (MAPK)
transduction pathway controlling cell proliferation [135]. Adapted from [141].
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Despite the widespread overexpression of EGFR in cancer, EGFR-targeted therapies have
produced only modest clinical responses in patients [142]. The diversity of GPCR, its heterogeneous
expression in cancer and its complex cross signaling via GPCR-mediated EGFR-transactivation as
discussed in this review may help explain this suboptimal clinical response. The progression of colon,
lung, breast, head and neck, prostate and ovarian cancers have all been reported to be mediated, at
least in part, by GPCR-EGFR crosstalk [143], indicating that combined GPCR and EGFR inhibition
could induce more pronounced clinical responses. In support of this rationale, preclinical studies
have shown that combined inhibition of GPCR and EGFR pathways can induce synergistic growth
inhibition in head and neck squamous cell carcinoma, non-small cell lung cancer and pancreatic
cancer [144–146]. Increased understanding of the specific signaling pathways involved in EGFR
transactivation by GPCRs will facilitate the identification of multi-component molecular targeting
strategies that may produce more pronounced clinical responses in patients. Furthermore, given the
convincing evidence that is now emerging detailing the vital role played by GPCR in driving the
CSC phenotype (summarized in Table 1), it is likely that integrative signaling pathway crosstalk as
discussed in this review also contributes to the complexity of CSC signaling and its investigation is
significantly warranted.

Table 1. The roles of GPCRs in normal and malignant stem cells. The roles of selected GPCRs
in functional regulation of both normal and malignant stem cells are listed above. Abbreviations:
ESC, embryonic stem cell; iPSC, induced pluripotent stem cells; AML, acute myeloid leukemia; LSC,
leukemic stem cell; CSC, cancer stem cell; GPR84, G protein-coupled receptor 84; Lgr, leucine-rich
repeat-containing G protein-coupled receptor; EP, prostaglandin E.

GPCR Role Stem Cell Type Reference

Gαs Promotes proliferation and pluripotency Mouse ESCs [11]
Gαi Regulates morphology and cellular organization Human iPSCs [10]

Gαi/o Regulates Wnt signaling activation Human ESCs [42,44]

Fzd7 Inhibition of Fzd7 induces significant morphological
alterations with loss of pluripotency gene Oct4 Human ECSs [57]

GPR84 Promotes β-catenin signaling and LSC maintenance AML LSCs [70]

Gαq
Enhances β-catenin signaling contributing to

maintenance of fully-developed AML AML LSCs [71]

Lgr5 Potentiates Wnt signaling, drives migration
and metastasis Colon CSCs [81,86,88]

Lgr6 Drives stem cell self-renewal Hair follicle epidermal
stem cells [66]

Lgr4 Enhances Wnt signaling, promotes CSC self-renewal
and maintenance

Prostate CSCs, mammary
CSCs and AML LSCs [66,92,98,100]

EP1 Regulates β-catenin driven self-renewal and stem
cell frequency AML LSCs [65,101]

EP4 Enhances metastasis and tumorigenicity Breast CSCs [103]

3. Clinical Implications of GPCR-Mediated Regulation of CSCs

GPCRs represent the largest class of cell surface receptors and are currently targeted by
approximately 30%–40% of marketed drugs [147]. Several alternative therapeutic targeting strategies
exist including broad spectrum drugs which simultaneously and non-specifically antagonize multiple
GPCRs, the use of chimeric molecules comprised of several GPCR agonists/antagonists and
mechanisms to inhibit GPCR oligomerization [148–151]. Recently, a novel strategy involving the
use of pepducins that functions as agonists or antagonists and targets the intracellular domain of
GPCRs has been developed [152,153].
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Emerging evidence that the crucial CSC population, which drives resistance to therapy and
patient relapse, is also reliant on GPCR-mediated signaling presents opportunities for therapeutic
exploitation. Further characterization of key GPCR-mediated signaling cascades (e.g., Wnt/β-catenin)
that contribute to CSC self-renewal will facilitate the development of CSC-targeted therapeutic
strategies. Given the important role of aberrant Wnt/β-catenin in promoting CSC activity, substantial
efforts have focused on the development of therapeutic approaches to target this pathway. However,
progress has been thwarted by the extremely complex nature of Wnt/β-catenin signaling, notably the
crosstalk with various non-Wnt factors [154,155]. The role of integrative signaling between GPCR- and
non-GPCR-mediated pathways is beginning to be realized in cancer [124,141] and such complex
signaling mechanisms must also be elucidated for the highly tumorigenic CSC population. This review
has highlighted several GPCR-mediated CSC-targeting small molecule inhibitors that have shown
promise in pre-clinical studies. Further investigations will hopefully drive preclinically validated
inhibitors into clinical studies where their true therapeutic efficacies against the critical CSC population
can be evaluated and the results of such studies will be eagerly anticipated.
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