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Social deficits are a core symptom of autism spectrum disorder; however, the perturbed neural mechanisms underpinning these

deficits remain unclear. It has been suggested that social prediction errors—coding discrepancies between the predicted and actual

outcome of another’s decisions—might play a crucial role in processing social information. While the gyral surface of the anterior

cingulate cortex signalled social prediction errors in typically developing individuals, this crucial social signal was altered in

individuals with autism spectrum disorder. Importantly, the degree to which social prediction error signalling was aberrant

correlated with diagnostic measures of social deficits. Effective connectivity analyses further revealed that, in typically developing

individuals but not in autism spectrum disorder, the magnitude of social prediction errors was driven by input from the ventro-

medial prefrontal cortex. These data provide a novel insight into the neural substrates underlying autism spectrum disorder social

symptom severity, and further research into the gyral surface of the anterior cingulate cortex and ventromedial prefrontal cortex

could provide more targeted therapies to help ameliorate social deficits in autism spectrum disorder.
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Introduction
One of the cardinal characteristics of autism spectrum dis-

order (ASD) is a deficit in social interaction along with an

inability to understand the beliefs and intentions of others.

However, the computational mechanisms that underpin this

social deficit are currently unclear. Recent theoretical accounts

of ASD (Lawson et al., 2014; Van de Cruys et al., 2014)

propose that deficits in understanding others may arise due

to aberrant computation of socially-specific prediction errors.

Traditionally, prediction errors signal the discrepancy between

our own expectations and the actual outcomes of an action

(e.g. earning a reward); however, social prediction errors shift

the frame of reference from the first person to the third
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person perspective by comparing actual outcomes with the

perceived expectations of another person. One candidate

brain area for signalling social prediction errors is the gyral

surface of the anterior cingulate cortex (ACCg) as indicated

by converging evidence from both human and non-human

primates (Apps et al., 2013b, 2016). First, the ACCg has a

unique connectivity fingerprint compared to other regions of

the anterior cingulate cortex such as the adjacent sulcus of the

anterior cingulate cortex (ACCs). While both the ACCs and

ACCg are interconnected with brain regions dedicated to pro-

cessing reward-related information (Yeterian and Pandya,

1991; Lynd-Balta and Haber, 1994; Haber et al., 1995),

i.e. indicating a positive outcome of an action, the ACCg

has additional unique anatomical connections with brain re-

gions that process social information (Vogt and Pandya,

1987; Seltzer and Pandya, 1989; Barbas et al., 1999).

Specifically, the ACCg has stronger connections to regions

within the temporoparietal junction and dorsomedial pre-

frontal cortex—regions often implicated in social cognition

and mentalizing processes—that do not overlap with connec-

tions from the adjacent regions of the cingulate cortex (Apps

et al., 2013b, 2016). These unique connections facilitate the

processing of reward-related information for others in the

ACCg. Second, lesions specifically to the ACCg that leave

the ACCs intact have been shown to impair the processing

of social stimuli and social behaviours in non-human primates

(Rudebeck et al., 2006). Third, single-unit recordings in non-

human primates show that a larger proportion of ACCg neu-

rons, compared with those in orbitofrontal cortex or ACCs,

track the rewards and outcomes of others (Chang et al.,

2013). Hill et al. (2016) recently replicated this in humans

by demonstrating that neurons in the rostral ACC (putatively

ACCg) encode both the expected outcome and discrepancies

between the expected and actual outcome of another person’s

decision (i.e. social prediction errors) when learning from an-

other through observation. This coding was present only in

the ACCg and not the amygdala or ventromedial prefrontal

cortex (vmPFC) suggesting a certain degree of specificity for

social prediction error coding in the ACCg. Finally, there is a

large body of neuroimaging evidence demonstrating that the

ACCg encodes reward-related information for other individ-

uals such as the probability that another individual will re-

ceive a reward (Lockwood et al., 2015), the net-value (cost-

benefit) of another individual’s decision (Apps and Ramnani,

2014), and the discrepancy between another person’s expect-

ations and the actual outcomes, i.e. social prediction errors

(Behrens et al., 2008; Apps et al., 2012, 2013a, 2015).

Crucially, in all these studies the ACCg responded exclusively

to outcome-related information about others (i.e. only the

third person perspective), but not to outcome-related informa-

tion for themselves or non-biological agents (i.e. computer

players).

Interestingly, the ACCg has been shown to be affected by

ASD pathology (Torta and Cauda, 2011) as indicated by

post-mortem studies showing decreased neuron size and

density in the ACCg of individuals with ASD (Simms

et al., 2009). Neuroimaging studies have shown aberrant

ACCg resting connectivity in a large sample of ASD indi-

viduals (Balsters et al., 2016), and a meta-analysis of func-

tional MRI studies in ASD requiring social information

processing showed consistently reduced ACCg activity

during social tasks (Di Martino et al., 2009). However, it

is unclear what mechanism links together structural and

functional changes in the ACCg in ASD and deficits in

social behaviour. Here, we test whether individuals with

ASD have a deficit in correctly representing social predic-

tion errors when tracking the expectations of others and

whether this putative social deficit can be linked to abnor-

mal activity in the ACCg.

Materials and methods

Participants

Twenty-eight ASD and 28 typically developing (TD) individ-
uals participated in this study. All participants were male and
self-reported as right-handed. Twelve ASD and eight TD indi-
viduals were excluded due to poor task performance (555%
correct responses in any condition: three TD, nine ASD), ex-
cessive head movement [42 standard deviations (SD) of the
group specific mean framewise displacement: one TD, one
ASD], or technical difficulties during scanning (signal dropout:
three TD, two ASD; missing responses: one TD). All analyses
included 16 ASD (age: 20.97 years � 3.17 years; IQ
115.5 � 10.61) and 20 TD individuals (age: 22.17
years � 5.2 years; IQ: 118 � 11) who were matched for age,
IQ, gender, and handedness. ASD participants were recruited
through an associated genetics research programme, clinical
services, schools, and advocacy groups. TD individuals were
recruited through schools, the university (Trinity College
Dublin), and volunteer websites. Ethical approval was ob-
tained from St. James’s Hospital/AMNCH (ref: 2013/08/09)
and the Linn Dara CAMHS Ethics Committees (ref: 2013/
01/15). Written informed consents/assents were obtained
from all participants and their parents (where under 18 years
of age).

Exclusion criteria included a Full Scale IQ (FSIQ) 580,
known psychiatric, neurological, or genetic disorders, a history
of a loss of consciousness for 45 min. TD individuals were
excluded if they had a first-degree relative with ASD or scored
450 on the Social Responsiveness Scale (SRS; Constantino
et al., 2003) or 410 on the Social Communication
Questionnaire (SCQ; Rutter et al., 2013). The adult prepubli-
cation version of the SRS was used with permission in cases 18
years or older (Constantino and Todd, 2005). All participants
had normal, or corrected to normal, vision.

Diagnostic assessments and cognitive
measures

Clinical diagnosis of ASD, which was established prior to re-
cruitment to the study for all ASD participants, was confirmed
using the Autism Diagnostic Observation Schedule (ADOS;
Lord et al., 2000) and the Autism Diagnostic Interview
Revised (ADI-R; Lord et al., 1994), and clinical consensus
diagnosis carried out by an expert clinician (L.G.) in
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accordance with DSM-IV-TR criteria. FSIQ was measured

using the four-subtest version of the Wechsler Abbreviated

Scale of Intelligence (WASI; Wechsler, 1999) or the Wechsler
Intelligence scale for Children-Fourth Edition (WISC-IV;

Wechsler, 2003).

Task

Here we developed a novel false belief paradigm that is more

amenable to event-related functional MRI than traditional
Theory of Mind (ToM) paradigms (Fig. 1). This paradigm

had three players: ‘Player 1’ (the participant inside the MRI

scanner; first person perspective), ‘Player 2’ (the stooge outside
the MRI scanner; third person perspective), and ‘Computer’ (a

computer generated player; non-biological control). Before the

participant went into the MRI scanner they met the stooge

(Player 2) outside the MRI scanner and practised the task to-
gether for �15 min. This gave the participant the feeling that

Player 2 was really playing outside the MRI scanner, even

though Player 2’s responses were computer-generated and
identical for each participant. After the functional MRI experi-

ment all participants confirmed that they believed Player 2’s

responses were made by the stooge outside the scanner.

A trial began with the presentation of two white ‘Doors’

(duration up to 1 s). Participants were instructed that there

was a prize behind one of the doors (E1) and if they chose
the correct door they would win E1 on that round. If a door

was not selected after 1 s the trial was marked as missed and

any reward-related content for that trial was replaced with the

word ‘Missed’ in red letters. Printed underneath the ‘Doors’
was the name of the Agent who had to respond on that trial

(Fig. 1A). For example, if ‘Player 1’ was printed under the

‘Doors’ then the participant in the MRI scanner could
choose a door in order to win a prize for themselves. If

‘Player 2’ or ‘Computer’ was printed underneath the ‘Doors’

then the participant in the MRI scanner would watch what
they believed to be the person outside the MRI scanner or

the Computer choose a door to try and win a prize. As soon

as the left or right door was chosen it would change colour to

red or green (duration 500 ms). When a door turned green it
indicated that the Agent playing that trial had likely won E1,

if the door turned red then whoever was playing that trial had

likely not picked the winning door and would not win any-
thing on that trial. The green-win/red-neutral contingency was

true for the majority of trials (66%). For the remaining 34%

of trials this contingency was reversed (green-neutral/red-win).
For Players 1 and 2 the onset of the colour change varied from

Figure 1 Task schematic and behavioural results. (A) A trial begins with the presentation of two white rectangles (doors) and the label of

the Agent playing that trial. Once a door was chosen it changed colour indicating if the Agent has probably chosen the door with a prize (green) or

the empty door (red). (B) The participant in the MRI scanner was shown the actual outcome before the other Agents. At this point the participant

can determine if the outcome is expected (green-win/red-neutral) or unexpected (green-neutral/red-win). (C) The participant indicated if the

outcome was expected (T) or unexpected (F) for all Agents and trials, after which the outcome is revealed to all Agents. Behavioural results

showing accuracy [i.e. if participants correctly recognized that the outcome of the trial was expected (D) or unexpected (E)] shown for each Agent.
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trial-to-trial highlighting variability in response times, whereas
the change in colour for the Computer always occurred 500 ms
after the two white doors appeared. This manipulation rein-
forced the feeling that Player 2 was a real person outside the
MRI scanner.

The participant inside the MRI scanner was informed that
they would always learn the outcome of a trial (i.e. what is
behind the door) before the other Agents. We refer to this as
privileged information (Fig. 1B). Once the participant in the
MRI scanner learned the actual outcome they could determine
whether the expectation was true (green-win/red-neutral) or
false (green-neutral/red-win). While expected outcome trials
should not elicit a prediction error (expected outcome =
actual outcome), unexpected outcome trials should elicit a pre-
diction error given that the expected outcome was not equal to
the actual outcome. Depending on which Agent was perform-
ing that trial it would either elicit a first person prediction
error, a third person prediction error, or a Computer predic-
tion error.

After the privileged information cue the participant in the
MRI scanner was prompted to respond to indicate if the out-
come of the trial was expected (T) or unexpected (F) (Fig. 1C).
The participant had to indicate this for all trials, keeping the
participant engaged in trials for other Agents as well as their
own. Finally, the outcome is revealed to all participants.

Conditions

The 12 trial types were embedded in a 2 � 3 � 2 factorial
design (three factors with 2/3 levels).

Factor 1: Belief (predicted outcome or prediction error). For
66% of trials the outcomes were predictable (predictable out-
come trials; i.e. expected outcome = actual outcome; green
door = win/red door = no win). For the remaining 34% of
trials the outcome was unexpected eliciting a prediction error
(prediction error trials; i.e. expected outcome 6¼ actual out-
come; green door = no win/red door = win).

Factor 2: Agent (Player 1; Player 2; Computer). A trial could
be performed by one of three agents: Player 1 (first person
perspective), Player 2 (third person perspective), or the
Computer (non-biological control).

Factor 3: Reward (Positive or neutral). Participants could
either win money on a trial (positive) or not win money on
a trial (neutral).

This 2 � 3 � 2 factorial resulted in 12 conditions. Condition
1: first person positive predictable outcome. Player 1 (person
inside the MRI scanner) expects to win E1 (green door) and
they do win E1 (39 trials); Condition 2: first person neutral
predictable outcome. Player 1 (person inside the MRI scanner)
does not expect to win anything on this trial (red door) and
they do not win anything (39 trials); Condition 3: first person
positive prediction error. Player 1 (person inside the MRI scan-
ner) does not expect to win anything on this trial (red door)
but they actually win E1 (21 trials); Condition 4: first person
neutral prediction error. Player 1 (person inside the MRI scan-
ner) expects to win E1 (green door) but they do not win any-
thing (21 trials); Conditions 5–8 are identical to conditions 1–
4; however, they are performed by Player 2 (third person per-
spective); and Conditions 9–12 are identical to conditions 1–4,
however, they are performed by the Computer.

All participants completed three sessions of the task, per-
forming a total of 360 trials (120 per session). Each session

included 40 trials per agent [26 predictable outcome trials (13
positive and 13 neutral) and 14 prediction error trials (seven
positive and seven neutral)]. Trials were blocked so that the
agent was constant for 10 trials, i.e. 10 first person trials,
followed by 10 Computer trials, etc. The order of agents
was pseudo-randomized so that the agent changed every 10
trials.

The aim of this investigation was to examine activity related to
group differences in social prediction errors. Regions showing a
social prediction error would be established through an
Agent � Belief contrast, specifically a larger magnitude response
to prediction error compared to predictable outcome trials that is
greater for the third person perspective compared to first person
and Computer. Reward could be included as an additional factor
in this contrast, given that there may be differences in the sign of
the prediction error signal for positive compared to negative out-
comes (O’Doherty et al., 2003; Schultz, 2007). We therefore
focused on Group � Agent � Belief, and Group � Agent �
Belief � Reward interactions.

Behavioural analyses

Behavioural data were analysed using SPSSv23. Two sample t-
tests were used to examine group differences in age, IQ meas-
ures, SRS, and SCQ scores. Mixed model (between/within sub-
jects) ANOVAs were used to examine accuracy and reaction
time data. Pearson’s correlations were conducted to examine
the relationship between the blood oxygen level-dependent
(BOLD) response and SRS score and accuracy. Correlations
between BOLD response and ADOS/ADI scores were calcu-
lated using Spearman’s rho, as ADOS/ADI scores are ranked/
ordinal. Correlations were corrected for multiple comparisons
using false discovery rate (FDR) correction.

Functional imaging and analyses

Apparatus

Subjects lay supine in an MRI scanner with the fingers of their
right hand positioned on a 2-button MRI-compatible response
box. Stimuli were projected onto a screen behind the subject
and viewed in a mirror positioned above the subject’s face.
Presentation software (Neurobehavioral Systems, Inc., USA)
was used for stimulus presentation both inside and outside
the scanner. Transistor-Transistor Logic (TTL) pulses were
used to drive the visual stimuli in Presentation.

Data acquisition

A high-resolution T1-weighted anatomic magnetization-pre-
pared rapid gradient echo image (field of view = 230 mm,
thickness = 0.9 mm, voxel size = 0.9 mm � 0.9 mm � 0.9 mm)
was acquired first. Then each participant performed three
echo planar imaging (EPI) sessions containing 494 volumes
lasting 16.5 min. The field of view covered the whole brain,
240 mm � 240 mm (80 � 80 voxels), and 40 axial slices were
acquired with a voxel size of 3 mm � 3 mm � 3 mm (0.3 mm
slice gap), repetition time = 2 s, echo time = 25 ms, flip
angle = 90�. In between each EPI session, subjects had a 2-
min rest while T1- and T2-weighted clinical scans were
acquired. These images were not used for any analytical pur-
poses. All MRI data were collected on a Philips 3 T Achieva
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MRI Scanner using a 32 channel head coil (Trinity College
Dublin).

Preprocessing

Scans were preprocessed using SPM12 (www.fil.ion.ucl.ac.uk/
spm). First, structural and functional images were coregistered
to the T1 template, then functional images were coregistered to
structural images. After this, functional images were realigned,
slice-time corrected, normalized to MNI space using the unified
segmentation approach (Ashburner and Friston, 2005), resliced
to 3 � 3 � 3 mm, and smoothed with an 8 mm full-width half-
maximum kernel. Structural images were segmented to gener-
ate grey matter, white matter, and CSF images for each
subject. These would be used later to generate additional
regressors of no interest (CompCorr; Chai et al., 2012). Two
sample t-tests comparing all six head motion directions did not
show any significant differences between ASD and TD groups
(P40.2).

Statistical analyses

First-level single-subject analyses

Eight conditions were modelled at the first level. The onsets of
the instruction cue (Doors) were modelled as one event, includ-
ing an additional parametric modulator coding for any re-
sponse made the participant [i.e. 1 if the participant made a
response to select a Door (including accidental responses made
by the participant to Player 2 or Computer trials), and 0 if the
participant did not make a response]. The onset of the privi-
leged information cue was modelled as six event types. Rather
than modelling all 12 conditions, the factor of Reward was
excluded reducing the model to six conditions: first person
predictable outcome and prediction error trials; third person
predictable outcome and prediction error trials; Computer pre-
dictable outcome and prediction error trials. To account for
signed prediction errors [i.e. positive haemodynamic response
function (HRF) for positive outcomes and negative HRF for
neutral outcomes] and unsigned prediction errors (i.e. positive
HRF for positive and neutral outcomes) each of the six events
included a parametric modulator coding the outcome of the
trial (1 for positive outcomes and �1 for neutral outcomes).
Finally, the onset of the belief response cue was also modelled
as the eighth event. Only correct trials were included in the
analysis, incorrect and missed trials were not modelled. Trials
where the participant made an incorrect response could be
made for a number of reasons, such as missing the initial in-
struction cue, failing to hold the predicted value of the cue in
working memory, etc. Examining trials where the participant
could not identify whether the outcome was predicted or not
would therefore be invalid because the mechanisms underlying
the processing of the outcomes are impossible to interpret. It is
not clear whether expected outcome trials that were reported
as unexpected would also elicit a prediction error, or whether
unexpected outcome trials reported as expected would fail to
elicit a prediction error signal. Due to this ambiguity these
trials were ignored to avoid any potentially confounding ef-
fects in the analyses. All events were convolved with the ca-
nonical HRF. The residual effects of head motion were
modelled as covariates of no interest in the analysis by includ-
ing the six head motion parameters estimated during the re-
alignment stage of the preprocessing. We additionally included
the first five principle components derived from white matter

and CSF masks as additional regressors of no interest (Chai
et al., 2012). Prior to the study, a set of planned experimental
timings was carefully checked so that they resulted in an es-
timable general linear model, in which the events of interest
were uncorrelated with other event types (r5 0.2). The regres-
sion coefficients were then estimated using robust linear regres-
sion (Diedrichsen and Shadmehr, 2005), correcting for
movement artefacts not accounted for by the head movement,
white matter, or CSF regressors, by down-weighting noisy
images.

Second-level random-effects group analyses

Second-level analyses were performed using the permutation
testing (10 000 permutations) in Randomise (Jenkinson et al.,
2012; Winkler et al., 2014) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
). Contrasts for main effects and interactions were defined at
the first level and input into second level two-sample t-test
design matrices. Results are reported at P5 0.05, familywise
error (FWE) corrected at the voxel level across the whole brain
using Threshold-Free Cluster Enhancement (TFCE; Smith and
Nichols, 2009). Given our anatomically specific hypothesis
about the ACCg, a small volume correction was used to cor-
rect for multiple comparisons in some cases (ACC mask from
the Harvard-Oxford cortical atlas thresholded at 450%).
Anatomical localization was guided by the Anatomy toolbox
(Eickhoff et al., 2005, 2006, 2007), along with more detailed
connectivity-based parcellation atlases of the frontal lobe
(Sallet et al., 2013; Neubert et al., 2015).

Dynamic causal modelling

To investigate effective connectivity, Dynamic Causal
Modelling (DCM) (Friston et al., 2003; Stephan et al., 2010)
was performed using SPM12 (r6591). Subject-specific time
series were extracted from specific regions of interest that
were selected on the basis of the second-level random-effects
(RFX) analysis. As in previous studies (Ouden et al., 2010;
Vossel et al., 2012), time series were extracted from the nearest
supra-threshold voxel within a radius of 8 mm from the group
maximum (ensuring no overlap between regions of interest).
The first eigenvariate was then computed across all voxels
within 4 mm of the subject-specific coordinates. The resulting
time series were adjusted for effects of no interest (i.e. instruc-
tion cues, true belief trials, and belief responses) and physio-
logical confounds (head movement, white matter, and CSF
regressors). A bilinear DCM model was constructed assuming
recursive connections between both regions of interest.
Regressors from all prediction error trials (but not the para-
metric modulator of prediction error trials) were used driving
inputs on both regions of interest. Given that group level re-
gions of interest were driven by signed prediction errors we
only used parametric modulators of all prediction error trials
as modulatory inputs on both connections. DCM parameters
were extracted from each subject and input into a
Group � Agent ANOVA for each connection.

Results
Individuals with ASD were generally less accurate at identify-

ing both expected and unexpected outcomes compared to

typically developing (TD; n = 20) matched controls [main

effect of Group: predictable outcome trials: F(1,34) = 11.88,
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P = 0.002, �p2 = 0.259, Fig. 1D; prediction error trials:

F(1,34) = 11.86, P = 0.002, �p2 = 0.259, Fig. 1E]. However,

the difference between ASD and TD accuracy was signifi-

cantly larger for third person and Computer trials compared

to first person trials [Group � Agent interaction: predictable

outcome trials: F(2,68) = 4.5, P = 0.015, �p2 = 0.117; predic-

tion error trials: F(2,68) = 3.42, P = 0.038, �p2 = 0.091]. The

calculation of accuracy excluded missed trials where the par-

ticipant did not respond (4.18 � 6.77% in ASD;

1.47 � 1.78% in TD; see Supplementary material), thus this

drop in accuracy reflected significantly more incorrect re-

sponses in ASD highlighting that they had greater difficulty

monitoring the expectations and outcomes for other Agents

than they do for themselves. Both ASD and TD individuals

were more accurate for positive outcome trials (90.262% �

0.953) compared to neutral outcomes (88.581% � 1.255)

[main effect of Reward: F(1,34) = 4.76, P = 0.036,

�p2 = 0.123]. However, the specific deficit in ASD in tracking

the outcomes of others emerged irrespective of the outcome

[Group � Agent interaction: positive outcome: F(2,68) = 4.61,

P = 0.013, �p2 = 0.12; neutral outcome: F(2,68) = 3.29,

P = 0.043, �p2 = 0.09].

Social prediction error signals in the
gyral surface of the anterior cingulate
cortex

To investigate the neural correlates of agent-specific predic-

tion errors in the neurotypical brain we first restricted our

analysis to the TD group and identified regions where ac-

tivity evoked by prediction error trials differed from pre-

dictable outcome trials depending on which agent

performed the task (Belief � Agent interaction time-locked

to the privileged information cue). Given our hypothesis

regarding social prediction errors our first analysis set out

to identify brain regions where the difference between third

person prediction error and predictable outcome trials was

greater than the difference between first person prediction

error and predictable outcome trials or Computer predic-

tion error and predictable outcome trials. In agreement

with previous work (Apps et al., 2013a; Lockwood et al.,

2015), this contrast exclusively highlighted activity in the

ACCg [Fig. 2B, Supplementary Figs 1 and 2; MNI coord-

inates (x = 3, y = 29, z = 17), t = 3.57, k = 19, P50.05

FWE corrected using TFCE (Smith and Nichols, 2009)

Figure 2 Group differences in social prediction error signalling. (A) Group � Belief � Agent interaction in the ACCg [Area 24 (78%;

Neubert et al., 2015); MNI: 3 26 20, thresholded at P5 0.001 uncorrected] time-locked to the privileged information cue (Fig. 1B). (B) Per cent

signal change values from the ACCg showing Agent specific prediction errors (prediction error� predictable outcome). first + , third + and

Cmp + refer to positive outcome trials for first person, third person and Computer trials, respectively. first�, third� and Cmp� refer to negative

outcome trials for first person, third person and Computer trials, respectively. This highlights that BOLD differences in the ACCg were driven by

third person unexpected rewards (third prediction error positive) compared to all other trials. (C) Fitted responses from the ACCg for third

person prediction error positive (blue) and third person predictable outcome positive (black) in TD subjects. (D) Fitted responses from the ACCg

for third person prediction error positive (red) and third person predictable outcome positive (black) in ASD. This highlights that the third +

response in ASD in B was driven by larger responses to third predictable outcome positive trials rather than third prediction error positive trials

(also see Supplementary Fig. 2). (E) Scatter plot showing the significant correlation (r = 0.66) between third person prediction error positive per

cent signal change values and social symptom severity in ASD.
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and small volume correction, assigned to Area 24 (91%;

Neubert et al., 2015)]. Importantly, when distinguishing

between trials where the Agent was unexpectedly rewarded

(prediction error positive, Fig. 2B) versus those where the

expected reward was not received (prediction error nega-

tive, Fig. 2B) we found that this effect was driven by pre-

diction error positive trials only (Fig. 2B, C and

Supplementary Fig. 2). This finding is consistent with

Apps et al. (2013), who also showed a strong negative

BOLD response in the ACCg was elicited when another

person was unexpectedly rewarded, but not when another

person failed to receive an expected reward.

To identify whether the ASD group exhibited a different

neural response to social prediction errors we calculated a

Group � Belief � Agent interaction across the whole brain

using the same contrast defined above [i.e. (third prediction

error� predictable outcome)4 (first prediction error�pre-

dictable outcome and Computer prediction error�predict-

able outcome)]. This Group � Belief � Agent interaction

highlighted the same region of the ACCg identified above

[Fig. 2A, MNI coordinates (x = 3, y = 26, z = 20), t = 3.78,

k = 34, P5 0.05 FWE corrected using TFCE (Smith and

Nichols, 2009), assigned to Area 24 (78%; Neubert

et al., 2015)]. While the TD group showed a strong nega-

tive ACCg response when others receive an unexpected

reward (third person prediction error positive; Fig. 2B

and C), there was no difference between third person pre-

diction error positive and predictable outcome positive

trials in the ASD group (Fig. 2B and D). No such effect

was observed for prediction error negative trials, i.e. when

the Agent did not receive an expected reward (Fig. 2B and

Supplementary Fig. 2). TD and ASD groups did not differ

in ACCg’s responses to first person or Computer trials. No

other brain region responded differentially to social predic-

tion error trials in the ASD or the TD group. These ana-

lyses highlight that the ACCg of TD individuals exclusively

signalled when another person was unexpectedly rewarded;

however, this signal is not found in the ACCg of ASD

individuals, or in any other brain region.

To investigate whether the absence of BOLD signals in

the ACCg was linked to behaviour or ASD social symptom

severity, we correlated third person prediction error posi-

tive per cent signal change values with behaviour on third

person prediction error positive trials and measures of ASD

social symptom severity (ADOS social subscale, ADI social

subscale, SRS total, and SCQ). There was no significant

relationship between third person prediction error positive

accuracy and the strength of social prediction errors in the

ACCg (r = � 0.19, P = 0.47). Individuals with a larger

social interaction deficit as measured by the ADOS

(higher values on the ADOS social subscale) tended to ex-

hibit increasingly positive activity for social prediction error

positive trials (Fig. 2E; r = 0.66, P = 0.007, FDR corrected

P50.05; all other subscales P4 0.127 even though a simi-

lar trend was revealed for the ADI social subscale;

Supplementary Table 2). A multiple regression analysis

confirmed that only the third person prediction error

positive BOLD responses (compared to third person pre-

dictable outcome positive, predictable outcome negative,

prediction error negative BOLD responses) indexed ADOS

social values (B = 2.1, SEM = 3.91, P = 0.02; all other third

person outcomes P4 0.69). This demonstrates that the ab-

errant coding of social prediction errors is linked to deficits

in social interaction in ASD as measured by diagnostic

instruments.

Do other brain areas signal prediction errors irrespective

of whether they are tracked for the first person, third

person or a computer and does activity in these areas

differ between TD and ASD? A large network of brain

regions showed significantly greater activity for prediction

error trials compared to predictable outcome trials regard-

less of the agent, including dorsomedial prefrontal cortex,

left posterior superior temporal sulcus (bordering on the

temporo-parietal junction), right temporal pole, bilateral

parietal lobules and the precuneus (Supplementary Fig. 3

and Supplementary Table 1). However, these regions did

not show any differences between agents or groups.

Significant group differences in encoding prediction error

versus predictable outcome trials were found in the ACCs

[MNI coordinates (x = 9, y = 29, z = 32), t = 4.32, k = 54,

P5 0.05 FWE corrected using TFCE (Smith and Nichols,

2009), assigned to anterior rostral cingulate zone (36%);

Neubert et al., 2015)] and the right inferior frontal gyrus,

pars triangularis [MNI coordinates (x = 51, y = 29, z = 23),

t = 4.4, k = 54, P50.05 FWE corrected using TFCE (Smith

and Nichols, 2009), assigned Area 9/46v (31%; Sallet

et al., 2013)], driven by a reduced differentiation between

prediction error and predictable outcome trials in individ-

uals with ASD in these regions (Supplementary Fig. 4).

Neither of these regions showed a significant relationship

with task accuracy for the corresponding contrast (i.e. dif-

ference between prediction error and predictable outcome

trials), or ASD social symptom severity (P4 0.12;

Supplementary Table 2); however, this is not surprising

given that these group differences were independent of

Agent. We also identified the left caudate nucleus and oc-

cipital lobe as regions that specifically signalled prediction

errors related to first person or Computer trials

(Supplementary Figs 5 and 6). Importantly, there were no

significant group differences in BOLD activity in these re-

gions between TD and ASD individuals during first person

or Computer prediction error trials.

Aberrant ventromedial prefrontal
cortex coding of agency in autism
spectrum disorders and connectivity
to the anterior cingulate gyrus

Given our behavioural effect (Group � Agent interaction),

we also investigated whether any brain region encoded dif-

ferences between Agents, regardless of whether the outcome

was expected (predictable outcome) or unexpected (predic-

tion error), and whether this differed between the ASD and
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TD groups. Only the vmPFC [MNI coordinates (x = 3,

y = 44, z = 5), t = 4.21, k = 38, P5 0.05 FWE corrected

using TFCE (Smith and Nichols, 2009), assigned to area

32PL (Neubert et al., 2015)] showed a Group � Agent

interaction time-locked to the presentation of the privileged

information cue (Fig. 3A). BOLD activity in the vmPFC

was higher for first person trials compared to third

person and Computer trials in TD while there were no

differences between agents in ASD (Fig. 3B). The vmPFC

interaction effect showed a significant correlation with task

accuracy (r = �0.52, P = 0.04), however this did not sur-

vive correction for multiple comparisons (P40.05, FDR

corrected). The vmPFC interaction effect did not correlate

with any neuropsychological measures of ASD social symp-

tom severity (P4 0.346; see Supplementary Table 2), sug-

gesting that the ACCg may be a more reliable indicator of

ASD social symptom severity.

Given that the vmPFC and ACCg are anatomically con-

nected (Yeterian et al., 2012), and both showed group dif-

ferences in the processing of Agents, we used dynamic

causal modelling (DCM12) to investigate whether differ-

ences in effective connectivity between the vmPFC and

ACCg might contribute to deficits in representing social

prediction errors in ASD versus TD. In the TD group,

there was a significant increase in connectivity from the

vmPFC to the ACCg for third person but not for first

person or Computer prediction error trials, while ASD in-

dividuals showed no difference between the first and third

person Agent but exhibited a boost in connectivity for the

Computer prediction error trials [Fig. 3C; Group � Agent

interaction F(2,68) = 7.13, P = 0.002, �p2 = 0.173]. TD in-

dividuals who showed a greater increase in connectivity

from the vmPFC to the ACCg during third person predic-

tion error positive trials also showed a larger social predic-

tion error response in the ACCg (r = � 0.46, P = 0.04;

Fig. 3D) but this was not the case in ASD (r = 0.15,

P = 0.59; Fig. 3E). There was also no relationship between

vmPFC to ACCg connectivity and ACCg activity for

Computer prediction error trials in either group (ASD

r = � 0.046, P = 0.87; TD: r = �0.047, P = 0.84). The

strength of connectivity from the vmPFC to the ACCg

did not correlate with any neuropsychological measures

of ASD social symptom severity or behaviour (P4 0.426;

Supplementary Table 2). To establish whether this pattern

Figure 3 Group differences encoding Agency and connectivity with the ACCg. (A) Group � Agent interaction in vmPFC [Area 32PL

(Neubert et al., 2015); MNI: 3 44 5, thresholded at P5 0.001 uncorrected] time-locked to privileged information (Fig. 1B). (B) Bar plots illustrating

percent signal change [prediction error (PE) + predictable outcome] in vmPFC for TD and ASD. The activation in vmPFC was driven by an Agent

effect in TD (first person4 third person and Computer) that is not present in ASD. Error bars indicate standard error. (C) Bar plots illustrating that

a boost in connectivity from the vmPFC to the ACCg specifically for third person (social) prediction errors in the TD group. (D and E) Correlations

between effective connectivity strength social prediction errors in TD (D) and ASD (E). This shows a significant correlation between connectivity

from the vmPFC to the ACCg and the strength of social prediction errors in TD (r = �0.46), which is absent in ASD (r = 0.15).
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of connectivity between the vmPFC–ACCg could underlie

the group difference in social prediction errors seen in the

ACCg, we regressed out vmPFC–ACCg connectivity from

ACCg activity profile. Initially, there was a significant

group difference in ACCg activity [t(34) = 3.65,

P = 0.0009]; however, this group difference was no longer

present after regressing out vmPFC–ACCg connectivity

[t(34) = �1.86, P = 0.07]. These results suggest that the ab-

sence of social prediction error signals in the ACCg may be

due to a lack of input from the vmPFC specifically related

to prediction errors arising from the outcomes of others

behaviour.

Discussion
Computational approaches to social cognition are provid-

ing novel perspectives for understanding deficits in social

interaction (Chiu et al., 2008; Behrens et al., 2009;

Diaconescu et al., 2014; Sevgi et al., 2015). For example,

Sevgi et al. (2015) recently showed that neurotypical indi-

viduals with higher autistic traits failed to utilize social in-

formation during a reward-based learning task. Our

paradigm was designed to isolate a different computational

mechanism, social prediction errors, which may play a cru-

cial role in understanding the perspectives of others (Apps

et al., 2013b, 2016). A cardinal characteristic of ASD is the

inability to understand the perspectives of others (Baron-

Cohen et al., 1985; Baron-Cohen, 1997; Peterson et al.,

2013; but also see Senju et al., 2009), as demonstrated

by false belief paradigms such as the Sally-Anne task

(Wimmer and Perner, 1983). The Sally-Anne task consists

of two main elements: (i) establishing a prediction or belief

about Sally’s expected outcome (i.e. Sally believes the ball is

in the basket); and (ii) seeing Anne move the ball in Sally’s

absence so that Sally’s expectation no longer matches the

actual outcome. The corner stone of the Sally-Anne task is

the ability to recognize that Sally’s predicted outcome is not

the same as the actual outcome, i.e. a social prediction

error. As in the Sally-Anne task, we show that individuals

with ASD are less accurate at monitoring the expectations

and outcomes of other Agents (Baron-Cohen et al., 1985;

Baron-Cohen, 1997; Peterson et al., 2013). We therefore

suggest that our paradigm is tapping into the same mech-

anism that has been repeatedly shown to be perturbed in

ASD. However, the design of our task allowed us to dir-

ectly compare expected and unexpected outcomes, and

when outcomes were better or worse than predicted,

across multiple Agents. Using this approach we could spe-

cifically isolate BOLD activity time-locked to the unex-

pected outcomes of others’ decisions (i.e. social prediction

errors) with greater precision than classical paradigms.

A number of brain regions showed greater activity for

prediction errors across all Agents (e.g. dorsomedial pre-

frontal cortex, inferior parietal lobules, and the posterior

superior temporal sulcus), or prediction errors specific for

first person and Computer trials (caudate nucleus and

occipital lobe). However, none of these regions showed dif-

ferences between TD and ASD individuals. Group differ-

ences were found in the ACCs and right inferior frontal

gyrus (putatively Area 9/46v; Sallet et al., 2013), specific-

ally showing a reduced differential response between pre-

diction error and predictable outcome trials in ASD.

However, these differences could not explain variation in

ASD social symptom severity and likely reflect a general

cognitive deficit. This is in keeping with studies that have

shown that the ACCs encodes prediction errors for all

agents in neurotypical cohorts (Behrens et al., 2007,

2008; Matsumoto et al., 2007; Apps et al., 2013b;

Chang et al., 2013), while the ACCg exclusively encodes

social prediction errors.

There has recently been some debate about whether it is

even necessary to distinguish between the first person and

third person perspective, and whether more valuable infor-

mation might be gained by focusing on the interaction be-

tween agents, the so-called second person perspective

(Schilbach et al., 2013; Schilbach, 2016). Here, in line

with previous studies (Behrens et al., 2008; Apps et al.,

2012, 2013a; Lockwood et al., 2015), we found that the

ACCg exclusively encoded the unexpected outcomes of an-

other agent’s decision (i.e. social prediction errors) in TD

individuals, and crucially, we demonstrated for the first

time that individuals with ASD do not elicit social predic-

tion errors in the ACCg or in any other brain region. These

findings suggest that individuals with ASD have a deficit in

understanding the perspectives of others in the absence of

social interaction, and that understanding the first and third

person perspectives in isolation could help to further

inform impairments in social interaction and the second

person perspective.

Although there were fewer ASD individuals in this study

then TD individuals, we do not believe the absence of

social prediction errors in the ASD group was due to

lack of statistical power. First, previous neuroimaging stu-

dies have shown evidence of social prediction errors con-

sistently in the same ACCg region using smaller samples

(n = 12, 14 and 15) of TD individuals (Apps et al., 2012,

2013a, 2015). In addition, in a recent single-unit recording

study in humans (Hill et al., 2016), social prediction errors

were identified in the ACCg when only 10 patients were

present. Although the method is different, this suggests that

social prediction errors may be a reliable property of the

response in this region, and only a small number of TD

individuals are required to elicit this response. Second, a

power calculation on our data confirmed that in TD indi-

viduals only 11 participants were required to achieve 80%

statistical power with alpha equal to 0.05. Third, we show

that in the ASD population there is a strong correlation

between social symptom severity and ACCg activity. This

highlights that ASD individuals who showed a ‘TD-like’

ACCg response profile for social prediction errors, were

also the ones with lower social symptom severity. We be-

lieve this correlation gives more weight to the conclusion
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that the absence of an ACCg response in ASD was related

to social deficits rather than statistical power.

Interestingly, variability in the strength of social predic-

tion errors was the strongest index of social symptom se-

verity in ASD: ASD individuals who showed increasingly

negative ACCg BOLD responses (similar to the TD individ-

uals) showed reduced social symptom severity while those

who showed an absent or a slightly positive ACCg signal

showed greater social symptom severity. This corresponds

to studies in neurotypical cohorts showing that variability

in the strength of ACCg signals correlated with social value

(Behrens et al., 2008), social group size (Sallet et al., 2011),

and the ability to track another individuals actions (Zhu

et al., 2012). However, magnitude of the ACCg response is

only one aspect relevant for social cognition. Another is the

selectivity of the ACCg signal, i.e. whether ACCg activity is

exclusively elicited by third person prediction errors or

whether first and third person prediction errors can both

evoke activity in the ACCg. In a cohort of neurotypical

individuals, Lockwood et al. (2015) showed that the

ACCg signal in individuals high in emotion contagion (in-

dividuals high in empathy) was specialized for processing

others’ rewards exclusively, but for those low in emotion

contagion, activity in the ACCg was evoked by information

about the others’ rewards as well as the subject’s own re-

wards. There is no evidence in our data to suggest that

Agent selectivity was perturbed in ASD (i.e. neither ASD

or TD individuals showed first person or Computer predic-

tion errors in the ACCg; Fig. 2B, Supplementary Figs 1 and

2), instead ASD individuals presented with an absence of

social prediction error signals from the ACCg. This sug-

gests that the specific response pattern elicited by the

ACCg (i.e. low magnitude of the ACCg signal but no ab-

normal Agent selectivity) might distinguish social deficits

present in ASD pathology from social impairments in

other disorders or personality traits.

While signals from the ACCg specifically reflect the un-

expected outcomes of others (social prediction errors), sig-

nals from the vmPFC appeared to distinguish between

outcomes relevant for the self (first person) and those rele-

vant for others (third person and Computer) regardless of

whether they were expected or unexpected, which is in line

with previous findings (Murray et al., 2012, 2015).

Importantly, our results show that BOLD activity in the

vmPFC distinguished between Agents (first person4 third

and Computer) in the TD group but not in the ASD group.

Lombardo et al. (2010) similarly showed significantly dif-

ferent BOLD responses to self-relevant judgments com-

pared to judgments about others in the vmPFC of TD

individuals but not ASD. Studies of reward processing in

ASD have also shown decreased activation in the vmPFC

during the receipt of social and monetary rewards (Dichter

et al., 2012; Kohls et al., 2013), suggesting that this region

may be hypoactive in ASD. It has been suggested that

signal from the vmPFC may modulate activity with other

brain regions in order to enhance perception, memory, and

decision making that is self-relevant rather than socially

relevant (Sui and Humphreys, 2015). Here we found that

connectivity from the vmPFC to the ACCg was increased in

TD individuals but only for third person outcomes, and

that the strength of connectivity from the vmPFC to the

ACCg correlated with the strength of social prediction

error signals in the ACCg. This would therefore suggest

that even though the vmPFC differentiates between first

person trials compared to other agents, signals from this

region promote activity within interconnected regions,

which process information for other Agents such as the

ACCg. Consistent with this, Behrens et al. (2008) found

that the vmPFC encoded both the probability of the out-

come based on reinforcement history, and the probability

of the outcome based on another person’s advice.

However, individuals who placed greater weight on social

information showed increased coupling between the vmPFC

and ACCg, whilst those who placed greater weight on re-

inforcement history showed greater coupling between the

vmPFC and the ACCs. We therefore propose that activity

in the vmPFC promotes activity in connected regions in

order to enhance their related functions, and that an ab-

sence of social prediction errors in the ACCg may be a

consequence of decreased coupling between the vmPFC

and other connected regions.

Although a number of previous studies have investigated

social deficits in ASD, the disrupted neural mechanisms

underpinning poor social interaction have remained un-

clear. Remarkably consistent evidence across species

(Apps et al., 2013b, 2016) has suggested that socially spe-

cific reward and prediction error signals in the ACCg

might be a crucial component of social behaviour.

However, no previous study had translated this research

into a clinical context and examined a population with

disrupted social behaviour such as individuals with ASD.

Here, we showed that aberrant social prediction errors in

the ACCg might indeed be a key mechanism underlying

social deficits in ASD given the clear association between

ACCg signal magnitude and the degree of social deficits

within the disorder. Moreover, we show that the vmPFC

appears to signal whether information is self-relevant or

relevant for others, potentially tuning ACCg for represent-

ing socially specific prediction errors. These data provide a

novel insight into the neural substrates underlying ASD

social symptom severity, and further research into the

ACCg, vmPFC, and connectivity between these regions

could provide more targeted therapies to help ameliorate

social deficits in ASD.
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