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Abstract

Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and
cytosolic organelles but they also display a wide variety of important functions previously ascribed to the
activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or
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Introduction

Most cell functions occur in or around membranes.
Membranes not only define the cell’s boundary but
they also create cytoplasmic compartments into
which certain activities can be segregated or to make
them more efficient. Membrane proteins have been
attributed with the most important roles in mem-
branes, although lipids have also been acknowl-
edged as key elements in numerous processes. The
present review shows how membrane lipids, and the
structures they form, participate and regulate numer-
ous important cellular activities.

Membrane-spanning (integral, intrinsic) proteins
are permanently embedded in the lipid bilayer (Fig. 1).
In many cases, the type of lipids that interact with
amino acids in the hydrophobic environment of the
membrane core and those at the interface are more
or less defined, and to a certain extent regulated by
the features of the protein. Transmembrane proteins
also influence lipid structure in the membrane.
Therefore, it is not surprising that changes in the lipid
environment of membranes regulate or alter the
function of intrinsic membrane proteins (see below).
Indeed, in regions rich in a given type of receptor (e.g.
synaptosomes, receptor clusters, etc.) these protein-
lipid interactions play important roles in both directions.

On the other hand, peripheral (extrinsic) proteins
also regulate and are regulated by membrane lipids.
G proteins provide a good example of how proteins
can affect membrane composition and structure [1].
Like integral proteins, peripheral proteins may regu-
late membrane composition and structure, and many
of these proteins undergo co-/post-translational 

modifications, that include the addition or removal of
fatty acids or isoprenoid moieties. Recent studies
show that these lipid modifications, and the sur-
rounding amino acids are not only involved in the
interaction with membranes but that they also regu-
late: (i) membrane lipid structure; (ii) the formation of
lipid domains in membranes and (iii) clustering of G
protein peptides [2, 3].

Membrane lipids participate in the interaction of
proteins with the cell barrier [4, 5]. They also regulate
the distribution and localization of peripheral proteins
to membrane domains where they can interact with
other signalling proteins [6]. In this context, het-
erotrimeric and dimeric G proteins prefer hexagonal
(HII)-prone membranes, whereas monomeric G�i pro-
teins prefer lamellar regions of the membrane. Indeed,
both peptide and lipid moieties of these proteins are
involved in the reciprocal regulation of structural and
functional aspects of the membrane [1, 6–9].

Membranes are formed by a matrix of lipids whose
structure and composition is far from simple. First,
the number of different lipid molecules found in the
plasma membrane of a cell can exceed 1000.
Second, the high number of structures formed by
lipids in vitro indicates that the structural properties
of membranes can vary greatly in vivo. Third, the
interaction of lipid molecules to form membranes is
not determined by covalent bonds, like that of amino
acids in proteins or bases in nucleic acids. In turn,
membrane lipids participate in dynamic interactions
that facilitate changes in their relative position in
membranes, membrane thickness, surface packing,
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permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However,
mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane
proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting
signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as
sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as
messengers or regulators of signal transduction. Moreover, their alteration has been associated with the
development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translation-
al modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding
are all involved in the associations among membrane proteins and lipids. The present study reviews these
interactions from the molecular and biomedical point of view, and the effects of their modulation on the phys-
iological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influ-
ence of lipids on protein function is reflected in the possibility to use these molecular species as targets for
therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other dis-
eases, using a new approach called membrane-lipid therapy.

Keywords: lipid bilayer • lipid composition-structure • membrane lipid organization •
membrane ion channel • membrane receptor • GPCR • G protein • PKC • cell signalling •
heat-shock protein • transmembrane protein • peripheral protein • protein-lipid interactions
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lateral and rotational mobility and other properties
that complicate the study of membrane structure.
Fourth, in most membranes different regions and
domains with defined lipid and protein compositions
usually coexist and similar domains are not always
entirely equal (e.g. two lipid rafts may differ in their size
or transient nature, as well as in the proportions of
lipids and proteins). Finally, membrane proteins and
lipids may both be subjected to regulatory processes
in response to pathophysiological situations or nutri-
tional/pharmacological interventions, which in turn
may alter the activity and functions of the membrane.

Membranes constitute a meeting point for lipids
and proteins, both fulfilling prominent roles in certain
cellular processes, equally relevant in many cases.
Thus, a given organism may respond to environmen-
tal situations not only by regulating protein expres-
sion, but also by modulating membrane lipid levels.
For example, there are dramatic changes in mem-
brane lipid composition in the brains of fish living in
rivers whose temperature varies from 20�C in the
summer to 4�C in the winter [10]. If this were not the
case, the physicochemical properties of their mem-
branes would not be appropriate to allow cell sig-
nalling or to facilitate other important physiological
functions. Indeed, all organisms are exposed to
stressful conditions such as elevated temperatures
and irradiation, as well as physiological stress such
as rapid cellular proliferation, oxidative stress due to
metabolic reactions, or pathophysiological stress due
to infection and inflammation. If unmitigated, such
stressful conditions can lead to membrane disinte-
gration, protein misfolding and aggregation, cellular
dysfunction and cell death. Significantly, recent stud-

ies strongly suggest that plasma membranes play a
critical role in sensing and responding to most stress
stimuli, particularly through the activation of specific
signal transduction pathways that function in mem-
brane and protein homeostasis [11, 12]. In addition,
many diseases are associated with alterations in
membrane lipid levels (see sections below).
Therefore, therapeutic approaches based on their
regulation appear to be useful novel clinical alterna-
tives to other pharmacological strategies [9]. In addi-
tion, most drugs currently under development are tar-
geted at G protein-coupled receptors (GPCRs), a
ubiquitous family of membrane receptors that control
a great number of cellular and physiological 
functions, whose activity is controlled by their lipid
environment (see below). Therefore, membranes also
constitute meeting points for therapies that, through
regulation of membrane lipids and/or proteins, reverse 
cellular malfunctions. This fact further shows the rele-
vance of membranes in the control of cell functions,
their homeostasis, communication and responses to
environmental and pathophysiological situations.

Membrane lipid composition

Biological membranes consist of a lipid bilayer to
which proteins and carbohydrates may be associat-
ed or covalently linked. Recent advances have pro-
vided new perspectives from which the roles of mem-
brane lipids in cells can be evaluated, having evolved
from a simple physical barrier to a critical component
in cell signalling and other cellular processes.
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Fig. 1 A simplified drawing representing the various interactions of proteins with lipid bilayers as a function of time: 1,
a peripheral or extrinsic protein; 2, an integral or intrinsic protein; 3, a non-permanent protein that interacts reversibly
with the membrane, a lipid-transfer protein in this particular example; 4, a non-permanent protein that becomes irre-
versibly bound to the bilayer once it interacts with it; 5, a non-permanent protein reversibly bound to a secretion vesi-
cle and then transferred to a target membrane. A, B and C correspond to consecutive stages in the interaction process.
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Membrane lipids can be classified into three main
groups: glycerol-based lipids, cholesterol and
ceramide-based sphingolipids. Glycerol-based lipids
can be divided into two broad categories: glycosyl-
glycerides and phospholipids. Glycosylglycerides
form a highly complex lipid family in which the sn-3
position of the glycerol backbone is esterified to a
glycosyl moiety (e.g. galactose, glucose, etc.). They
are the most abundant membrane glycerolipids; how-
ever, this lipid family is beyond the scope of this
review and we will focus our attention on phospho-
lipids. In phospholipids, while their sn-1 and sn-2
positions are esterified to a fatty acid, the sn-3 posi-
tion is esterified to a phosphate group that in turn is
also esterified to a polar headgroup. Although the
fatty acid moiety greatly influences their physico-
chemical properties, these phospholipids are usually
classified according to their polar headgroup (Table 1).
Cholesterol contains a hydroxyl group that interacts
with the phosphate head of phospholipids, whereas
the bulky steroid region interacts with phospholipid
acyl chains. Among other important physical proper-
ties of membranes, these interactions regulate mem-

brane fluidity, membrane packing, non-lamellar
phase propensity and the formation of microdomains.
Finally, sphingolipids are defined by the presence of
a sphingoid-base backbone (i.e. 2-aminoalk[ane or
ene]1,3-diol with 2S,3R stereochemistry). The main
feature that allows the formation of an impermeable
lipid bilayer is the amphipathic nature of these mole-
cules, resulting in a highly hydrophobic core and
hydrophilic surface, the landmark of biological and
model membranes.

Membrane lipid structure

Most phospholipids spontaneously form lipid bilayers
in aqueous environments with a pH and ionic
strength similar to that of biological systems.
However, certain lipids can organize into non-lamel-
lar structures under physiological or non-physiologi-
cal conditions. Moreover, lipids may not only display
different phases under different conditions (lipid
mesomorphism), but membranes lipids may also
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Table 1 Glycerophospholipid classification according to their polar headgroup

Glycerophospholipid Headgroup Formula of headgroup

Phosphatidic acid - -H

Phosphatidylethanolamine Ethanolamine -CH2-CH2-NH3
+

Phosphatidylcholine Choline -CH2-CH2-N +(CH3)3

Phosphatidylserine Serine -CH2-CH2(COO)--NH3+

Phospatidylglycerol Glycerol -CH2-CH(OH)- CH2OH

Phosphatidylinositol 
4,5-bisphosphate

Myo-inositol 4, 5-bisphosphate

Cardiolipin Phosphatidylglycerol
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show distinct finite structures within cell membranes
(membrane microdomains). This lipid mesomor-
phism has been mainly studied in vitro, although
non-lamellar structures have also been observed in
vivo [13]. Thus, although lipids usually organize into
bilayers their structural versatility implies that the
nature of the membranes that form may be diverse.

Membranes are made up of molecules that to
some extent preserve their individual characteristics
and hence, the particular structure of these molecu-
lar bricks influences the structural properties of the
membrane. In this context, phospholipids with a
bulky polar head, such as phosphatidylcholine (PC),
have a cylindrical molecular or effective shape and
they tend to associate with other cylinder-like phos-
pholipids to form planar structures [14, 15]. Other
lipids might be prone to form non-bilayer structures.
Cone-shaped lipids with bulky polar heads such as
lysophosphatidylcholine (LPC), or truncated cone-
shaped lipids with small headgroups such as phos-
phatidylethanolamine (PE), may form spherical
micelles or tubular structures with positive (HI) or
negative curvature (HII), respectively. Although these
lipids form non-bilayer structures in membranes, the
roles of which in general remain to be determined
[13], in the last few years some functions have been
attributed to non-bilayer prone lipids in planar struc-
tures (lipid bilayers). Indeed, these lipids appear to
participate in the interaction of several proteins, such
as, e.g. protein kinase C (PKC) with membranes [4].
Non-lamellar-prone membranes also favour the bind-
ing of heterotrimeric G proteins and G�� dimers, as
well as displaying a lower binding affinity for G�
monomers [4–6].The influence of non-lamellar-prone
lipids in facilitating or regulating the docking of
amphitropic membrane proteins may have originated
from the interaction of a protein with membrane fatty
acyl chains leaving the membrane plane, or through
the insertion of a protein’s hydrophobic domain into a
bilayer with ‘loose’ surface packing (Fig. 2) [16]. This
is possibly due to the presence of HII-prone lipids,
which generate ‘frustrated’ bilayers (l� phase) [15],
which may be stabilized by interactions with proteins
or lipids (Fig. 2) [9, 16]. Non-lamellar-prone lipids
also participate in the formation of the cleavage fur-
row during cell cytokinesis [17], as well as in other
membrane fission and fusion processes. Finally,
membrane lipid heterogeneity is responsible for the
distinct membrane regions, domains and microdomains
that form the spatial organization of, which it is related
to, the specific activity at the membrane.
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Fig. 2 Non-lamellar-prone lipids with a small polar head-
group (e.g. phosphatidylethanolamine [PE], blue) induce
the formation of non-lamellar-prone regions. These bilay-
ers, with a frustrated (l�) lamellar phase, can be stabi-
lized by proteins (green) or other lamellar-prone lipids
(orange). The loose packing of these bilayers allows
some acyl chains to exit the membrane plane and
become located in hydrophobic protein sockets (upper
scheme). Hydrophobic protein domains, which may cor-
respond to amino acid sequences or lipid modifications,
may also be inserted into the membrane.Therefore, non-
lamellar-prone lipids facilitate the docking of amphitropic
proteins to the membrane. One of these lipids, PE, is
abundant in the inner monolayer of the plasma mem-
brane where most peripheral proteins are found.
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Membrane lipid organization

The specific types of lipid species and their levels in
membranes appear to be regulated exquisitely,
whereby general patterns emerge that are associat-
ed with the type of cell and organelles studied. Each
membrane type is highly specialized and its different
attributes are determined by specific membrane pro-
teins and lipids. Thus, a given membrane has a sta-
ble and specific lipid composition, and although
there are many combinations of lipid types and pro-
portions, changes in composition only occur under
certain pathological or physiological situations. The
wide variety of lipid compositions is shown in 
Table 2 and the differences observed in the lipid
composition of the various membrane types listed,
have important consequences on lipid organization
in the membrane [18].

The fluid mosaic model proposed that membranes
were formed by a fluid bilayer in which proteins and
lipids could move freely [19], contributing greatly to

our concept of a cell membrane. Initially, the mosaic
model depicted by Singer and Nicolson referred to
the random behaviour of the different proteins in the
membrane bilayer as if in a ‘sea of lipids’. Today, the
extended fluid mosaic model contemplates addition-
al structural and functional restraints on membrane
organization [5, 20]. In this context, most biological
membranes are asymmetrical, both laterally and in
cross-section. The cross-sectional asymmetry
reflects the lipid composition of each leaflet (Fig. 3)
[21]. The external leaflet of the plasma membrane
(exoplasmic, E face) and the lumenal leaflets of inter-
nal organelles are highly enriched in choline-contain-
ing lipids such as PC and sphingomyelin (SM). In
contrast, the cytoplasmic leaflet (protoplasmic, P
face) is rich in amine-containing glycerophospho-
lipids such as PE and phosphatidylserine (PS). Other
minor phospholipids, such as phosphatidic acid (PA),
phosphatidylinositol (PI), phosphatidylinositol-4-
monophosphate (PIP) and phosphatidylinositol-4,
5-biphosphate (PIP2), are also enriched on the

© 2008 The Authors
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Table 2 Lipid composition of various types of membranes

Percentage of phospholipids

Cholesterol

(�g/mg 

protein)

PC PE PS PI PA CL LGP* SM

Rectal gland plasma 
membrane

50.4 35.5 8.4 <1 – – – 5.7 N.D.

Brush border membrane 33.3 35.6 7.4 8.2 1.2 N.D. 4.1 10.3 50

Cholinergic receptor 
membranes

37 40.5 17 – <1 – <1 <1 135

Plasma membrane 39 23 9 8 1 1 2 16 128

Mitochondria 40 35 1 5 – 18 1 1 3

Micorsome 58 22 2 10 1 1 11 1 14

Lysosomes 40 14 2 5 1 1 7 20 38

Nuclear membrane 55 13 3 10 2 4 3 3 38

Golgi membrane 50 20 6 12 <1 1 3 8 78

Sarcoplasmic reticulum 72.7 13.5 1.8 8.7 <1 <1 – 1 12

*Values for lysoglycerophospholipids (LGP) in excess of a few percent should be viewed with caution. High LGP con-
tents of are probably the result of phospholipid degradation during preparation of the material.
Adapted from [18].
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cytoplasmic face of the membrane where they partic-
ipate in cell signalling [22, 23]. Interestingly, the
membrane of the endoplasmic reticulum shows a
symmetric lipid distribution and it primarily contains
unsaturated glycerolipids that provide flexibility, and
that facilitate the incorporation of newly synthesized
proteins [24]. This is a clear example of how the
same components may combine differently to yield
different lipid organizations with features that adjust
to their specific needs. Membrane heterogeneity is
further achieved by lateral asymmetry in which mem-
brane regions (basal, lateral, apical), and different
specialized membrane regions or microdomains
(lipid rafts, caveolae, coated pits, synaptosomes,
etc.) [9, 25 and references therein] extend the mosa-
ic nature of membranes. The formation of these
domains in part results from the non-ideal mixing of
lipids in membranes and in some cases, it is
enhanced by the participation of certain cytoskeletal
structures that underpin the lipid bilayer and that
restrict the traffic of proteins and lipids.

Cells possess complex mechanisms to control the
specific lipid composition of membrane, imposing
directionality and selectivity to the mobilization of
lipids. Several specialized enzymes, such as flippas-
es, floppases and scramblases, are responsible for
maintaining this precise membrane lipid distribution
[24, 26]. Indeed, the heterogeneous distribution of
lipids is critical for the correct physiological home-
ostasis of cells. Accordingly, the loss of transmem-
brane lipid asymmetry and the concomitant exposure
of PS to the external milieu occurs upon induction of

programmed cell death (apoptosis) [27], or on platelet
activation and aggregation [28]. Externalization of PS
changes the cell surface charge, as its negative net
charge at physiological pH alters the electric proper-
ties of the external leaflet, mainly influenced by the
glycocalix. The net result of this process is an alter-
ation of cell–cell interactions that might be involved in
the conversion to a procoagulating state [29],
increased adhesion and aggregation [30] and recog-
nition by phagocytic cells [31]. Although these
processes are essential for normal cell development
and homeostasis, unregulated loss of PS asymmetry
may contribute to the development of heart disease,
stroke and diabetes [30].

The organization of specific domains is an impor-
tant aspect of membrane structure that has recently
received increasing attention. Because lipids have
significant lateral mobility, one might expect that they
would be homogenously distributed in most mem-
branes. However, both model and biological mem-
branes exhibit non-ideal mixing in systems containing
two or more elements [32, 33]. The physicochemical
forces involved in this lateral segregation into
microdomains are discussed below (Fig. 3). Although
various different domains are known to exist,
research has focused on lipid rafts for many years.
From a practical point of view, a lipid raft can be
defined as a single, detergent-insoluble glycolipid-
enriched (DIG) membrane fraction, with a high 
content of cholesterol, glycosphingolipids, SM and pro-
teins. Although some authors also consider caveolae
to be lipid rafts, others consider them as a different

© 2008 The Authors
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Fig. 3 Schematic illustration of a
biomembrane, depicting mem-
brane lipid asymmetry as well as
microdomains enriched in partic-
ular lipids and those induced by
membrane proteins.
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kind of cholesterol-free sphingolipid containing
microdomain with a different protein and lipid compo-
sition. Thus, whereas lipid rafts are planar domains
with high levels of glycosylphosphatidylinositol (GPI)-
anchored proteins and deficient in caveolin, caveolae
are cell surface invaginations stabilized by structural
proteins such as caveolins and deficient in GPI-
anchored proteins [34].

Although still controversial, studies using fluores-
cence resonance techniques have estimated rafts to
have a mean diameter between 30 to 50 nm [35] and
several hundred micrometers [36]. It was earlier sug-
gested that rafts moved within the exofacial leaflet of
the membrane bilayer [37], although current evi-
dence suggests that rafts also extend through with
the cytofacial leaflet due to the organization of lipids
associated with the presence of membrane sig-
nalling proteins such as rho-A, fyn and the interleukin
receptor IL2R-� [38–40]. GPI-anchored proteins are
very abundant in rafts [41, 42] but they do not span
the membrane bilayer and therefore, they probably
have little effect on the organization of the cytosolic
leaflet. On the other hand, rafts contain unusual
amounts of ethanolamine plasmalogens, PS [43] and
the GM3 ganglioside [41].

Caveolae are cell surface invaginations that are
usually smaller than lipid rafts, the diameter of their
opening at the cell surface typically ranges from 60 to
80 nm. Caveolae contain more free cholesterol than
lipid rafts (with respect to sphingolipids) [41, 43],
whereas GM3 is practically undetectable [41]. The
main feature of caveolae is the presence of caveolin-
1, a structural protein present in the form of high
molecular weight oligomers, while a second caveolin
(caveolin-2) is also often present. When compared to
rafts, GPI-anchored proteins are largely or complete-
ly absent from caveolin-containing microdomains
[41, 42]. Significantly, a wide variety of receptors and
signalling proteins have been co-purified with cave-
olins: receptor kinases, platelet-derived growth factor
receptor (PDGF-R), insulin receptor, shc, h-Ras, etc.
Protein kinase A, adenyl cyclase and several iso-
forms of PKC have also been recovered from sub-
cellular fractions of caveolae [44].

The formation of microdomains within the mem-
brane allows the selective incorporation or exclusion
of specific proteins, providing a mechanism to govern
protein–protein and protein–lipid interactions [45].
Numerous studies have implicated rafts in the com-
partmentalization, modulation and integration of sig-

nalling events, providing platforms for the assembly
of cell surface receptors and their downstream sig-
nalling proteins [46]. Along these lines, SNAREs (sol-
uble N-ethyl-maleimide sensitive factor attachment
protein receptor) are known to concentrate in choles-
terol-dependent microdomains that define docking
and fusion sites for the exocytosis and release of
neurotransmitters, hormones, enzymes and other
proteins or small molecules [47]. Caveolae have also
been implicated in clathrin-independent endocytosis
of GPI-anchored proteins and glycosphingolipid-
binding toxins [48, 49].

Why so many different lipids?

Lipids are by far the chemically most diverse class of
biomolecules, with an average portfolio of a eukary-
ote cell being comprised approximately 1300–1500
different species. Moreover, different cell types, such
as liver parenchymal cells and brain cells have differ-
ent lipid compositions, as do different cellular
organelles. Although some of this diversity is likely to
result from diet-induced variation, the overall pat-
terns are actively maintained by the cells, and,
accordingly, require significant metabolic energy
input and the presence of a large collection of
enzymes and transfer proteins, responsible for the
active control of lipid compositions and dynamic dis-
tribution within a cell. The above, together with the
discovery of bioactive lipids (such as platelet activat-
ing factor, PAF), and recognition of the key involve-
ment of lipids (e.g. PI, diacylglycerol [DAG] and
ceramide) in cellular signalling cascades readily
makes obsolete the view that lipids are just mere
building blocks for making impermeable membranes
to provide the cell with distinct compartments.

There are now extensive efforts to establish spa-
tio-temporal, organelle level compositional patterns
of lipids and to correlate these to the physiological
states of cells, approaching cell behaviour from the
point of view of lipidomics. With the emergence of
these data it becomes mandatory to understand the
mechanisms pertaining to the biological activities of
lipids. Lipids represent the paradigm for molecular
self-assembly, mainly driven by their amphiphilicity,
and biophysical studies conducted during the last
four decades or so have demonstrated these assem-
blies to form, depending on the lipid in question, 
a range of different phases, sensitive to factors

© 2008 The Authors
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including temperature, pressure, ions, hydration,
small molecules (e.g. metabolites and drugs) and
pH. Exploration of the behaviour of lipid mixtures,
consisting of only two to three species has further
shown membranes to possess a rich scale of 2- and
3-D organization on different length- and timescales.
Taken the complexity of biomembrane compositions
and the fact, that they are at thermodynamic non-
equilibrium (because of membrane potential, for
instance), it is obvious that we are still in the early-
phases in lacking a true, molecular and system level
understanding of biomembranes and the roles
played by different lipids. Regarding the latter, the
effects of lipids can be divided into two fundamental-
ly different categories. The first type is (i) the recog-
nition and binding of lipids as individual molecules by
specific proteins, accommodating lipids as ligands. A
good example is the PAF receptor, that belongs to
the GPCR family [1]. This mode of action of PAF rep-
resents a ‘classical’ protein–small molecule interac-
tions and does not assign any role to the collective
membrane properties of the lipid agonist. The other,
much more poorly understood area relates exactly to
the latter, (ii) lipid bilayer biophysical properties and
the impact on these by different lipids, further influ-
encing membrane and membrane protein functions,
as well as 2- and 3-D organization of the membrane,
including its proteins [50, 51]. A good example is pro-
vided by DAG, which can constitute up to 10 mol% of
the membrane lipids in transformed cells. Although
tentative scenarios have been forwarded to explain
the coupling between the physiological state of the
cancer cell and the physical properties, such as
imparted on cellular membranes by DAG [15, 52, 53],
we are still missing conclusive mechanisms.
Nevertheless, it is clear that such a high content of
DAG necessarily has profound effects on the mem-
branes of transformed cells, including the functions
of membrane proteins such as PKC, activated by this
lipid. Accordingly, to avoid lipidomics to remain mere
cataloguing it is essential to be able to connect the
individual lipid species to the overall collective bio-
physical properties of membranes and their involve-
ment in cellular physiology and pathophysiology, in
addition to the recognition of possible novel recep-
tors and effectors for specific lipids. It is the former,
biophysical approach on lipidomics, which is outlined
and discussed below. This approach thus provides a
partial answer to the question on the chemical diver-
sity of lipid structures. For instance, the different

acidic phospholipid species as well as the cationic
lipid sphingosine allow complex regulation of the pro-
tonation behaviour by surface change density, affect-
ing electrostatic interactions on membrane surfaces.
Moreover, these lipids also differ in their affinity for
divalent metal cations, such as Ca2�, thus imparting
sensitive to the latter to particular membranes. As
membrane electrostatics are further intimately 
coupled to factors such as acyl chain saturation con-
trolling lipid phase state and lateral organization –
these already seemingly simple chemical variations
created a rich scale of structures, sensitive to specif-
ic environmental variables and controlling membrane
protein functions in a highly cooperative manner.

Lipid mixing and demixing

Lipids impact not only the bulk biophysical proper-
ties, such as rates of lateral diffusion, but also the
dynamic organization of these assemblies. A timely
example is the current surge of interest in lipids and
their involvement in the lateral heterogeneity and
microdomains in biomembranes (Fig. 3), together
with the recognition of the large variety of biomem-
brane functions controlled by this dynamic organiza-
tion [51, 54]. Membrane microdomains (‘rafts’) were
discovered already in the 1970s and early 1980s
using different approaches [55–63] and, importantly,
were attributed to the physical properties and organ-
ization of lipid mixtures [14, 58, 59]. In this regard,
the dependence of the lipid phase transition temper-
atures on the extent of acyl chain unsaturation and
chain lengths as determinants of lipid–lipid and
lipid–protein interactions in driving lateral demixing
are of importance (e.g. myristoylated versus palmi-
toylated proteins, [54]). Further along these lines of
particular current interest are SM and cholesterol,
which have been shown to segregate form domains
in cells [60] as well as in model membranes [64, 65].
The driving forces for the phase separation in this
lipid mixture are still controversial. One possibility is
hydrophobic mismatch, which has been demonstrat-
ed to drive the formation of microdomains in recon-
stituted membranes [66, 67]. Accordingly, with the
phospholipid acyl chain order augmenting due to
cholesterol and thus causing an increase in the bilay-
er thickness, phase separation would take place, with
the formation of the cholesterol-enriched liquid
ordered lo phase [68] decreasing the free energy
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penalty due to hydrophobic mismatch (line tension)
between these and the liquid disordered (ld) choles-
terol-poor regions [69]. Because of the dynamic
nature of the lo phase and fast exchange between
the lo and ld domains, these structures can be
expected to have a major impact on the lateral organ-
ization of integral membrane proteins.

Another example of lipid-driven membrane demix-
ing is provided by ceramide, which is involved in cel-
lular signalling of apoptosis, programmed cell death
[70]. This lipid has a pronounced tendency for self-
association, caused by intermolecular hydrogen
bonding, further promoted by the weak hydration of
its headgroup and tight packing of the saturated
hydrocarbon chains. The segregated ceramide-
enriched phases have significantly elevated chain
melting temperatures and are crystalline in nature at
physiological temperature [71]. Accordingly, the prop-
erties of ceramide- and cholesterol-induced phases
are distinctively different and they can be expected to
have very different impacts on the lateral organiza-
tion of membrane proteins, for instance. The tight
packing of ceramide further manifests another impor-
tant property characterizing membranes, bending
rigidity, pertaining to the energy required to change
the shape (curvature) of a membrane. Although
membranes formed by unsaturated PCs, for
instance, are very soft, with intense fluctuations in
their shape caused by thermal energy, membranes
enriched in ceramide are rigid. Ceramide illustrates
also another important property of lipids, sponta-
neous curvature. More specifically, depending on
their shapes [14] and more exactly, on their effective
shapes [52], the curvature of the surfaces formed by
lipids can be negative, zero or positive. Because of
their small size and tight packing of the ceramide
headgroups by intermolecular hydrogen bonding,
ceramide-enriched membrane domains have nega-
tive spontaneous curvature, ultimately favouring the
formation of the inverted hexagonal (HII) phase 
(Fig. 4). The negative spontaneous curvature of the
ceramide-enriched membrane domains, together
with their high bending rigidity, have interesting con-
sequences, such as those given below. Ceramide
can be enzymatically generated in membranes from
SM, which has a strongly hydrated phosphocholine
headgroup attached to ceramide. In contrast to
ceramide, SM readily mixes at physiological temper-
atures with liquid disordered, unsaturated PCs.
However, upon the conversion of SM to ceramide by

sphingomyelinase (SMase), the reaction product
segregates into microdomains [72] with negative
spontaneous curvature and high bending rigidity. As
a consequence, these microdomains start bending
the membrane, ultimately causing shedding of
ceramide-enriched vesicles from the original bilayer
membrane [73, 74]. Accordingly, the formation of
ceramide in biomembranes can be anticipated to
cause lateral segregation of membrane constituents
and be responsible for the membrane blebbing in
apoptotic cells, in essence causing both 2-D as well
as 3-D reorganization of membrane with its embed-
ded proteins [75].

Lateral pressure

Intimately related to membrane spontaneous curva-
ture is the lateral pressure profile [76]. This concept
is highly useful in understanding of several charac-
teristics of membranes. In brief, approaching the sur-
face of a PC bilayer from the water phase and
recording the prevailing forces acting on the lipid
assembly, there is first a zone with repulsive potential
between the strongly hydrated headgroups, such as
for PCs and SMs (Fig. 5). Adjacent to the above there
is a zone where the hydrophobic effect manifests as
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Fig. 4 Inverted HII hexagonal phase composed of water-
filled tubes with the lipid acyl chains pointing outwards.
Different cellular membranes with a planar geometry
invariably contain a variety of lipids and would therefore
form such a phase. The presence of these lipids imparts
frustration to the membrane, with a high packing density in
the hydrocarbon region of the bilayer. Adapted from [51].
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interfacial tension, with hydrophobicity of the lipid
hydrocarbon chains restricting their contacts with
water molecules. Whenever thermal motion and
repulsive interactions increased the exposure of the
acyl chains to water, its entropy decreased. The
resulting tension balances not only the steric repul-
sion between the headgroups but also the repulsion
between the acyl chains, prevailing in the hydrocar-
bon region of the bilayer. Because of these forces are
acting on very narrow zones, the pressure can 
be considerable, estimated to be hundreds of 
atmospheres.

The lateral pressure profile can be influenced in a
number of ways, e.g. by small membrane partitioning
molecules as well as by the lipid composition.
Introducing a lipid with a large headgroup for exam-
ple, augments repulsion at this level and therefore
reduces the entropic pressure between the chains.
Consequently, the acyl chain order and membrane
thickness decrease. Introducing a lipid with a small
headgroup, such as unsaturated PE (e.g. palmitoyl
oleoil phosphatidylethanolamine [POPE]) has the
opposite effect, with the contribution of the repulsion
between the chains in counteracting the interfacial
tension becoming more significant. Under these con-
ditions, with moderate contents of POPE, the mem-
brane remains lamellar, yet its free energy increases
as the free energy minimum would require negative
spontaneous curvature. Such membranes are
defined as frustrated phases and this can be expect-
ed to have interesting consequences for lipid–protein
interactions [15]. It has been demonstrated that it is
this frustration, which activates PKC by inverted
hexagonal (HII) phase (Figs. 2 and 4) forming lipids

(with high negative spontaneous curvature), not the
formation of this phase per se (for a review, see [15]).
High internal pressure within the bilayer can further
result in a novel type of lipid–protein interaction,
extended lipid anchorage, with one chain of a mem-
brane embedded lipid extending out from the mem-
brane and accommodating into a hydrophobic cavity
of a protein, thus attaching the latter to the mem-
brane surface without protein intercalation into the
bilayer [77, 78].

Unfortunately, there are no direct experimental
techniques available for the quantitative assessment
of the lateral pressure profile. Interestingly, recent
computer simulations suggest cholesterol to have a
profound impact [79]. As the lateral pressure profile
should profoundly influence both lipid–lipid and
lipid–protein interaction potentials, it is likely that this
characteristic property of membranes is under strin-
gent control, as is evidenced by the crucial role of the
control of the membrane contents of lipids with neg-
ative spontaneous curvature, required for the proper
growth of microorganisms [15, 52, 53].

Lastly, it is worth mentioning the difference
between the lateral pressure profile and equilibrium
lateral pressure, the latter simply being the numeric
value where the forces are at equilibrium for a ten-
sion-free bilayer. Both theoretical and experimental
studies (including relative efficiencies of different
phospholipases A2 in hydrolyzing erythrocyte phos-
pholipids and comparison with their action on 
lipid monolayers at varying lipid lateral packing densi-
ties) have yielded an estimate of approximately 
30–35 mN/m for the equilibrium lateral pressure of
biomembranes. Although this parameter is unlikely to
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Fig. 5 Lateral pressure profile for
a lipid bilayer (left), with surface
tension being balanced by steric
repulsion between the head-
groups and acyl chains. See text
for details. Adapted from [51].
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vary significantly with lipid compositions found in
membranes, their susceptibility to osmotic forces
(membrane stretching) has been shown to vary
markedly depending on the lipids present [80, 81].
Reflecting lipid acyl chain compositions, for
instance, the extent of area increase caused by
equal osmotic pressure gradients across a bilayer
should greatly increase upon increasing cis-unsatu-
ration and shorter chain lengths. As osmotic forces
are tightly controlled in cells and regulate proteins
such as stretch-sensitive ion channels and phos-
pholipases, these issues would deserve to be
investigated in more detail. Of the latter group of
enzymes, phospholipase A2 represents the rate-
limiting step in the synthesis of prostaglandins from
arachidonic acid, making it a key player in the con-
trol of inflammation and thus emphasizing the
importance of understanding the biophysics gov-
erning biomembrane functional properties. The con-
trol of this enzyme by osmotic stretching of the
membrane provides an example how a physical
property of a lipid bilayer is converted directly into a
biochemical signal [82].

Surface electrostatics

From the point of physical chemistry the importance
of electrostatics to the assembly of membranes is
obvious. Thoroughly studied examples are cationic
proteins or proteins with clusters of cationic residues,
avidly associating with the negatively charged acidic
phospholipids, such as PS and phosphatidylglycerol,
PA and cardiolipin. In addition to pure Coulombic
attraction specific interactions between particular
lipid structures and proteins are expected. The sur-
face electrostatics can be coupled with phospholipid
phase behaviour. Accordingly, phase separation of
anionic lipids into microdomains with high enough
negative surface charge density can be used to con-
trol the membrane association of cationic proteins
[83]. It is also worth noticing that electrostatics in bio-
membranes is, in general, dominated by the above
negatively charged lipids. Yet, also cationic lipids are
found, the most abundant being sphingosine [84] and
studies with model membranes have shown its 
association with acidic phospholipids to regulate
peripheral lipid–protein as well as lipid–small mole-
cule interactions [85]. More detailed studies on
model membranes have demonstrated the interplay

of surface charge density and the dissociation
behaviour of the acidic phospholipid headgroup to
exert a pronounced impact on lipid–protein interac-
tions evident as distinctly different binding modes of
cytochrome c to protonated and deprotonated phos-
pholipid [86, 87].

The importance of understanding in detail the role
of electrostatics in lipid–protein interactions is exem-
plified by studies on the mechanisms of action the
so-called antimicrobial peptides (AMPs), constituting
the first line of defense of multicellular eukaryotes
against invading microbes. More specifically, where-
as other modes of action are also involved, it is now
thought that one of the principal targets for these
short, cationic and amphiphilic peptides are acidic
phospholipids in the outer surface of bacteria.
Following the association of AMPs to the surface,
charge neutralization allows for them to aggregate,
leading to the formation of membrane-permeabilizing
structures. In this regard, it is of interest that AMPs
and acidic phospholipids form Congo red staining
fibres, the diagnostic hallmark of amyloids [88, 89]. In
the absence of lipids, the formation of these amyloids 
in vitro is generally rather slow and requires slightly
acidic pH and low dielectricity (e.g. 30% trifluoroethanol).
Accordingly, the relevance of these conditions to the
in vivo misfolding and emergence of amyloid has
been questioned. It should be noted that surface pH
of approximately 5.2 has been estimated for mem-
branes containing 20 mol% acidic phospholipids.
Simultaneously, the membranes also provide a low
dielectricity as well as a highly anisotropic environ-
ment, which causes a strong alignment of associat-
ed peptides and proteins [90]. In keeping with the
above, a fast formation of amyloid fibres in the pres-
ence of acidic phospholipid containing liposomes
has been demonstrated in vitro for a number of
cationic peptides and proteins. It is of particular inter-
est that these include, in addition to AMPs, proteins
(for instance histone H1, cytochrome c, �-lactalbu-
min, lysozyme and endostatin) that are cytotoxic and
trigger apoptosis in eukaryotes. Accordingly, it has
been suggested that the formation of amyloid
‘protofibrils’ would underlie the mechanism of toxicity
of these peptides and proteins, in addition to possi-
ble other modes of action [86, 88–91]. Taking into
account that amyloid formation is directly implicated
in major diseases such as type 2 diabetes,
Alzheimer’s, Parkinson’s and prion diseases, it is
obvious that development of detailed understanding
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of the molecular level mechanisms involved would be
of paramount medical importance.

Role of lipids in cell function

We are still far from formulating a general hypothesis
to explain the variety of lipids found in membranes
because most membrane functions that we are
aware of could be fulfilled with just a few lipid
species. However, the ever-increasing number of
studies providing information regarding the different
functions of specific phospholipids is helping us to
understand why membranes are formed by hundreds
of different lipid molecules. Phosphoinositides (PIs)
are important in cell signalling and vesicle formation,
key events in neurotransmission and in the transit of
vesicles from the endoplasmic reticulum to Golgi
[92]. Moreover, PIs participate in a coordinated man-
ner with PE during cell division, whereby changes in
PIP2 production inside the cleavage furrow occur
concomitant with the accumulation of PE in this
structure during cytokinesis [93, 94]. This type of
association between lipids could be considered as a
unique membrane domain that arises transiently to
help the cytoskeletal machinery produce two daugh-
ter cells. On the other hand, nuclear PS and PI are
involved in cell cycle regulation because they stimu-
late the synthesis of DNA polymerase � [95, 96].
Finally, the presence of anionic phospholipids, in par-
ticular PS, is required for the assembly of the pro-
thrombinase complex on membrane surfaces during
platelet activation [28] and as mentioned above,
exposure of PS at the exofacial leaflet occurs in the
initial steps of apoptosis and blood coagulation 
[97, 98]. These lipids also participate in more com-
plex activities, such as the docking of peripheral pro-
teins to membranes [1, 4, 99]. Cholesterol, SM and
gangliosides also participate in the formation of lipid
domains. In a similar fashion, membranes have a
high number of different fatty acid moieties and
although thicker microdomains may require long sat-
urated fatty acid moieties, thinner domains or some
membrane proteins may need shorter or unsaturated
acyl chains. Likewise, the transmembrane regions of
integral proteins may have specific lipid requirements
or at least display certain preferences.

An additional degree of complexity in membrane
lipid functions lies in the metabolic relationship

between phospholipid species. There is a relatively
large number of phospholipases and phosphatases
that specifically participate in the interconversion of
phospholipids and that in turn, can modulate the
activity of those enzymes. The cascade of phospho-
lipase D (PLD) activation is a clear example of this
complexity (Fig. 6) [100]. The initial step of the cas-
cade involves the agonist-induced and GPCR-medi-
ated activation of phospholipase C (PLC) to
hydrolyze phosphatidylinositol (PIP2) into DAG and
IP3. The former activates PKC and the latter induces
the release of Ca2� into the cytosol through IP3-acti-
vated channels, which also activates PKC [101].
Interestingly, mammalian PLDs also require PIP2 as
an essential cofactor for their enzymatic activity
[102]. PLD is present in Golgi membranes [103] and
it hydrolyzes PC to PA, a downstream effector of the
small guanosine triphosphate (GTP)-binding protein

© 2008 The Authors
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 

Fig. 6 Phospholipase cascade of PLD activation and
amplification of diacylglycerol production. Abbreviations:
PI-PLC, phosphatidylinositol-specific phospholipase C;
DG, diacylglyerol; PC, phosphatidylcholine; PA, phos-
phatidic acid; PKC, protein kinase C; PIP2, PI-4,5-bis-
phosphate and PIP kinase, PI phosphate kinase.
Adapted from [100].
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ademine diphosphate (ADP)-ribosylation factor
(ARF-1) [104]. Finally, PA can also be converted to
DAG by PA phosphatases, whose activity is involved
in both lipid metabolism and glycerolipid signalling
[105]. The complexity of the signalling and metabolic
pathways in which phospholipids participate, as well
as the cross-talk between these cascades, empha-
sizes the existence of highly sophisticated regulatory
mechanisms that remain to be fully understood.
Together, these studies demonstrate the role of
membrane lipids in a large variety of cellular func-
tions and emphasize the close relationship between
membrane lipid composition and function. In addi-
tion, the number of existing human pathologies relat-
ed to alterations in lipid metabolism is evidence of
the importance of membrane lipids and their role in
signalling pathways (Table 3).

Lipid influence in transmembrane

protein function

The previous paragraphs have been focused on the
lipid composition of membranes and how lipids
determine the properties of membranes, defining the
formation of different types of membrane structures
and microdomains. Lipids, and the structures they
form, participate in the interaction of proteins with
membranes, delineating their functions and modulat-
ing their structure. The next paragraphs will describe
the interactions between lipids and both peripheral
and transmembrane proteins and how lipids inter-
vene in cell functions controlled by such proteins.

Transmembrane proteins are highly diverse but
have one property in common: they contain one or
more hydrophobic regions that transverse the mem-
brane bilayer and therefore these proteins become
intimately exposed to membrane lipids. Such expo-
sure results in a variety of lipid–protein interactions
that most frequently reveal themselves as highly rel-
evant to the membrane protein functioning. The
observed effects may sometimes be caused by a
lipid-induced misfolding or misassembly of the pro-
tein within the membrane but more frequently, effects
of lipids on the function of properly folded and
assembled transmembrane proteins have been doc-
umented. Nonetheless, despite the extensive infor-
mation obtained on the functional dependence of

many membrane proteins by its surrounding lipids
[106, 107], this has been a controversial issue over
the years and the mechanisms by which such mem-
brane protein modulation is exerted by the different
lipid classes still remain unclear. Two general cases
could be considered. On the one hand, when the
interaction with the lipid is less specific, there are still
lipid-associated parameters defining physical attrib-
utes of the biological membrane, which are known to
modulate membrane proteins. These include lateral
pressure [76, 108, 109], membrane fluidity [110], bilay-
er thickness [111] surface charge distribution [112] or
the segregation of membrane microdomains or ‘rafts’
[113], all of which may affect the structure and/or the
function of intrinsic membrane proteins. On the other
hand, when there is a sufficiently high lipid specificity
in the interaction, there could be more direct effects
through binding of lipids to defined sites on the trans-
membrane portion of the protein [114–118], which has
led to postulate a possible role of certain lipids as
peculiar ‘allosteric’ effectors of the proteins.

In an attempt to illustrate some of these phenom-
ena we have focused on reviewing the subject with
regard to ion channels and receptors, two classes of
very important integral membrane proteins, which
usually allow for very precise monitoring of their func-
tional activities and in some cases, have their struc-
ture solved at high resolution.

A prokaryotic potassium channel: KcsA

One bacterial K� channel that has been identified,
cloned [119] and its structure determined by X-ray crys-
tallography [120] is the KcsA channel from the Gram-
positive soil bacterium Streptomyces lividans. KcsA is a
homotetramer, each subunit containing 160 residues
with two transmembrane � helices separated by a 
P-loop, and cytoplasmic N- and C-terminal domains.

Previous studies have shown that specific mem-
brane lipids have a strong influence on KCSA
assembly and stability [109, 121]. In particular, the
presence of anionic lipids like PA or PG influence the
stability and folding properties of the potassium
channel KCSA [122]. This lipid specificity is also
observed in lipid-binding studies [123]. Moreover, the
high-resolution structure of KcsA shows tightly
bound lipids within the crystal; one modelled as
nonan-1-ol and the other located between transmem-
brane �-helices at monomer–monomer interfaces,
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modelled as a DAG with one C14 and one C9 chain.
Because purified KcsA contains approximately 0.7
phosphatidylglycerol molecules per KcsA monomer,
the lipid modelled from the X-ray as a DAG is proba-
bly a phosphatidylglycerol whose headgroup is too
mobile to be resolved. More recently, such lipids have
been found essential for full refolding and tetrameriza-
tion of unfolded KcsA in vitro [124].

Functional studies with KcsA reconstituted into lipo-
somes suggest that a functional channel could only be
obtained in the presence of anionic phospholipids,
with little or no specificity for the different lipid classes,
which could either be phosphatidylglycerol, PS or car-
diolipin [125]. More recently, Lee and coworkers have
shown positive cooperativity between the open chan-
nel probability and the PG content [126].
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Table 3 Human pathologies and lipid abnormalities

Disease Membrane abnormality Proposed molecular mechanisms

Cardiovascular
(Hypertension)

Changes in membrane phospholipid 
and cholesterol levels, changes in fatty 
acid levels

Regulation of the membrane structure with
concomitant alteration of membrane 
signalling, protein localization and activity

Cardiovascular
(Sudden Cardiac death)

Changes in membrane levels of saturated
and unsaturated fatty acids

Alterations in �-6-desaturase activity in the
coronary artery wall

Cardiovascular
(Cardiac hypertrophy)

Changes in membrane levels of 
triacylglycerol species and other lipids

Changes in cell signalling and impaired 
triacylglycerol availability

Cancer (pathologic 
proliferation)

Changes in membrane fatty acid levels Altered cell structure and function (including
cell proliferation) 

Cancer (multidrug 
resistance)

Alterations in the levels of phospholipid
species (PS*)

Reduced drug intake and facilitated drug
removal from cancer cells

Respiratory pathologies Changes in the lipid composition of 
membrane microdomains

Alterations in mechanotransduction and other
signalling processes

Renal Pathologies Increased lipid peroxidation and augmented
proportions of saturated fatty acids caused
by haemodialysis

Increased cellular oxidative stress

Alzheimer’s disease,
Aging and 
neurodegeneration

Reduced levels of PUFA† in brain cell 
membranes

Altered expression of transthyretin and other
genes related to learning, cognitive and 
integrative functions

Inflammation, 
autoimmune and 
related diseases

Release of pro-inflammatory lipids from
membranes

Formation of eicosanoids from arachidonic
acid, changes in membrane fluidity, changes
in membrane lipid–protein interactions

Infectious diseases Increased ceramide-enriched membrane
domains

Modified membrane lipid domains act as
platforms for a wide variety of virus, 
bacteria and parasite infections

Schizophrenia Decreased proportion of PUFA† in 
membrane phospholipids

Myelin-related and neurotransmitter 
signalling dysfunctions

Obesity Changes in membrane lipids Alterations in membrane protein function

Alcohol-induced fetal
damage

Changes in cell membrane composition Various cell functions alterations

Coagulation (Scott
Syndrome)

Defective PS* flip-flop translocation in 
membranes

Impaired interaction of coagulation factors
and blood cell membranes

Triose Phosphate
Isomerase deficiency

Lack of symptoms is associated with 
modification of membrane lipids and lipid fluidity

Changes in membrane protein–lipid interactions
and in the activity of certain enzymes

Adapted from [9]
*PS, phosphatidylserine and †PUFA, polyunsaturated fatty acids.
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The functional and structural results mentioned
above indicate that the modulation of KcsA by mem-
brane lipids occurs through specific interactions
between the protein and tightly bound PG.
Interestingly, there are reports on the detection on
lipid bound in the crystal structures of other mem-
brane proteins [127–129] and, therefore, it is likely
that such proteins might be regulated by lipid in a
manner similar to that of KcsA.

Mechanosensitive channels: Msc

The mechanosensitive channels are a structurally
heterogeneous protein family widely distributed in
archaea, prokaryotes and eukaryotes. These chan-
nels are attractive models to study lipid–protein inter-
actions because their function is to couple tension in
the lipid membrane to protein conformation [130].Their
topology is very diverse including two pore domain
channels, that conduct potassium [131, 132] or sodium
ions [133], the TRP (transient receptor potential) chan-
nels, such as TRPC1 and TRPY, that are non-selective
cation channels [134] and the prokaryotic Msc chan-
nels that conduct potassium ions [135].

Bacterial mechanosensitive channels are activat-
ed by increasing tension in the lipid bilayer of the
cytoplasmic membrane, where they transiently cre-
ate large pores in a controlled manner. When recon-
stituted into a bilayer system, the mechanosensitive
channel can be opened from its closed state(s) by
the addition of LPC to one monolayer of the bilayer.
This changes the bilayer curvature and increases the
tension, which results in tilting the transmembrane
helices and lowering the threshold for channel open-
ing [136]. In similar studies using phospholipids with
different acyl chain lengths to change the bilayer
hydrophobic thickness, it is observed that thicker
bilayers tend to stabilize the closed state of the chan-
nel, whereas thinner ones favour channel openings
[137]. From these observations it follows that the
opened and closed states of the channel are likely to
differ in its hydrophobic thickness, such that chang-
ing the bilayer thickness should accommodate better
to one of such states, and stabilize it accordingly.

In addition to the need of a good hydrophobic
matching between the Msc protein and the lipid for
channel function, it has been shown that there is a
chain-length dependence of the lipid binding to the
protein that is different in the two sides of the mem-

brane. Such differences imply that the hydrophobic
matching needed for Msc channel function likely
involves bending of transmembrane �-helices, rather
than simple tilting [138]. Therefore, in Msc channels
and similar cases [139, 140] it seems that certain
bilayer properties, such as the intrinsic curvature or
the extent of hydrophobic mismatch, may influence
protein function directly, without any specific interac-
tion arising from a particular lipid class.

A voltage-gated potassium channel:

KvAP

Voltaged-gated ionic channels (VGICs) are mem-
brane proteins that transiently open a pore through
the lipid membrane in response to changes in mem-
brane potential. Kv channels are VGICs and play a
critical role in a wide variety of physiological process-
es, including the regulation of heart rate, muscle con-
traction, neurotransmitter release, neuronal excitabil-
ity, insulin secretion, epithelial electrolyte transport,
cell volume regulation and cell proliferation. Gating of
the Kv channels in response to membrane potential
has been correlated with the movement of the posi-
tively charged amphipatic S4 transmembrane seg-
ment. In the case of KvAP, a prokaryotic voltage-
gated channel, diverse studies have demonstrated
that the phospholipid membrane provides an appro-
priate environment for the energetic stability and
operation of the voltage-sensing machinery, perhaps
by contributing stabilizing interactions between posi-
tively charged voltage sensor residues and negative-
ly charged lipid phosphodiester groups [141].
Therefore in the Kv channels and similar cases [142,
143] it seems that a bilayer feature, i.e. the charge
provided by the phospholipid headgroups, influences
protein function by controlling electrostatic interac-
tions at the lipid–protein interface.

Nicotinic acetylcholine 

receptor (nAcChR)

Ligand-gated ionic channels are membrane proteins
that transiently open a pore through the lipid mem-
brane in response to neurotransmitter binding. The
nAcChR is one of the best-understood members of
this family. The nAcChRs present in the neuromuscu-
lar synapses are heteropentamers comprised four
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different but highly homologous subunits (for reviews
see references in [144]). Each subunit contains an
extracellular N-terminal domain (which include the
ACh binding sites), four hydrophobic transmembrane
domains (M1–M4) and a small intracellular C-termi-
nal domain. Upon activation by agonist, nAcChRs
transiently open a cationic channel responsible for the
initiation of postsynaptic membrane depolarization.

Extensive biochemical studies have demonstrated
that the ability of the nAcChR to support ion channel
function requires the presence of specific lipids.
These effects in nAcChR function may be exerted
through binding to specific sites of the protein or by
modification of bilayer physical properties. Previous
results have demonstrated that membrane lipids
interact differentially with nAcChR. For example,
sterol, PA and fatty acid spin labels have a relative
high affinity for nAcChR compared with other spin-
labelled phospholipids [145].

Additionally, several lines of evidence demonstrate
the existence of more specific distinct lipid-binding
sites, namely non-annular sites. McNamee and Lee
used brominated lipids to partially quench the intrinsic
fluorescence of the nAcChR to monitor contacts with
the surrounding lipid in reconstituted membranes.They
found that receptor quenching by PC was independent
of the presence of cholesterol, but there is an additive
quenching due to brominated cholesterol derivatives
[118]. These results argue strongly for independent
binding sites for cholesterol and phospholipids.

Although cholesterol may affect the nAcChR
directly, it definitely has profound effects on structure
of the membrane environment, most notably by
changing membrane order or fluidity. In earlier stud-
ies both the agonist affinity and ion flux seemed to
require an optimal fluidity [110]. However subsequent
studies showed that although the ion flux activity of
the nAcChR was strongly influenced by lipid compo-
sition [116], there was no correlation with membrane
fluidity, as measured by steady state anisotropy of
membrane probes [146]. Measurements of mem-
brane fluidity showed that cholesterol further ordered
membranes containing PC and PA, but another
sterol, like androstanol, did not, although either one
of the two sterols supported similar ion fluxes. Thus,
in this case cholesterol exerts its effect on the nAcChR
through direct interaction with the protein [115].

With respect to PA, in vitro studies with nAcChR
reconstituted in lipid vesicles of controlled composi-
tion show that PA is among those phospholipids that

bind the protein with a higher affinity, and it is also
most effective in preserving nAcChR function [118,
145, 147], possibly through a stabilization of the rest-
ing versus the desensitized state of the protein [148].
Moreover, in PA-containing membrane, nAcChR
leads to a dramatic increase in both the lateral pack-
ing densities and the gel-to-liquid crystal phase-tran-
sition temperatures of the reconstituted lipid bilayers
[148, 149]. This strong interaction leads to the segre-
gation of a PA-enriched domain from a complex mix-
ture [149, 150].

The formation of a PA domain is the most likely
explanation for the modulatory effects observed 
in vivo upon PA enrichment of oocyte membranes
[151]. Moreover, similar PA domains critical for bud-
ding of viral particles, have been reported in vivo as
the result of interaction between the host membrane
and envelope viral proteins [152].

Regardless of the in vivo possible relevance, lipid
modulation of the nAcChR seems to be exerted both
through specific interactions of cholesterol with non-
annular protein sites and by the protein-induced segre-
gation of a PA domains optimal for protein functioning.

G protein-coupled receptors

GPCRs regulate a wide range of cellular processes,
including the senses of taste, smell and vision, and
control a myriad of intracellular signalling systems in
response to external stimuli. These transmembrane
proteins interact with extracellular signals, usually
through the binding of small signalling molecules,
which induce a change in the conformation of the
receptor. Such change is transmitted to the cytoplas-
mic face of the protein and enables a coupling with
an intracellular heterotrimeric G protein (GTP-binding
protein). The intracellular G protein, in turn, acts as a
signal transducer that regulates the activity of ‘effec-
tor proteins’ (e.g. adenylyl cyclase, guanylyl cyclase,
PLC, potassium channels, etc.). Diseases such as
certain forms of blindness, obesity, inflammation,
depression, cancer and hypertension, among others,
can be linked to malfunctions of GPCRs.

Rhodopsin, perhaps the best-characterized
GPCR and the only one to have its structure solved
at high resolution, is modulated by membrane lipids.
This protein contains a membrane surface recogni-
tion domain that adopts an amphiphilic helical struc-
ture as a function of membrane composition, PS
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being most active in this regard. Such structural
change mediated by membrane phospholipids may
also contribute significantly to the optimal kinetic
functioning of this prototypical G protein [153]. Also,
it has been demonstrated that changing the bilayer
composition produces changes in the rates of forma-
tion of both Metarhodopsin II and Metarhodopsin II-
Gt complexes, demonstrating that the diffusion of
receptor and G protein are sensitive to the lipid com-
position of the membrane [154].

Similarly, the angiotensin II receptor, which is also
a GPCR, has a carboxy terminus that associates
with the cytoplasmic face of the cell membrane via a
high-affinity, anionic phospholipid-specific tethering
that serves to increase the amphipathic helicity of
this region [155]. Therefore, such associations with
anionic phospholipids seem common in GPCRs and,
as in the case of rhodopsin, it is possible that they
might be relevant for receptor function. Many GPCRs
have a lipid modification in the carboxy-terminal
region that creates a fourth intracellular loop in their
structure. In this context, palmitoylation/depalmitoyla-
tion regulates the coupling of the endothelin B recep-
tor to different G� proteins subtypes [156]. Studies
on 5-HT4a serotonin receptor and the luteinizing hor-
mone receptor in palmitoylation-deficient mutant
mice, further support the importance of receptor
palmitoylation as a regulator of GPCR-mediated sig-
nal transduction [157, 158], further demonstrating
the relevance of protein–lipid interaction in the func-
tion of these integral proteins.

As indicated above, most drugs under pharma-
ceutical development are targeted at GPCRs,
because of the great variety of functions they control
and their involvement either in the aetiology of dis-
eases or in reversion of pathological states. This fact
highlights the relevance of these membrane recep-
tors and the control of cell signalling, exerted at the
plasma membrane, in the cell’s physiology and
human therapy.

Other examples

Table 4 shows other documented cases in which the
activities of integral proteins (ion channels and trans-
membrane receptors) have been shown to be
dependent on membrane lipids. Again, such exam-
ples include cases where lipid–protein interactions
seem very specific, along with others in which the

general properties of the lipid bilayer seem the deter-
minant factor that influences protein function.

Non-permanent proteins 

in membranes

Association processes of proteins with membranes
are not limited to constitutive membrane proteins, but
rather include as well those that translocate or insert
into a membrane at a specific juncture in their biolog-
ical functions. The latter proteins are generally solu-
ble and do not fold and assemble into membranes in
a constitutive way. They develop instead the ability to
insert and/or translocate into membranes under spe-
cific conditions and/or when exposed to lipid bilayers
[159]. Thus in the living cell, a number of membrane
proteins are permanently bound to the lipid bilayer,
either as integral or as peripheral proteins (see
above), whereas others will contact the membrane
only under certain conditions, thereby remaining
membrane bound, or returning promptly to the aque-
ous medium to which they belong (Table 5). This 
section deals with this kind of proteins that interact
briefly with the cell membrane and with those that,
becoming only occasionally in contact with the mem-
brane, are irreversibly bound to it when they do. Both
one and the other will interact in a more or less spe-
cific way with the bilayer and will cause some degree
of bilayer perturbation. In both cases the nature of
the interaction/perturbation will be directly related to
the physiological or pathological role of the proteins.
This heterogeneous group of molecules has been
designated as non-permanent membrane proteins
[160]. Figure 1 depicts a schematic representation of
the various kinds of permanent and non-permanent
membrane proteins.

The subject of proteins that can exist either free or
membrane bound has been studied in the past by
several workers. Wilson [161] called them ‘ambiqui-
tous proteins’, and was perhaps the first to present,
in a systematic way, the idea that variation in intracel-
lular distribution may represent a regulatory mecha-
nism to suit changing metabolic needs. Burn [162]
introduced the concept of ‘amphitropic proteins’ to
encompass the wide group of proteins that associate
reversibly with membranes under certain physiologi-
cal conditions. Later, Nelsestuen and coworkers
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exemplified in protein kinases C and the annexins
the paradigm of proteins that are found either in sol-
uble or membrane-bound forms – their change in
location having important physiological conse-
quences [163]. Also among the precedents of this
concept, the work by Wimley and White [164] should

be mentioned. The latter authors achieved a 
quantitative description of the partitioning of peptides
into membrane interfaces, by constructing an 
‘interfacial hydrophobicity’ scale that has found
important applications afterwards. Wimley et al. [165]
defined as ‘non-constitutive’ the soluble proteins 
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Table 4 Additional examples of interactions between ion channel or receptor proteins and membrane lipids

Membrane protein Observed lipid effect References

Kv 2.1 Cholesterol depletion favours inactivation [329]

Kv 1.3 Ceramide inhibits channel activity [330]

Kv 1.5 Targeted to caveola lipid rafts [329]

Ca2+ activated K+ channels Requires anionic phospholipids for channel activation
Modulated by lipid bilayer thickness

[140]

KATP channel Activation proportional to number of negative charges on
the lipid head group

[331]

TREK Activation by lysophospholipids as a function of acyl chain
length and polar head group size

[332]

ENaC Anionic phospholipids may mediate their regulation [143]

TRP Ca2+ channels The existence of a lipid domain modulated the activity of
the channel

[333]

NMDA Correlation between membrane tension (induced by either
mechanical or chemical stimuli) and internal Mg2+ block

[334]

�7 nNAcChR Target to lipid rafts in the somatic spines of ciliary neurons [335]

Table 5 A classification of non-permanent membrane proteins (modified from [160])

Type Examples References

(A) According to the reversibility of the membrane contact

(1) Proteins that interact reversibly with the 
membrane

Lipid transfer proteins 
Ceramide-activated protein kinase

[168, 179, 181]

(2) Proteins with very long-lived (irreversible) 
contacts

Bacterial toxins (e.g. aerolysin)
Blood coagulation factors.

[187, 197]

(B) According to the nature (strength) of the interaction

(1) Proteins that interact weakly with the 
membrane (extrinsic-like)

TrwD
Protein kinases C

[176]

(2) Proteins that interact strongly with the membrane:

(2.1) Without covalent modification of the 
lipid (intrinsic like)

RTX toxins
Complement proteins

[196]

(2.2) With covalent modification of the lipid Phospholipases
Enzymes of lipid metabolism

[182]
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that exert a biological function by undergoing tran-
sient bilayer insertion.

Non-permanent membrane proteins may be clas-
sified either according to the reversibility of the mem-
brane contact, or to the nature (strength) of their
interaction with the host membrane (Table 5).

Proteins that interact reversibly 

with the bilayers

These proteins have in common that, within a
timescale compatible with the turnover time of mem-
brane components (up to tens of minutes), the pro-
tein binds the membrane, and then comes back to
the aqueous medium. This group encompasses a
large variety of proteins, with widely diverging kinet-
ics of membrane binding. They are often, but not
always, proteins with specific lipid-binding sites. At
the limit of the fast exchange we should mention the
ceramide-activated protein phosphatases 1 and 2A
[166]. In fact, these proteins have never been isolat-
ed in a membrane-bound form, but they contain a
ceramide-binding site in their catalytic subunit, and
strong experimental evidence points towards a direct
interaction with ceramide [167].

Other ceramide-binding proteins are known to
exist transiently in the membrane-bound form, such
as ceramide-activated protein kinase [168], some
isoenzymes of PKC [169, 170] or c-Raf-1 [171]. It
has been proposed that ceramide binds proteins in
this group through their cysteine-rich domains [172].
Recently, ceramide-1-phosphate has been shown to
bind a cytosolic phospholipase A2 via interaction
with its C2 domain [173].

A large number of proteins are known that bind tran-
siently the cell membranes, and have a specific binding
site for DAG (see [174, 175] for reviews). Chief among
these are the PKC isoenzymes belonging to the so-
called ‘conventional’ and ‘novel’ families. In these
enzymes, that otherwise are found in the cytosol, DAG
binding induces their docking to membrane, in addition
to causing protein activation. The movement from
cytosol to membrane is called translocation and consti-
tutes an important event in signal [176].

Some heat-shock protein (Hsps) are associated
with membranes, although they do not contain trans-
membrane domain or signal sequences, thus they
can also integrate the category of non-permanent
membrane proteins (see below). Recent studies indi-

cate that these proteins play an important role in
membrane quality control and thereby potentially
contribute to the maintenance of membrane integrity,
especially under stress conditions [177]. The bacter-
ial Min protein system prevents the aberrant localiza-
tion of the cell division machinery at the cell poles.
Min happens to be a non-permanent, or amphitropic
protein, that binds anionic phospholipids and 
undergoes dynamic oligomerization on the mem-
brane surface [178]. In this line, membrane lipid re-
organization has been shown to play an important role.

Another important group of proteins that bind the
cell membranes transiently is constituted by the so-
called ‘lipid transfer proteins’ [179]. These are intra-
cellular proteins with the capacity to bind a lipid from
one membrane and release it to a different one.
Some recent results have revealed their role as
mediators between lipid metabolism and cell func-
tions. For example, the Sec14-superfamily of PI
transfer proteins are important in linking phospholipid
metabolism, membrane traffic and intracellular sig-
nalling networks [180], and the ceramide transport
protein transports the sphingolipid to the trans-Golgi
apparatus, where it is converted into ceramide-1-
phosphate, in turn an activator in the synthesis of
prostaglandins [181].

Several enzymes involved in phospholipid metab-
olism are, by conventional standards, cytosolic,
although they exert their catalytic properties in the
membrane-bound state. The various phospholipases
are often good examples of cytosolic or extracellular
proteins that become transiently docked to mem-
branes to perform their catalytic roles. All of the
above enzymes possess lipid-binding sites, either
regulatory or catalytic, thus their transient binding to
membranes must be mediated by those specific
sites. This is not the case, however, of the transiently
membrane-bound CTP:phosphocholine cytidyltrans-
ferase, an important enzyme in the synthesis of PC
whose substrates and products are water soluble,
and has no specific lipid-binding site [182]. Studies in
which membrane binding and activity of the purified
enzyme were measured in lipid vesicles [183]
showed that membrane binding of the cytidyltrans-
ferase required anionic lipids.

Bacteriophage M13 offers an interesting and
rather unique example of a protein that becomes
inserted into the cell membrane in the way of the
integral proteins, yet insertion is reversible. During
viral replication the major coat protein of M13 (protein
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VIII) accumulates in the host cell membrane, in the
form of an integral protein [184]. Inside the cell, the
newly synthesized phage DNA is protected transient-
ly by protein V. Viral extrusion occurs without lysis of
the host cell and, simultaneously, protein V is
released to the cytoplasm and protein VIII is taken up
from the membrane. Protein VIII appears to exist in
two conformations, �, or viral form, and �, or mem-
brane form [184].

Proteins that interact irreversibly 

with the bilayers

In some cases, proteins that are not permanent con-
stituents of the membrane become associated with it
in an irreversible way. This occurs most often with
proteins that are not encoded by the own cell
genome, i.e. proteins from parasitic or toxic organ-
isms. To mention a few examples, this is the case of
equinatoxin II from the sea anemone Actinia equina
[185], �-haemolysin from Escherichia coli [186], or
the variety of ‘pore-forming protein toxins’ reviewed
by Parker and Feil [187].

In all these cases, after insertion, the proteins
behave exactly like any other integral protein in the
cell membrane. Note that the toxins are released as
soluble proteins to the aqueous medium, and the
mechanism by which they undergo the transition
from soluble (water soluble) to integral (lipid soluble)
proteins is a fascinating mystery, and a difficult 
one to unravel.

The above concepts can be illustrated with the
example of aerolysin, a 47-kD channel-forming pro-
tein that contributes to the pathogenicity of
Aeromonas hydrophila, a bacterium associated with
intestinal and deep wound infections [188]. The toxin
is secreted in the form of an inactive precursor
called proaerolysin that can be proteolytically
processed to aerolysin by a number of proteases
including trypsin and furin. The active form of the
toxin is a water-soluble molecule that can sponta-
neously oligomerize, producing heptamers that may
then insert into lipid bilayers, giving rise to discrete
hydrophilic channels. On the basis of the crystal
structure of proaerolysin [189], which reveals exten-
sive �-structure, it seems likely that the oligomeric
form of the toxin contains an amphipathic �-barrel
analogous to that observed in the heptamer of
Staphylococcus aureus �-toxin [190]. Aerolysin has

no apparent affinity for lipids until it has oligomer-
ized, but the oligomer contains an exposed
hydrophobic surface, presumably the outside of the
amphiphathic barrel, and can insert directly from
solution. How such a large structure as the barrel
penetrates a lipid bilayer is a largely unexplored puz-
zle. Alonso et al. [191] have proposed that the
aerolysin oligomer may overcome the barrier of the
polar interfacial region by destabilizing the bilayer
locally, causing the formation of non-lamellar struc-
tures. Using liposomes as the host membranes,
those authors found that the inclusion of lipids that
facilitate the lamellar-to-inverted hexagonal phase
transition enhanced aerolysin insertion, whereas the
opposite occurred when lipids that stabilize the
lamellar phase were present.

An additional aspect that complicates the taxon-
omy of non-permanent membrane proteins is that
there are examples of proteins that can bind lipid
bilayers either reversibly or irreversibly, depending
on the composition and physical properties of the
bilayer. This is the case of E. coli �-haemolysin that
binds reversibly bilayers in the gel state and irre-
versibly those in the liquid-crystalline state [192,
193]. Also, recent data [194] suggest that a fraction
of �-haemolysin is secreted from the bacterium
bound to outer membrane vesicles, from which the
toxin is transferred to the target cells, thus �-
haemolysin is reversibly bound to the secretion
vesicles before becoming irreversibly inserted 
into the target membrane. Equinatoxin II binds
reversibly pure PC bilayers, but irreversible inser-
tion occurs when SM is incorporated in the bilayer
composition [185, 195]. However, binding to cell
membranes is almost always irreversible, and this is
why these toxins are best classified within the group
of non-permanent membrane proteins that become
irreversibly bound.

In the previous paragraphs we have seen exam-
ples of bacterial or viral proteins that become part of
the host cell membrane. The opposite may occur as
well, when the host tries to attack an unwanted par-
asite, as in the case of complement-mediated bacte-
rial killing. Complement proteins, of which more than
20 are known, exist in blood as part of the innate
immune system. Proteins 5b and 9 of the comple-
ment system form the so-called ‘membrane attack
complex’, that binds the outer membrane of Gram-
negative bacteria. The bactericidal activity of comple-
ment is dependent upon C9, but currently it is not
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understood how this protein translocates across the
periplasm and dissipates the potential across the
inner membrane [196].

In some cases, proteins encoded by the same
organism may bind irreversibly its cell membranes.
This is the case of several proteins involved in blood
coagulation, e.g. factor X [197], factor VIII [198] or fac-
tor V [199]. To mention but one example, factor V cir-
culates in plasma as a single chain procofactor (330
kD), from which derive the two chains, respectively,
94 and 74 kD, of the active form, factor Va. Factor Va
facilitates activation of prothrombin to �-thrombin by
factor Xa. For this purpose, the serine protease factor
Xa and factor Va assemble on a membrane surface in
the presence of calcium ions. Insertion of factor Va in
lipid bilayers containing neutral and acidic phospho-
lipids has been studied by Majumder et al. [200].
Membrane association of factor Va appears to be a
complex process involving both chains of the protein,
changes in lipid packing, and in protein conformation.
Interestingly, membrane binding also facilitates prote-
olytic degradation of factor Va [199].

Non-permanent membrane proteins can also be
classified according to the nature (strength) of their
interaction with the host membrane (Table 5).

Proteins that interact weakly with 

the membrane

These are proteins that remain membrane-bound
through non-covalent forces other than hydrophobic
interactions. Electrostatic and polar forces are the
most relevant in this case.This group of proteins over-
laps almost exactly with those that bind reversibly the
cell membranes: many ceramide- and DAG-activated
proteins involved in cell signalling belong to it.
However, phospholipases and other enzymes of lipid
metabolism that induce covalent modification of
membrane lipids should not be included here,
because for the most part they bind the membrane
through strong, through transient, hydrophobic forces.

Proteins that interact strongly with 

the membrane

The proteins in this group are bound to the mem-
brane mainly, but not exclusively, through hydropho-

bic forces. This does not mean that hydrophobic
forces are particularly strong.When hydrophobic inter-
actions are individually considered they are actually
rather weak (of the order of 5 kJ/mol), their strength
coming from the fact that, within the non-polar mem-
brane matrix, a multitude of hydrophobic interactions
join their forces providing an overall strong bond for
the incoming protein. Among the non-permanent pro-
teins that interact strongly with the membrane, an
important distinction must be made between:
1 Proteins whose interaction does not lead to cova-

lent modification of the membrane lipids and
2 Proteins whose interaction with membranes does

lead to covalent modification of the lipids.
In other words, strongly bound non-permanent mem-
brane proteins may or may not have an enzyme
activity on the lipids. Among the proteins devoid of
enzyme activity on lipids are the toxins mentioned
above: �-haemolysin, equinatoxin II, aerolysin and
many others, but note that there are bacterial toxins
with phospholipase activity. The latter, together with
the physiological phospholipases (including SMase)
and other enzymes of lipid metabolism constitute the
second subgroup.

From a thermodynamic point of view, cell mem-
branes constitute an open system, far from equilibri-
um, in constant exchange of matter and energy with
their environment. Molecules as important (qualita-
tively and quantitatively) as proteins may become in
contact with the membranes, either for short or for
long periods. The term ‘non-permanent proteins’ has
been suggested [160] to encompass the variety of
such molecules that, at some stage, come to interact
with any of the cell membranes. Some of them are
originated by the own cell genome, others arise from
a foreign genome. New methods to study the interac-
tion of the membrane with these ‘visitors’, particular-
ly with those that favour very short visits, will have to
be developed. Our view of the structure and dynamics
of cell membranes will have to be gradually broad-
ened, to encompass the increasing number of pro-
teins that, being only transitorily part of the membrane,
are not less worthy of attention than the more perma-
nent ones. The important observation has been made
[201] that non-permanent proteins can generate large
local tensions in the membrane, that frequently relax
into a variety of physical effects along lateral and
transverse planes of the membrane. In turn these
effects can mediate molecular and structural changes
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modifying membrane topography and dynamics, and
ultimately membrane biochemical reactivity.

In the next paragraphs, we will review the molecu-
lar bases of the interaction of specific proteins with
membranes as examples of the general principles
depicted in this section.

G proteins and their interactions 

with membranes

Interactions with lipids regulate the localization and
activity of many amphitropic proteins. These proteins
can interact with various types of membrane lipid
species or lipid structures in defined membrane
microdomains, depending on their transient structur-
al status, on their tertiary structure or on the modifi-
cations in the number of oligomeric subunits in the
complexes. Therefore, the messages they propagate
into the cell will somehow depend on these
protein–lipid interactions. Here, we shall review the
interactions of several types of amphitropic proteins
with membranes and the role these interactions play
in the cell’s physiology.

GPCRs constitute the largest gene family of mem-
brane receptors (see above sections) and they are
involved in controlling a wide number of cellular and
physiological processes, such as: vision, taste, smell,
blood pressure, metabolism, cell proliferation, body
weight, neurotransmitter release, affective status,
etc. [202, 203]. Agonist-mediated activation of these
receptors propagates signal transduction through
heterotrimeric G proteins. Hence, the wide range of
receptor types and the relevance of the functions
they control, makes via G protein signalling one of
the most important cell signalling pathways in the cell
(for a review, see [202, 203]). GPCRs undergo con-
formational changes upon receptor activation that
activate the associated heterotrimeric G proteins.
However, recent evidence indicates that some
GPCRs are able to trigger signalling events in cells
without the intervention of G proteins [204, 205], and
that G proteins can be activated by means of GPCR-
independent activators of G protein signalling pro-
teins (AGS proteins) [206, 207]. There are at least 16
types of G� subunits, 5 of G� subunits and 12 types
of G� subunits encoded by the G protein gene fami-
ly [208]. G� subunits can be divided at least into four
structurally related categories: G�i/	, G�s, G�q/11
and G�12/13, although other classifications based

on their functional properties have been also pro-
posed. Among all the G proteins, the GTPase domain
is highly conserved whereas the helical domain that
directs the coupling with the GPCRs varies [208].

The association between an extracellular agonist
ligand and the GPCR molecule induces the produc-
tive coupling to intracellular heterotrimeric (G���) G
proteins. This coupling promotes the exchange of
guanosine diphosphate (GDP) for GTP on the G�-
subunit and the G� subunit then dissociates from the
G�� dimer, the GPCR moving to other membrane
domains. Both, G� and G�� proteins exert their
action by modulating the activity of different intracel-
lular effectors and kinases, the latter being responsi-
ble for receptor phosphorylation and inactivation.
While the GPCR remains active, several G protein
molecules can be activated by a single receptor mol-
ecule, resulting in the amplification of the incoming
message. For effective signal amplification, a large
number of G proteins must be available near to the
receptor molecule, which is achieved by specific pro-
tein–lipid interactions. Termination of G� signalling
activity occurs when the �-phosphate of GTP is
removed by the intrinsic GTPase activity of the G�-
subunit, leaving GDP in the nucleotide-binding
domain of G�. As a result, the G�-GDP re-associ-
ates with the G�� complex and the G protein trimer
is again ready to be activated by a receptor molecule
[209]. Activated G� monomers regulate the activity of
effector proteins, such as adenylyl cyclase, PLC, K�

channels, etc., which in turn control the cytosolic lev-
els of second messengers. Most effector proteins
stimulated or inhibited by G protein subunits are to
some extent membrane-bound proteins and there-
fore, they are associated with lipids. In this context, G
protein–lipid interactions may also play a role in driv-
ing G protein subunits to specific membrane domains
where their protein targets reside. G protein-mediat-
ed signalling is further regulated by the binding of
regulators of G protein signalling (RGS) to G� sub-
units. RGS proteins constitute a large group of pro-
teins that stimulate the GTPase activity of G� sub-
units [209, 210]. In the past few years, it has become
clear that the role of RGS in G protein signalling 
is not the mere inactivation of G� subunit but 
rather, they act as mediators of signalling linking 
G proteins with signal transduction pathways that
influence cell motility, intracellular trafficking and
important responses such as cell growth and differ-
entiation [210].
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G proteins bind tightly yet reversibly to cell mem-
branes, and lipid modifications to their � and � sub-
units assist in their membrane docking [1]. Indeed,
both lipid–lipid and protein–lipid interactions partici-
pate in the binding of G proteins to membranes [3, 99].
G� subunits are modified at their N-termini by myris-
toylation and/or palmitoylation, whereas farnesyl or
geranylgeranyl isoprenoid moieties can be added to
the C-termini of � subunits. Myristoylation occurs co-
translationally on glycine residues of G�i proteins
[211, 212], whereas other G� proteins (with few
exceptions) are post-translationally and reversibly
palmitoylated on cysteine residues [211, 212]. The
regulation of the state of palmitoylation by GPCR-
mediated activation influences the cellular localization
of G� subunits and the propagation of signals through
these membrane receptors [8, 213–216].

All 12 known G� proteins are isoprenylated on
carboxy-terminal cysteine residues via a thioether
bond. Either a farnesyl moiety on the G�1, G�9 and
G�11 subunits (CVIS motif) or a geranylgeranyl moi-
ety on the G�2, G�3, G�4, G�5, G�7, G�8, G�10, G�12

and G�13 subunits (CAIL motif) is recognized by the
corresponding enzyme [1]. Isoprenoids bind with
high affinity to non-lamellar-prone lipids (e.g. PE) and
increase their hexagonal (HII) phase propensity [2].
This lipid modification is involved not only in G pro-
tein–membrane interactions but also in the formation
of non-lamellar-prone membrane domains [2, 3].
Moreover, regions with high non-lamellar-phase
propensity are important in the activity of the various
forms of G proteins produced during their cycle of
activity: Both G��� heterotrimers and G�� het-
erodimers prefer non-lamellar prone domains (PE-
rich), whereas G� subunits prefer lamellar regions
(e.g. lipid rafts) [6]. The behaviour of these proteins
would explain the accumulation of heterotrimeric G
protein molecules near receptors, where they are
needed in a molar excess to amplify GPCR-mediat-
ed signals. Similarly, these preferences explain how
G� subunits leave the receptor microdomain upon
activation and dissociation from the G�� complex,
facilitating their encounters with signalling effectors
found in other membrane domains. This model also
explains why G�� dimers remain around GPCRs
where they may recruit GRK to phosphorylate and
inactivate the receptor protein. Thus, lipid structures
fulfil an active role in signal propagation, generating
first a pool of G��� proteins near GPCRs, and later
defining the localization of G� and G�� proteins to

different membrane regions [6].
In addition to lipid–lipid interactions, G proteins

are also associated with membranes via electrostat-
ic interactions between specific amino acids and
membrane phospholipids. The inner leaflet of the
membrane contains relatively large amounts of PS,
so that protein–lipid interactions between this anion-
ic phospholipid and the cationic amino acids from G
proteins may also participate in the docking of this
transducer to membranes [3, 99].

Although GPCRs have gathered the attention of
academia and industry to delineate therapies, G pro-
teins themselves have not been on the focus of the
design of therapeutic drugs. This is in part due to the
fact that small-molecule ligands for GPCRs differ
among receptor types and specific molecules with
high subtype recognition have been or can be syn-
thesized, whereas all G proteins bind the same lig-
ands: GDP, GTP and their synthetic analogues.
However, G proteins show a greater variation in their
membrane–lipid interactions. Moreover, a given G�
protein interacts differentially with membranes in its
monomeric and trimeric forms or when it has or lacks
a palmitic acid moiety, which results in different activity
states. This possibility to regulate G protein activity
through regulation of their lipid environment has
been recently used to develop drugs for treatment of
cancer, obesity, hypertension, etc. [2, 3, 9, 16].

Small monomeric G proteins:

the Ras and Ras-like family

Many growth factor receptors activate Ras and Ras-
like proteins, most of them belonging to the tyrosine
kinase receptor family. Mammalian Ras proteins 
(H-Ras, K-Ras4A, K-Ras4B, N-Ras) have a molecu-
lar weight of 21 kD and except for K-Ras4B (188
amino acids), they contain 189 amino acids. The N-
terminal 85 residues of the four members are identi-
cal and their similarity remains as high as 90% over
the following 80 residues. Accordingly, the principal
source of divergence among Ras isoforms is restrict-
ed to the 24 C-terminal amino acids, which display
less than 15% homology [217]. This diversity is relat-
ed to the different membrane anchors used by the
Ras isoforms to interact with the plasma membrane.
H-Ras forms transient interactions with lipid rafts
when bound to GDP, whereas when bound to GTP it
aggregates with cholesterol-insensitive, galectin-1-
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dependent, non-raft domains. On the other hand, 
K-Ras is clustered in cholesterol-insensitive, non-raft
domains that differ from the activated H-Ras
microdomains [218, 219]. H-Ras, N-Ras and 
K-Ras4A are palmitoylated on cysteine residues in
the hypervariable domain, and they are isoprenylat-
ed at their C-terminal cysteine (Cys186). In contrast,
K-Ras4B is not palmitoylated but rather it is targeted
to membranes by the combination of a polybasic
domain and isoprenylation. Polyisoprenylated but
non-palmitoylated H-Ras protein is biologically fully
active and it associates weakly with cell membranes.
However, palmitoylation increases the membrane
binding of H-Ras and enhances its transforming
activity [220].

The Ras-like small GTPase family is made up of
several members, such as Ras, Rap1, Rap2, R-Ras,
Ra1, Rheb, M-Ras and TC21 [217]. Ras-like pro-
teins play important roles in various cellular signal
transduction pathways, regulating differentiation 
and proliferation through their interaction with 
several signal transduction proteins known as Ras
effectors. These effectors include a large number 
of protein kinases, lipid kinases and guanine
nucleotide exchange factors, such as SOS and
CD25 [218–224].

Like the � subunit of heterotrimeric G proteins, Ras
and Ras-like proteins contain a CAAX isoprenylation
motif at their carboxy terminus (C for cysteine, A for
aliphatic and X for any amino acid, see above) [81,
225]. This post-translational modification favours the
anchoring of proteins to membranes and modifies the
structural properties of membranes. In this way, non-
lamellar-prone regions are generated that further
increase the affinity of this lipid for membranes, and
the segregation of membrane microdomains enriched
in isoprenoids [2, 3, 226–228]. Prenylation of Ras and
related proteins is a complex process, frequently fol-
lowed by proteolytic cleavage by zinc metalloproteas-
es such as AFC1 and RCE1 [229, 230]. This process
removes the last three amino acid residues, altering
the isoprenyl-modified cysteine and making this 
C-terminal lipid modification permanent.

Several proteins of this family are also palmitoylat-
ed at 1 or 2 cysteines near the farnesylated carboxy-
terminus [231]. In recent years, the post-translational
lipid modification of Ras and other membrane-asso-
ciated proteins has been associated with processes
other than membrane anchorage. Lipid modifica-

tions, such as isoprenylation and N- and S-acylation
also play important roles as specific recognition ele-
ments for protein–protein interactions, as well as
hydrophobic switches that permit the temporal regu-
lation of docking to sub-compartments like lipid rafts,
caveolae [232] and other cellular locations [233].
Palmitoylation augments the affinity of Ras proteins
for membranes and activates the mitogen-activated
protein kinase (MAPK) pathway [234]. In contrast to
farnesylation, palmitoylation of Ras and Ras-like pro-
teins is reversible, reflecting its connection to regula-
tory phenomena [228, 234]. Ras activation is the first
step in the MAPK pathways, an important and 
conserved signal transduction mechanisms in
eukaryotes [235, 236], exemplified by the number of
different and interconnected MAPK signal transduc-
tion pathways that coexist within cells [235, 236]. In
this context, Ras activates Raf (MAP kinase kinase
kinase, MAPKKK) through interactions that occur at
the plasma membrane. Activated (phosphorylated)
Raf activates MAPKK (MEK), which in turn activates
MAPK (also called extracellular signal-regulated
kinase, ERK). The transmission of intracellular sig-
nals is then produced by sequential phosphorylation
(and activation) of the components specific to any
respective cascade [235, 236]. In mammals, a num-
ber of MAPK pathways coexist, including the
ERK1/2, c-Jun N-terminal kinase (JNK) and p38
MAPK cascades [237, 238]. These signalling path-
ways regulate critical events in the cell, such as pro-
liferation, apoptosis and the cell’s response to a vari-
ety of stimuli. Because the first steps in propagating
signals via these cascades are associated with
membranes, protein–lipid interactions are crucial in
the regulation of distinct cellular activities.

Mutations of Ras proteins have been found in
about one third of all human cancers. Because their
tumourigenic potential is lost if their interactions with
membrane lipids are impaired, some therapies have
aimed inhibition of Ras-membrane interactions.
However, cancer cells can bypass farnesyl trans-
ferase inhibition through addition of a geranylgeran-
iol moiety to the C-terminal cysteine that it is usually
farnesylated. In any case, future treatments involving
combined farnesyl and geranylgeranyl transferase
inhibition or even alternative ways to control Ras-lipid
interactions through other membrane-lipid therapy
approaches might be of clinical interest.
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Protein kinase C

Since its identification in the bovine cerebellum [239],
membrane-associated PKC isozymes have been
shown to be fundamental signal transduction mole-
cules, involved in a huge variety of events including
cell-cycle regulation, cellular survival, malignant
transformation and apoptosis [240]. PKC isoforms
can be categorized into three groups depending on
the cofactors that regulate their activity: conventional
(c) PKC isoforms (�, �I, �II and �) that require Ca2�

and DAG; novel (n) PKC isoforms (�, 
, �, � and )
that are only activated by DAG; and atypical (a) PKC
isoforms (�, � and its murine homologue, �) that do
not require Ca2� or DAG. The distinct PKC isoforms
exert different responses depending on the cellular
context, highlighting the necessity to understand 
the signalling events controlled by PKCs in each 
cell type [241].

A common feature of all PKC isoforms is that their
activation is dependent on establishing a close inter-
action with membrane lipids. Indeed, current models
for the interaction of PKC with phorbol esters consid-
er lipids to be essential cofactors of the enzyme [242,
243]. PKC can interact with different lipids in a vari-
ety of ways although the regulatory region of (c)
PKCs contains two membrane-targeting domains,
C1 and C2. Whereas the C1 domain is composed of
two cysteine-rich zinc finger motifs that bind DAG
and phorbol esters (C1a and C1b), the C2 domain is
responsible for Ca2�-dependent membrane binding
[244]. DAG is a by-product of the digestion of PI by
PLC and it activates this kinase both through specif-
ic protein–lipid interactions and through the induction
of non-lamellar phases [175]. In fact, non-lamellar
(HII) phase propensity has been shown to be
involved in the translocation of PKC from the cytosol
to membranes, a phenomenon associated with
enzyme activation [4, 245]. On the other hand, some
studies suggest that a specific interaction between
PKC and PS occurs [246–248], although other stud-
ies have indicated that different anionic phospho-
lipids [249], or even neutral phospholipids like PC
[250], can also activate PKC. These works demon-
strate the importance of PKC–lipid interactions in the
activity of this enzyme, and have been related to the
therapeutic activity of some drugs against cancer,
such as Minerval [9, 245].

It has been proposed that substrate binding can
induce the translocation of PKC� to the membrane

and that removal of its pseudosubstrate domain may
be coupled to a conformational change that results in
exposure of hydrophobic groups [251]. Alternatively,
myristoylation of PKC substrates promotes their
attachment to the membrane, and the associated
enzyme-substrate co-localization would be reflected
in more efficient catalysis [252–254]. In this regard,
myristoylated peptides mimicking the pseudosub-
strate regions of a number of PKC isoforms have
been used as specific and efficient enzyme inhibitors
[252–255]. These studies highlight the relevance of
protein–lipid interactions in co-localizing proteins that
must physically interact to yield the productive prop-
agation of signals. Thus, lipids also regulate protein
activity by modulating their cellular localization.

In addition to membrane phospholipids, cis-unsat-
urated fatty acids such as arachidonic, linoleic and
oleic acid can also activate PKC independently from
DAG [250, 256, 257]. These lipids increase the non-
lamellar (HII) phase propensity of membranes [258],
which in turn favours the translocation of PKC to
membranes [4]. In this regard, the 18:1/22:6 species
of PE but not those of PC cause an increase in the
rate of histone phosphorylation by PKC beyond that
caused by other less unsaturated PEs [259]. Similarly,
in model systems of pure membrane-forming phos-
pholipids and purified PKC�, non-lamellar-prone
membranes of dioleoyl phosphatidylethanolamine
have a greater capacity to bind PKC� than mem-
branes containing only the lamellar-forming phos-
pholipid dioleoyl phosphatidylcholine [245]. The
importance of this phenomenon has been highlight-
ed by the development of a new anti-cancer drug
(Minerval) that increases PKC binding to natural and
model membranes containing PE [245].

Membrane microdomains and

lipid mediators in the control of

the heat shock protein response

Induced by a wide range of stressors, ranging from
temperature stress to hypoxia, inflammation, infec-
tions or environmental pollutants, stress proteins,
also termed Hsps, play key roles in all living systems
[260]. Their major conserved classes are grouped
according to their molecular weights (Hsp100,
Hsp90, Hsp70, Hsp60 and the ‘small Hsps’, sHsps)

© 2008 The Authors
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 



J. Cell. Mol. Med. Vol 12, No 3, 2008

855

and some Hsps are encoded by more than one gene
[261]. Acting as molecular chaperones, Hsps are
able to recognize unfolded and/or damaged proteins
and further sort them for repair (refolding) or proteol-
ysis. Hsps can regulate the life or death of cells by
directly modulating certain apoptotic signalling
events, or indirectly, by participating in antigen pro-
cessing [261]. Hsps reside not only in the cytosol, but
also in the plasma membrane, lysosomes, nucleus
and mitochondria. The glucose-regulated Hsp pro-
logues (Grps) reside in the ER. Surprisingly, some
Hsps are localized in the extracellular space [261].

Stress sensing and signalling:

the membrane sensor theory

Due to their multiple and vital functions briefly high-
lighted above, Hsps play fundamental roles in the
aetiology of several human diseases [262].
Aberrantly high levels of either the overall array of
Hsps, or certain Hsp classes are characteristic in dif-
ferent cancer cells and the converse situation applies
typically for type 2 diabetes, neurodegeneration, car-
diovascular diseases or aging [11, 16]. In certain
cancers, development and metastatic potential
favours tumours that express a higher level of sHsps
and a lower level of Hsp70 in their plasma mem-
branes [263]. Accordingly, it is of key importance to
understand the mechanism whereby cells can elicit a
Hsp response and regulate the cellular translocation
and membrane association of various Hsp classes
[11, 16]. As a commonly accepted paradigm, it was
earlier suggested that stress-induced protein denat-
uration serves as a primary stress-sensing machin-
ery that triggers Hsp gene expression [264, 265].
During the past decade, a new, but not exclusive
model, the ‘membrane sensor’ model, has emerged,
which predicts the existence of a membrane-associ-
ated stress sensing and signalling mechanism from
prokaryotes to mammalian cells [12, 266–273]. In
favour of this model, the exposure of mammalian
cells to various membrane fluidizers, or compounds
with the ability to interact with certain membrane
lipids, substantially modulate Hsp expression without
inducing protein unfolding [266]. It was recently doc-
umented in a cellular melanoma model that changes
in the physical state (fluidity) and the concomitant
destabilization/reorganization of cholesterol-rich
membrane microdomains may indeed serve as 

such a ‘molecular switch’ and is sufficient for the
operation of these ‘cellular thermometers’ [11, 16,
270]. Thus, although many inducers/silencers of the
Hsp response may function through a protein-unfold-
ing pathway, some inducers/silencers may work
through a distinct mechanism.

The plasma membrane, which is the barrier to the
external environment, is well suited for sensing
stress and acts as an important regulatory interface.
As detailed elsewhere, even subtle alterations in its
lipids (by causing ‘membrane defects’) may influence
membrane-initiated stress-signalling processes by
changing the global fluidity, the membrane thickness,
the local organization of microdomains and thereby
the clustering of receptors or other proteins localized
in the plasma membrane [11, 16, 262].

Hsp signalling in cancer and diabetes

We recently suggested that, in such prominent dis-
ease states as insulin-resistant diabetes and cancer,
where the directions of Hsp dysregulation and mem-
brane fluidity run in parallel but opposite manners,
there must exist a conserved signalling cascade
which is uniformly controlled by membrane hyper-
structures and ultimately affects the level of Hsp
expression as well [11]. Signalling from the trans-
membrane growth factor receptors to Hsp genes ful-
fils such a criterion. PI3K, Akt and GSK3, the latter as
a negative regulator of HSF1 activation [274], are
central components of such a signalling cascade.
Insulin resistance and type 2 diabetes are known to
be associated with low Hsp levels, and with
decreased PI3K and enhanced GSK3 activities (see
references in [275]). Correction of a low Hsp state
improves insulin resistance [275]. A close chemical
relative of the membrane-intercalating drug candi-
date, the hydroxylamine bimoclomol [276, 277],
BRX-220, has been reported to improve insulin sen-
sitivity of both Zucker diabetic fatty rats and strepto-
zotocin-diabetic rats [278]. Another hydroxylamine
analogue, the Hsp co-inducer BGP-15, has also suc-
cessfully passed a phase IIa human clinical trial as
an insulin-sensitizer compound [279]. Using BGP-15 to
achieve an elevation of Hsp72 protein, protection
against diet or obesity-induced hyperglycaemia, hyper-
insulinemia, glucose intolerance and insulin resistance
was observed. This protection was tightly associated
with the prevention of JNK phosphorylation [280].
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As documented by Khaleque et al. [281], Hsp ele-
vation in tumour cells can be induced by the malig-
nant growth factor heregulin �1 (HRG�1), which
causes homo- and heterodimerization between each
member of the four ErbB receptor molecules via ‘hor-
izontal signalling’ in the plane of the plasma mem-
brane. The formation of raft-associated growth factor
receptor dimers is followed by tyrosine phosphoryla-
tion of their intracellular domains. The major 
downstream signalling pathways include the Ras-
Raf1-Mek-ERK and PI3K-PDK1-Akt pathways [281].
HRG�1 appears to be linked to Hsp expression by its
activation of HSF1 through inhibition of the constitu-
tive kinase GSK3. It should be noted that the trans-
mission of a proper signal from the cell surface to
Hsp genes is uniformly dependent on precise regula-
tion by the lipid composition of the membranes. The
localization of growth factor receptors to distinct
microdomains possessing a well-balanced ratio of
inner and outer leaflet lipids appears to modulate
both their ligand binding and tyrosine kinase activi-
ties [282]. Moreover, the major signal termination
mechanism, i.e. the lateral movement of dimerized
receptors in the plane of the plasma membrane and
the delivery of activated receptor-containing endo-
somes, is totally lipid dependent [283, 284].

The role of membrane microdomains

The exact role played by lipid microdomains in mem-
brane-directed stress sensing and signalling is far
from clear. The related studies have been hampered
by the lack of suitable physical methods for the visu-
alization of membrane microdomains in intact cells
[20, 285]. Membrane structures in mammalian cells
display an enormous variety of lipids, functions,
localizations, associations and intimate links with
neighbouring membranes, and this makes their study
extremely difficult. It is tempting to speculate that one
of the major roles of the more than one thousand
lipid molecular species in mammalian membranes is
to provide an on–off switch for signalling events at
the membrane level ([286] and see references with-
in). Membrane lipids are among the molecules that
adapt best in response to various environmental per-
turbations. Even subtle changes in the compositions
of acyl chains or head groups can alter the packing
arrangements of lipids within a bilayer. As a chain
reaction, altered lipid packing properties change the

balance between bilayer and non-bilayer lipids, affect
the bilayer stability and fluidity, and ultimately alters
the lipid–protein interactions and microdomain
organizations. External factors, including tempera-
ture, chemicals, ions, radiation, pressure, nutrients,
the growth phase of cultured cells, etc., are all capa-
ble of changing the membrane packing, order and
lipid composition (see references in [286]). Our
understanding of the plasma membrane has
changed considerably as our knowledge of mem-
brane microdomains, rafts, has expanded.

We should point out that the ‘lipid building blocks’
of cell membranes can also serve as a source of
those mediators which can be involved in the activa-
tion or attenuation of Hsp signalling pathways. Lipids,
lipid kinases and lipid phosphatases have not
received the same amount of attention as proteins in
studies of signal transduction [287]. Thus, stresses
and clinical conditions can induce alterations in the
raft organization, but also give rise to changes in the
metabolism of membrane lipids in producing a
unique set of lipid mediators with the potential of
retailoring the pre-existing Hsp profile [11, 16, 20,
262, 286].

Lipid mediators of the stress response

Many of the lipid mediators (e.g. leukotrienes,
prostaglandins and certain lysophospholipids) leave
the host cells and bind to GPCRs in the surface
membrane of the same or neighbouring cells. Other
lipid signals converge on PLC, PIs or Ca2�. As high-
lighted in Fig. 7 the typical non-raft phospholipids and
raft lipid classes (i.e. cholesterol and SM) can equal-
ly serve as stress-response modulating factors.
Phospholipids are reservoirs of arachidonic acid.
Phospholipase A2 is known to be activated by 
different stressors, and the concomitant release of
arachidonic acid can stimulate heat shock factor1
(HSF1)-DNA binding, increase the phosphorylation
of HSF1 and ultimately up-regulate some Hsps [288].
On the other hand, arachidonic acid is used in the
synthesis of prostaglandins via cyclooxygenases,
some of which are also potent Hsp inducers ([289]
and see references in [16, 287]). Moreover, certain
lipoxygenase products of arachidonic acid, such as
12-hydroxyeicosatetraenoic acid, have also been
shown to induce the expression of individual Hsps
in human leucocytes [290]. Upon exposure to
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environmental stress, cholesterol can rapidly trans-
form to cholesteryl glucoside, and its production is
followed by the activation of certain protein kinases
also engaged in the induction of Hsps [291]. Similar
to cholesterol, SM may play both structural and func-
tional roles as a raft lipid, and in parallel it takes part
in the generation and transduction of Hsp signals.
Within the large SM family of lipid mediators, the
reactions are reversible and the lipids are intercon-
vertible. Ceramide and sphingosine can be released
by the sequential cleavage of SM under various
stress conditions [292]. Ceramide, ceramide-1-phos-
phate, sphingosine and sphingosine-1-phosphate
have all been shown to carry out second messenger
functions linked ultimately to refinement of the cellu-
lar Hsp pattern [293].

In conclusion, the above observations indicate
that Hsp expression in response to various stressors
is regulated by differential control mechanisms rather

than by a uniform mechanism. It appears that one
type of signal in the multistep activation pathway of
HSF might arise from the exposure of hydrophobic
domains of cytosolic proteins and in such cases typ-
ically the entire array of stress proteins is induced.
There must exist, however, ‘alternative’ sensing-sig-
nalling pathways, which cause the expression of
varying Hsp profiles obtained with different stressors.
We propose that changes in the composition and
microdomain organization of membranes offer the
solution to the problem and represent a new theory:
subtle changes of membrane lipids can cause
remarkable alterations in the expression pattern of
Hsps. Changes in lipid composition and membrane
microheterogeneity during stress or disease states
could trigger selective stress signalling responses
either through global effects on the physical state of
the membrane matrix, or via specific chemical inter-
actions of boundary lipids with membrane proteins.
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Fig. 7 Some typical lipid mediators capable of altering the Hsp response. The parental molecules of a variety of lipid
mediators (boxes) are: (1) glycerolipids of the bulk membrane; constituents of rafts such as (2) SM and (3) cholesterol.
PLA2: phospholipase A2; SMase: sphingomyelinase; SGT: sterol glucosyltransferase; COX: cyclooxygenase and LOX:
lipoxygenase.
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Various membrane imaging technologies, real-time
detection and the monitoring of rafts and combina-
tion of these technologies with lipidomics and com-
putational methods may allow the identification and
characterization of the hypothetical stress-sensory
membrane domains. Hsps could be induced or inhib-
ited by drugs that specifically change the activity of
such sensory lipid–protein membrane hyperstruc-
tures according to the principles of membrane-lipid
therapy [9, 11].

A subpopulation of Hsps can

interact with and translocate

through membranes

The presence of Hsps in membranes and lipid rafts
is widely documented. On the basis of prokaryotic
models, we suggested earlier that a lipid-selective
association of a subpopulation of Hsps (GroEL and
sHsps) with membranes, leading to increased molec-
ular order, may in turn result in down-regulation of
Hsp gene expression [177, 269, 294–297]. Such
hypothetical ‘cross-talk’ between the membrane pri-
mary stress sensors (see above) and Hsps suggests
a feedback loop mechanism in the regulation of Hsp
genes [11, 16]. In addition, interactions between cer-
tain amphitropic Hsps and specific lipid domains can
remodel the pre-existing architecture and physical
order of membranes. In parallel with the microdomain
reorganization and thermal stabilization, we have
shown that highly saturated ‘heat shock lipids’ can
accumulate in membranes and exhibit a preferential
interaction with sHsps [298]. Non-bilayer-forming
lipids are known to be important controlling factors of
cell signalling because they regulate the localization
(and thereby activity) of key signalling proteins such
as PKC and G proteins [4, 9]. It has been demonstrat-
ed that, in membranes composed of non-lamellar
lipids, sHsps inhibit the formation of inverted hexag-
onal structures and are thereby important determi-
nants of the membrane lipid secondary structures.
Evidence from FTIR and DSC studies has indicated
that the interactions of sHsps are preferential by/with
anionic lipids and affect both the polar headgroup
region and the hydrophobic core [177, 295, 297]. We
inferred from these results that the association
between sHsps and membranes may constitute a

general mechanism that preserves the membrane
integrity under fluctuating, stressful conditions.
Moreover, we reasoned that the specific Hsp–lipid
interactions may serve as an unrecognized means
for the spatial separation and distinct compartmen-
talization of Hsps to lipid domains which are thought
to be involved in various stress signalling pathways
[11, 16, 286].

Hsp90 in eukaryotic membranes

The presence of Hsps in plasma membranes and
lipid rafts of mammalian cells is widely documented.
Much less is known, however, about the mechanism
controlling the translocation of Hsps to membranes
and the modes of their interactions with membrane
lipids, membrane proteins or both. It has been shown
that Hsp90 is an iron-binding protein associated with
the plasma membrane of HeLa cells [299]. Moreover,
the interactions of STAT3 with caveolin-1 and Hsp90
in plasma membrane rafts have been revealed to
play a role in the preservation of cytokine signalling
during fever [300]. Further, the interaction of Hsp90
with the heterotrimeric G protein G�12 has been
demonstrated to target G�12 to lipid rafts [301].
Hsp90 is present in membrane microdomains,
together with CD14 and other molecules, following
lipopolysaccharide-induced cell activation. Lipid raft
integrity is essential for the process [302]. In fact,
treatment with the Hsp90 inhibitor geldanamycin
ameliorates the response to LPS in murine
macrophages by decreasing CD14 surface expres-
sion, presumably due to the improper folding and
arrest of CD14 within the endoplasmic reticulum
[303]. ErbB2, a member of the EGF receptor family of
tyrosine kinases is overexpressed on many tumour
cells of epithelial origin and colocalized with Hsp90 in
plasma membrane. It is the molecular target of
trastuzumab (Herceptin), the first humanized anti-
body used in the therapy of solid tumours.

Hsp70 in cell membranes

Direct and specific interactions of Hsc70 (the consti-
tutive form of the 70 kD Hsp) and Hsp70 with mem-
brane lipids have been suggested to play a role in the
folding of membrane proteins and the translocation
of polypeptides across membranes [304]. The 
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interactions of Hsp70 with lipids are additionally indi-
cated by their intrinsic capacity to open ion conduc-
tance channels or by aggregating liposomes. The
interactions of Hsp70 with lipids are highly depend-
ent on the presence of PS. In line with this, Hsp70
expresses toxicity towards cells presenting PS on
their surface [305]. The possible role of Hsps as
enhancers of endocytosis has been speculated to be
part of the cellular stress response for rapid remod-
elling of the plasma membrane [306].

Anti-inflammatory drugs cause the differential up-
regulation of cytosolic and membrane-bound Hsp70
in tumour cells [307]. It has been suggested that such
an increase in membrane-bound Hsp70 corresponds
to an enhanced sensitivity to granzyme B-induced
apoptosis and natural killer cell-mediated killing. This
finding provided a biological rationale for combining
anti-inflammatory drugs with immunotherapy in can-
cer treatment. Moreover, the cell surface-bound
Hsp70 has been postulated to mediate perforin-inde-
pendent apoptosis by the specific binding and uptake
of granzyme B [308]. Su et al. demonstrated, that
constitutive Hsp70 (Hsc70) attenuates hydrogen per-
oxide-induced membrane lipid peroxidation [309].
The finding that Hsc70 reduces lipid peroxidation
suggests that this protein (and maybe other Hsp
members like sHsps) may act through a general
mechanism to interfere with the reactions of lipid oxi-
dation. The fact, that Hsp70 is capable to form com-
plexes with the acidic glyco- and phospholipids fur-
ther implicates that Hsp70 plays various, hitherto
unidentified and lipid-mediated functions on the
membrane surfaces [310].

Hsp27-membrane interactions

It has been shown that Hsp27, which associates with
membranes via specific lipid interactions [297] has a
potent protective effect against �-synuclein-induced
cell death in mammalian neuronal cells [311] where
the association of �-synuclein with membranes leads
to disruption of the membrane bilayer structure. After
preconditioning of rat heart (a single episode of 
5 min. global ischaemia followed by 5 min. of reper-
fusion), HSP27 redistributed from the cytosol to the
sarcomere and recovery of the contractile function
was significantly enhanced, which suggests that
translocation of HSP27 to the sarcomere may be
involved in the cardioprotective mechanism afforded

by ischaemic preconditioning in rat heart [312]. In con-
trast with Hsp27, Hsp70 does not exert such an action.

Secreted Hsps

Despite lacking a secretory signal, some Hsps are
released from cells through physiological secretory
mechanisms [261].Thus, extracellular stress proteins
including glucose-regulated proteins are emerging
as important mediators of intercellular signalling and
transport. Among others, immunological ‘danger sig-
nals’, physical trauma or behavioural stress are
capable of triggering the release of these proteins
from cells [313]. Evidence has been presented that
the ‘leaderless’ stress proteins may be secreted into
the circulation via lipid raft-, granule- or exosome-
mediated exocytosis, for instance in haematopoietic
or tumour cells. Hsp70 surface-positive tumour exo-
somes are able to stimulate the cytolytic and migra-
tory capacity of resting natural killer cells [314].
Hsp70 is released from prostate carcinoma cells
through an active secretory mechanism that has
been documented to involve the endolysosomal
compartments, and is taken up by other cells ([313]
and see references within). It has been demonstrated
that neither the common secretory pathway nor the
lipid raft-mediated pathway is involved, however, in
the release of Hsp70 from human mononuclear cells,
perhaps the best-studied model of Hsp secretion
[261]. In stressed Caco-2 cells, the amount of Hsp70
is increased specifically in the lipid rafts and this is
correlated with the robust stimulation of Hsp70
release. Manipulation of the lipid composition of rafts
resulted in a concomitant modulation of Hsp70
release, suggesting that in this case the lipid raft may
represent a cellular mechanism for membrane deliv-
ery and the release of Hsps [315].

Table 6 illustrates this newly acknowledged dual
function of Hsps: while maintaining cellular home-
ostasis intracellularly during protein- and/or mem-
brane-damaging stresses, they may protect cells
also beyond their borders. We will next highlight a few
of the representative cases listed in Table 6.

Hsp47, a collagen-specific molecular chaperone,
is involved in the processing and secretion of procol-
lagens, and its expression is increased in various
fibrotic diseases. The overexpressed Hsp47 has
been observed in the muscle membrane only in the
case of active inflammatory myopathy. In particular,
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Hsp47 is strongly expressed in the membrane of
regenerating fibres, implying that it may be involved
in the repair or regeneration of muscle fibres in addition
to the fibrotic change in the connective tissue [316].

Other studies have reported that hypoxia results in
disassociation of the Hsp60-Bax complex, with
translocation of cytosolic Hsp60 to the plasma mem-
brane and Bax to the mitochondria [317]. The inter-
action between Hsp60 and Bax may be critical in pre-
venting apoptosis in the normal cell. The surface
presentation of Hsp60 on the myocyte combined with
serum antibodies to this protein, may be one mecha-
nism fuelling the downward spiral in heart failure
[318]. It is possible that membrane Hsp60 may be
recognized by macrophages and thus mark the
myocyte for destruction. Whether translocation of
Hsp60 to the membrane might possibly stabilize its
structure and exert a protective effect is unknown, as
is the mechanism(s) controlling this translocation.
Hsp60 is released via exosomes and within the exo-
some Hsp60 is tightly attached to the exosome mem-
brane. Hsp60 is released from adult cardiac
myocytes in both the basal state and following mild
stress through an exosome-mediated process. Lipid
rafts participate in this process, as inhibition of lipid
raft formation reduces the release of Hsp60 [318].

Insulin-treated hearts display elevated levels of
Hsp70, particularly in the membrane fraction. In con-
trast, heat-shocked hearts exhibit elevated levels of
Hsp70 in the cytosol, membrane and pellet fractions.
After insulin treatment, Hsp70 is mostly colocalized
to the plasma membrane with dystrophin. In contrast,
after heat shock, Hsp70 is localized mainly between
the cardiomyocytes in apparently vascular or
perivascular elements. The localization of Hsp70 is
dependent on the inducing stimulus of either heat
shock or insulin treatment. The cell membrane ver-
sus vascular localization of Hsp70 suggests the
interesting possibility of functionally distinct roles for
Hsp70 in the heart, depending on whether it is
induced by insulin or heat shock treatment [319].

It was reported earlier, that Hsp70 acts as a potent
survival protein whose depletion triggers massive
caspase-independent tumour cell death [320]. This
Hsp70-mediated protection against various death
stimuli in Hsp70-expressing human tumour cells and
in immortalized Hsp70 transgenic murine fibroblasts
occurs at the level of the lysosomal permeabilization.
The cell death induced by Hsp70 depletion is preced-
ed by the release of lysosomal enzymes into the

cytosol and inhibited by pharmacological inhibitors of
lysosomal cysteine proteases. However, Hsp70 does
not inhibit cytochrome c-induced, apoptosome-
dependent caspase activation in vitro and Fas lig-
and-induced, caspase-dependent apoptosis in
immortalized fibroblasts. Immunoelectron microscopy
has revealed that endosomal and lysosomal mem-
branes of tumour cells contain Hsp70. The permeabi-
lization of purified endosomes and lysosomes by digi-
tonin fails to release Hsp70, suggesting that it is
physically associated with the membranes. Finally,
Hsp70-positive lysosomes display increased size
and resistance to chemical and physical membrane
destabilization. Taken together, these data identify
Hsp70 as a ‘survival protein’ that functions by inhibit-
ing the death-associated permeabilization of lyso-
somes [320].

As outlined above, the extracellular factors that
regulate the quantity and phenotype of the exo-
somes produced are poorly understood, and the
properties of the exosomes that dictate their immune
functions are not yet clear. Studies on the effects of
cellular stress on the exosomes produced by B-lym-
phoblastoid cell lines have revealed that, under
steady-state conditions, the exosomes are positive
for Hsp27, Hsc70, Hsp70 and Hsp90. Exposure of
cells to heat stress results in a marked increase in
these Hsps, whereas the expressions of other stress
proteins, such as Hsp60 and Grp96, remain negative
[321]. It has also been elucidated that Hsps are locat-
ed within the exosome lumen, rather than at the exo-
some surface, suggesting that such exosomes may
not interact with target cells through cell-surface Hsp
receptors. It has been concluded that specific alter-
ations in exosome phenotype are a hitherto unknown
component of the cellular response to environmental
stress, and their extracellular function does not
involve the direct activation of dendritic cells [321].

To investigate the putative association of Hsp27
(known at that time as ‘barbed-end microfilament
capping protein’) with plasma membranes, bovine
endothelial cells expressing the human wild-type or a
mutant non-phosphorylatable 27-kD Hsp were sub-
jected to subcellular fractionation and subsequent
immunoblot analysis [322]. The 25-kD endogenous
bovine homologue and both exogenous gene 
products partitioned with cytosolic or plasma mem-
brane components, indicating that phosphorylation is
not required for membrane association. Phorbol
ester treatment results in phosphorylation of only
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membrane-associated 25-kD and wild-type 27-kD
Hsp and does not induce redistribution [322].

The sHsp HspB2 colocalizes with mitochondria in
differentiated C2C12 cells, KNS-81 glioma cells and
NIH3T3 cells transfected with a HspB2 [323].
Together with the fact that HspB2 does not possess
a mitochondrial targeting signal sequence, these

results suggest that HspB2 is not located inside the
mitochondria. Instead, it is attached to the surface of
the mitochondria by weak interactions with some
outer membrane components. The amount of HspB2
in the mitochondrial fraction increases when the cells
are subjected to mild heat shock, suggesting that this
association can be altered by stress conditions.

© 2008 The Authors
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Table 6 Hsps in membranes and in the extracellular space

HSP Localization Tissue/cell type Conditions References 

Hsp47 Basement membrane Muscle Muscular dystrophy [316]

Hsp60 Plasma membrane

Exosomes, attached to
the membrane
Exosomes

Human endothel
Cardiac myocyte
Rat adult cardiac myocytes

Mouse B lymphoma cells

After stress
Hypoxia
Unstressed, hypoxia

Unstressed, heat shocked

[336]
[317]
[318]

[340]

Hsp70 Plasma membrane
Exosomes 
(independent of rafts)

Extracellular space,
(unconventional
release)

Lysosomal 
membrane 

Rat heart
PBMC, 3T3-L1, L6
myotubes, B cells

In many tumour cells

Under pathological 
conditions of normal cells
Human tumour cells

Insulin treatment
Heat shock

Unstressed, heat shocked
During necrotic cell death
Cell death

Cytokines,
anticancer drugs, irradiation,
oxidative stress, photolysis.

[319]
[337]

[321]

[338]

[339]
[320]

Hsp90

Exosomes

B cells

Mouse B lymphoma cells

H460 cells

Human mesothelioma cells

Unstressed, heat shocked
Unstressed, heat- shocked

�-irradiation

Unstressed

[321]

[340]

[341]

[342]

�-B 
crystalline

Plasma membrane DRM myotubes

Bovine Ocular lens

Dexamethasone treatment
Increased upon mutation

[343]

[344]

HSPB1
(Hsp27)

Outer mitochondrial
membrane
Plasma membrane

Exosomes 

U937 cells

Bovine endothelial cells

DRM myotubes

B cells

During apoptosis

Overexpressed human Hsp27
Dexamethasone treatment

Unstressed, heat- shocked

[324]

[322]

[343]

[321]

HSPB2 Outer mitochondrial
membrane 

C2C12 cells, KNS-81 cells Under normal conditions [323]
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Association of another sHsp family member, Hsp27,
occurs with the mitochondrial outer membrane in
U937 cells. It has been suggested that this pool of
Hsp27 negatively regulates cell death by interacting
with cytochrome c released from the mitochondria
into the cytosol in apoptotic pathways [324].

In conclusion, we assume that aging and various
pathological states which lead to abnormal alter-
ations in the lipid metabolism give rise to abnormal
global (fluidity, surface charge, permeability, etc.) and
specific (raft remodelling) changes within mem-
branes. The formation of ‘defects’ in response to
stress within the membrane microdomains is causal-
ly linked to the dysregulated expression and, at least
in part, to the abnormal intra or extracellular localiza-
tion of specific Hsps. In this context, membrane
microdomains represent new therapeutic targets. In
fact, a targeted and distinct reorganization of mem-
brane microdomains with drug candidates acting
according to the principles of ‘membrane-lipid thera-
py’ [9] best represented by the lipid-interacting
hydoxylamines, has been shown to be coupled with
the simultaneous normalization of the dysregulated
expression and cellular localization of Hsps in such
prominent disease states as type 2 diabetes and
amyotrophic lateral sclerosis.

Concluding remarks

Membrane lipids, and the structures they form, not
only play structural roles but also participate actively
in numerous cellular processes. Hundreds of lipids
form complex and heterogeneous membranes,
where stable (e.g. synaptosomes) or dynamic (e.g.
caveolae) microdomains define the structural and
functional properties of a given bilayer. Membranes
are the meeting point of many proteins and lipids,
and they are the structures where most cellular activ-
ities take place. Lipids are not simply the physical
scaffold for membrane proteins, forming barriers that
isolate and define cells and organelles, but rather,
they are also active in many cellular functions. In this
context, they regulate the co-localization of proteins
to receive and propagate messages that regulate
hormone and neurotransmitter release, protein
secretion, the cell division cycle, cell differentiation,
contractility, gene expression, etc. In addition, 

certain membrane lipids act as ligands or subrates 
of signalling proteins and enzymes. Therefore, pro-
tein–lipid and lipid–lipid interactions have a great
impact in the physiology of cells. Similar to regulation
of gene expression, the presence and levels of lipids
species can change in response to diet, physiologi-
cal and environmental conditions. In this context, in
several human pathologies there have been
described changes in membrane lipids, that have
been associated either with adaptive responses or
with the aetiology of the disease [9, 325, 326] (Table 3).
This fact highlights the prominent role of lipids in cells
and suggests that they may also be appropriate tar-
gets for therapeutic interventions. Currently, most
clinical drugs are targeted to proteins. Moreover, over
a half the drugs currently under development are
directed against GPCRs [327] and many others are
designed to modulate the activity of other membrane
proteins. Because the activity of membrane proteins
can be regulated by lipids, it is feasible that lipid treat-
ments could modulate the activities of these proteins
and/or associated signalling mechanisms. This
approach, called membrane-lipid therapy [9], has
been used to develop molecules with low toxicity and
high efficacy, to treat cancer, cardiovascular dis-
eases, obesity, etc. In this sense, interventions on the
composition and structure of membranes may
impinge on the physical and structural properties of
the lipid bilayer and concomitantly on the interaction
and activity of signalling proteins with lipids or with
other membrane proteins. Moreover, whereas the cis-
MUFA oleic acid regulates membrane structure and
cell signalling, its trans-isomer, elaidic acid, and its
saturated fatty acid analogue, stearic acid, do not reg-
ulate neither lipid structure nor GPCR-mediated func-
tion [328]. This fact is only one example of the many
available showing the relationship between lipid struc-
ture and cell activity and it might be related to the ben-
eficial (e.g. cis-MUFA) and detrimental (e.g. trans-
MUFA and saturated fats) effects that lipids have on
human health. Our current understanding of lipids, the
structures they form, their roles in cells, and the
physicochemical and biological properties of mem-
branes are the result of many years of research. The
following years present a thrilling scenario for the
study of membranes, in which many issues that
remain poorly understood are likely to be successful-
ly resolved, thanks in part to new discoveries and the
development of new experimental approaches.
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