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ABSTRACT: There have been more than 2.2 million confirmed cases and
over 120 000 deaths from the human coronavirus disease 2019 (COVID-
19) pandemic, caused by the novel severe acute respiratory syndrome
coronavirus (SARS-CoV-2), in the United States alone. However, there is
currently a lack of proven effective medications against COVID-19. Drug
repurposing offers a promising route for the development of prevention
and treatment strategies for COVID-19. This study reports an integrative,
network-based deep-learning methodology to identify repurposable drugs
for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive
knowledge graph that includes 15 million edges across 39 types of
relationships connecting drugs, diseases, proteins/genes, pathways, and
expression from a large scientific corpus of 24 million PubMed
publications. Using Amazon’s AWS computing resources and a network-
based, deep-learning framework, we identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosamide, and
toremifene) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics data in SARS-CoV-2-
infected human cells and data from ongoing clinical trials. Whereas this study by no means recommends specific drugs, it
demonstrates a powerful deep-learning methodology to prioritize existing drugs for further investigation, which holds the potential to
accelerate therapeutic development for COVID-19.
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■ INTRODUCTION

As of June 22, 2020, in the United States alone, more than 2.2
million cases and over 120 000 deaths from Coronavirus
Disease 2019 (COVID-19), the disease caused by the virus
SARS-CoV-2, have been confirmed.1 However, there are
currently no proven effective antiviral medications against
COVID-19.2 There is an urgent need for the development of
effective treatment strategies for COVID-19. It was estimated
that in 2015, pharmaceutical companies spent $2.6 billion for
the development of an FDA-approved new chemical entity
drugs using traditional de novo drug discovery.3 Drug
repurposing, a drug-discovery strategy using existing drugs,
offers a promising route for the development of prevention and
treatment strategies for COVID-19.4

In a randomized, controlled, open-label trial,5 lopinavir and
ritonavir combination therapy did not show a clinical benefit
compared with standard care for hospitalized adult patients
with severe COVID-19, limiting the traditional antiviral
treatment for COVID-19. SARS-CoV-2 replication and
infection depend on the host cellular factors (including
angiotensin-converting enzyme 2 (ACE2)) for entry into
cells.6 The systematic identification of virus−host protein−
protein interactions (PPIs) offers an effective way toward the

elucidation of the mechanisms of viral infection; furthermore,
targeting the cellular virus−host interactome offers a promising
strategy for the development of effective drug repurposing for
COVID-19, as demonstrated in previous studies.7−9 We
recently demonstrated that network-based methodologies
leveraging the relationship between drug targets and diseases
can serve as a useful tool for the efficient screening of
potentially new indications of FDA-approved drugs with well-
established pharmacokinetic/pharmacodynamic, safety, and
tolerability profiles.10−12 Deep learning has also recently
demonstrated its better performance than classic machine
learning methods to assist drug repurposing,13−16 yet without
foreknowledge of the complex networks connecting drugs,
targets, SARS-CoV-2, and diseases, the development of
affordable approaches for the effective treatment of COVID-
19 is challenging.
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Prior knowledge of networks from the large scientific corpus
of publications offers a deep biological perspective for
capturing the relationships between drugs, genes, and diseases
(including COVID-19), yet extracting connections from a
large-scale repository of structured medical information is
challenging. In this study, we present the state-of-the-art
knowledge-graph-based, deep-learning methodologies for the
rapid discovery of drug candidates to treat COVID-19 from 24

million PubMed publications (Figure 1). Via systematic

validation using transcriptomics and proteomics data generated

from SARS-CoV-2-infected human cells and the ongoing

clinical trial data, we successfully identified 41 drug candidates

that can be further tested in large-scale randomized control

trials for the potential treatment of COVID-19.

Figure 1. Diagram illustrating the workflow of a network-based, deep-learning methodology (termed CoV-KGE) for drug repurposing in COVID-
19. Specifically, a comprehensive knowledge graph that contains 15 million edges across 39 types of relationships connecting drugs, diseases, genes,
pathways, expressions, and others by incorporating data from 24 million PubMed publications and DrugBank (Table S2). Subsequently, a deep-
learning approach (RotatE in DGL-KE) was used to prioritize high-confidence candidate drugs for COVID-19 under Amazon supercomputing
resources (cf. Methods and Materials). Finally, all CoV-KGE predicted drug candidates were future-validated by three gene expression data sets in
SARS-CoV-1-infected human cells and one proteomics data set in SARS-CoV-2 infected human cells.
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■ METHODS AND MATERIALS

Pipeline of CoV-KGE

Here we present a knowledge-graph (KG)-based, deep-
learning methodology for drug repurposing in COVID-19,
termed CoV-KGE (Figure 1). Our method uses DGL-KE,
developed by our Amazon’s AWS AI Laboratory,17 to
efficiently learn embeddings of large KGs. Specifically, we
construct a KG from 24 million PubMed publications18 and
DrugBank,19 including 15 million edges across 39 types of
relationships connecting drugs, diseases, genes, anatomies,
pharmacologic classes, gene/protein expression, and others (cf.
Tables S1 and S2). In this KG, we represent the Coronaviruses
(CoVs) by assembling multiple types of known CoVs,
including SARS-CoV-1 and MERS-CoV, as described in our
recent study.9

We next utilized DGL-KE’s knowledge graph embedding
(KGE) model, RotatE,20 to learn representations of the entities
(e.g., drugs and targets) and relationships (e.g., inhibition
relation between drugs and targets) in an informative, low-
dimensional vector space. In this space, each relationship type
(e.g., antagonists or agonists) is defined as a rotation from the
source entity (e.g., hydroxychloroquine) to the target entity
(e.g., toll-like receptor 7/9 (TLR7/9)).

Constructing the Knowledge Graph

In this study, we constructed a comprehensive KG from Global
Network of Biomedical Relationships (GNBR)18 and
DrugBank.19 First, from GNBR, we included in the KG
relations corresponding to drug−gene interactions, gene−gene
interactions, drug−disease associations, and gene−disease
associations. Second, from the DrugBank database,19 we
selected the drugs whose molecular mass is >230 Da and
also exist in GNBR, resulting in 3481 FDA-approved and
clinically investigational drugs. For these drugs, we included in
the KG relationships corresponding to the drug−drug
interactions and the drug side-effects, drug anatomical
therapeutic chemical (ATC) codes, drug mechanisms of
action, drug pharmacodynamics, and drug-toxicity associations.
Third, we included the experimentally discovered CoV−gene
relationships from our recent work in the KG.9 Fourth, we
treated the COVID-19 context by assembling known genes/
proteins associated with CoVs (including SARS-CoV and
MERS-CoV) as a comprehensive node of CoVs and rewired
the connections (edges) from genes and drugs. The resulting
KG contains four types of entities (drug, gene, disease, and
drug side information), 39 types of relationships (Table S1),
145 179 nodes, and 15 018 067 edges (Table S2).

Knowledge Graph Embedding Model RotatE

Models for computing KGEs learn vectors for each of the
entities and each of the relation types so that they satisfy
certain properties. In our work, we learned these vectors using
the RotatE model.20 Given an edge in the KG represented by
the triplet (head entity, relation type, and tail entity), RotatE
defines each relation type as a rotation from the head entity to
the tail entity in the complex vector space. Specifically, if h and
t are the vectors corresponding to the head and tail entities,
respectively, and r is the vector corresponding to the relation
type, then RotatE tries to minimize the distance

d h t h r t( , )r = ∥ ⊗ − ∥ (1)

where ⊗ denotes the Hadamard (element-wise) product.

To minimize the distance between the head and the tail
entities of the existing triplets (positive examples) and
maximize the distance among the nonexisting triplets (negative
examples), we use the loss function
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where σ is sigmoid function, γ is a margin hyperparameter with
γ > 0, (hi, r, ti) is a negative triplet, and p(hi, r, ti) is the
probability of occurrence of the corresponding negative
sample.
Details of DGL-KE Package

DGL-KE17 is a high-performance, easy-to-use, and scalable
package for learning large-scale KGEs with a set of popular
models including TransE, DistMult, ComplEx, and RotatE. It
includes various optimizations that accelerate training on KGs
with millions of nodes and billions of edges using multi-
processing, multi-GPU (graphics processor unit), and dis-
tributed parallelism. DGL-KE is able to compute the RotatE-
based embeddings of our KG in ∼40 mins on an EC2 instance
with 8 GPUs under Amazon’s AWS computing resources.
Experimental Settings

We divide the triplets (e.g., a relationship among drug,
treatment, and disease) into a training set, validation set, and
test set in a 7:1:2 manner. We selected the embedding
dimensionality of dim = 200 for nodes and relations. The
RotatE is trained for 16 000 epochs with a batch size 1024 and
0.1 as the learning rate. We choose γ = 12 as the margin of the
optimization function.
Gene-Set Enrichment Analysis

Gene set enrichment analysis was performed to further validate
the predicted drug candidates from CoV-KGE. The goal of the
gene set enrichment analysis was to identify drugs that can
reverse the cellular changes (transcriptome or proteome levels)
that result from virus infection. Four differential expression
data sets were collected, including two transcriptome data sets
from SARS-CoV patients’ peripheral blood21 (GSE1739) and
Calu-3 cells22 (GSE33267), one transcriptome data set of
Calu-3 cells infected by MERS-CoV23 (GSE122876), and one
proteome data set of human Caco-2 cells infected with SARS-
CoV-2.24 These four data sets were used as the gene signatures
for the viral infections. For the drugs, we retrieved the
Connectivity Map (CMap) database25 containing the gene
expression in cells treated with various drugs. An enrichment
score (ES) for each CoV signature data set was calculated
using a previously described method26
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ESup and ESdown indicate the ES values for the up- and down-
regulated genes from the CoV gene signature data set. To
compute ESup/down, we first calculated aup/down and bup/down as
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where j = 1, 2, ..., s are the genes from the CoV signature data
set sorted in ascending order using the gene profiles of the
drug being computed. V(j) denotes the rank of j, where 1 ≤
V(j) ≤ r, with r being the total number of genes (12 849) from
the CMap database. Next, ESup/down is set to aup/down if aup/down
> bup/down and is set to −bup/down if bup/down > aup/down.
Permutation tests are repeated 100 times to quantify the
significance of the ES score. In each repeat, the same number
of up- and down- expressed genes as the CoV signature data
set was randomly generated. ES > 0 and P < 0.05 are
considered significantly enriched. The number of significantly
enriched data sets is used as the final result for a certain drug.
Performance Evaluation

We introduced the area under the receiver operating
characteristic (ROC) curve (AUROC) and several evaluation
metrics for evaluating the performance of drug−target
interaction prediction. The AUROC27 is the global prediction
performance. The ROC curve is obtained by calculating the
true-positive rate (TPR) and the false-positive rate (FPR) via
varying cutoffs.

■ RESULTS

High Performance of CoV-KGE

After mapping drugs, CoVs, and the treatment relationships to
a complex vector space using RotatE, the top 100 most
relevant drugs were selected as candidates for CoVs in the
treatment relation space (Figure S1). Using the ongoing
COVID-19 trial data (https://covid19-trials.com/) as a
validation set, CoV-KGE has a larger AUROC (AUROC =
0.85, Figure 2) for identifying repurposable drugs for COVID-
19.

We next employ t-SNE (t-distributed stochastic neighbor
embedding algorithm28) to further investigate the low-
dimensional node representation learned by CoV-KGE.
Specifically, we projected drugs grouped by the first level of
the Anatomical Therapeutic Chemical (ATC) classification
systems code onto a 2D space. Figure 3A indicates that CoV-
KGE is able to distinguish 14 types of drugs grouped by ATC

codes, which is consistent with a high AUROC value of 0.85
(Figure 2).
We further validated the top candidate drugs using an

enrichment analysis of drug−gene signatures and SARS-CoV-
induced transcriptomics and proteomics data in human cell
lines (cf. Methods and Materials). Specifically, we analyzed
three transcriptomic data sets in SARS-CoV-1-infected human
cell lines and one proteomics data set in SARS-CoV-2-infected
human cell lines. In total, we obtained 41 repositioned drug
candidates (Table 1) using subject-matter expertise based on a
combination of factors: (i) the strength of the CoV-KGE
predicted score, (ii) the availability of clinical evidence from
ongoing COVID-19 trials, and (iii) the availability and strength
of enrichment analyses from SARS-CoV-1/2-affected human
cell lines. Among the 41 candidate drugs, 9 drugs are or have
been under clinical trials for COVID-19, including thalido-
mide, methylprednisolone, ribavirin, umifenovir, tetrandrine,
suramin, dexamethasone, lopinavir, and azithromycin (Figure
3A and Table 1). We excluded chloroquine and hydroxy-
chloroquine from our ongoing clinical trial list based on
recently controversial reports.29,30

Discovery of Drug Candidates for COVID-19 Using
CoV-KGE

We next turned to highlight three types of predicted drugs for
COVID-19, including anti-inflammatory agents (dexametha-
sone, indomethacin, and melatonin), selective estrogen
receptor modulators (SERMs), and antiparasitics (Figure 3).

Anti-Inflammatory Agents. Given the well-described
lung pathophysiological characteristics and immune responses
(cytokine storms) of severe COVID-19 patients, drugs that
dampen the immune responses may offer effective treatment
approaches for COVID-19.31,32 As shown in Figure 3A, we
computationally identified multiple anti-inflammatory agents
for COVID-19, including dexamethasone, indomethacin, and
melatonin. Indomethacin, an approved cyclooxygenase (COX)
inhibitor, has been widely used for its potent anti-inflammatory
and analgesic properties.33 Indomethacin has been reported to
have antiviral properties, including SARS-CoV-133 and SARS-
CoV-2.34 Importantly, a preliminary in vivo observation
showed that oral indomethacin (1 mg/kg body weight daily)
reduced the recovery time of SARS-CoV-2-infected dogs.34

Melatonin plays a key role in the regulation of the human
circadian rhythm that alters the translation of thousands of
genes, including melatonin-mediated anti-inflammatory and
immune-related effects for COVID-19. Melatonin has various
antiviral activities by suppressing multiple inflammatory
pathways35,36 (i.e., IL6 and IL-1β); these inflammatory effects
are directly relevant given the well-described lung pathophy-
siological characteristics of severe COVID-19 patients.
Melatonin’s mechanism of action may also help to explain
the epidemiologic observation that children, who have
naturally high melatonin levels, are relatively resistant to
COVID-19 disease manifestations, whereas older individuals,
who have decreasing melatonin levels with age, are a very high-
risk population.37 In addition, exogenous melatonin admin-
istration may be of particular benefit to older patients given the
aging-related reduction of endogenous melatonin levels and
the vulnerability of older individuals to the lethality of SARS-
CoV-2.37

Dexamethasone is a U.S. FDA-approved glucocorticoid
receptor (GR) agonist for a variety of inflammatory and
autoimmune conditions, including rheumatoid arthritis, severe

Figure 2. Performance of CoV-KGE in the prediction of drug
candidates for COVID-19. Drugs in the ongoing COVID-19 trial data
(https://covid19-trials.com/) were used as the validation set.
AUROC, area under the ROC curve.
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allergies, asthma, chronic obstructive lung disease, and
others.38 Glucocorticoid medications have been used in
patients with MERS-CoV and SARS-CoV-1 infections.39 As
shown in Figure 3A, dexamethasone is the fourth predicted
drug among 41 candidates. The Randomized Evaluation of
COVID-19 therapy (RECOVERY, ClinicalTrials.gov Identi-
fier: NCT04381936) trial showed that dexamethasone reduced
mortality by one-third in patients requiring ventilation and by
one-fifth in individuals requiring oxygen,40 yet dexamethasone
did not reduce death in COVID-19 patients not receiving
respiratory support.40

Selective Estrogen Receptor Modulators. An over-
expression of the estrogen receptor has played a crucial role in
inhibiting viral replication and infection.41 Several SERMs,
including clomifene, bazedoxifene, and toremifene, are
identified as promising candidate drugs for COVID-19 (Figure
3A and Table 1). Toremifene, the first generation of the
nonsteroidal SERM, was reported to block various viral
infections at low micromolar concentration, including Ebola
virus,42,43 MRES-CoV,44 SARS-CoV-1,45 and SARS-CoV-246

(Figure 3B). Toremifene prevents fusion between the viral and
endosomal membranes by interacting with and destabilizing
the virus glycoprotein and eventually blocking replications of
the Ebola virus.42 The underlying antiviral mechanisms of
SARS-CoV-1 and SARS-CoV-2 for toremifene remain unclear

and are currently being investigated. Toremifene has been
approved for the treatment of advanced breast cancer47 and
has also been studied in men with prostate cancer (∼1500
subjects) with reasonable tolerability.48 Toremifene is 99%
bound to plasma protein with good bioavailability and typically
orally administered at a dosage of 60 mg.49 In summary,
toremifene is a promising candidate drug with ideal
pharmacokinetics properties to be directly tested in COVID-
19 clinical trials.

Antiparasitics. Despite the lack of strong clinical evidence,
hydroxychloroquine and chloroquine phosphate, two approved
antimalarial drugs, were authorized by the U.S. FDA for the
treatment of COVID-19 patients using emergency use
authorizations (EUAs).2 In this study, we identified that
both hydroxychloroquine and chloroquine are among the
predicted candidates for COVID-19 (Figure 3A and Table 1).
Between the two, hydroxychloroquine’s in vitro antiviral
activity against SARS-CoV-2 is stronger than that of
chloroquine (hydroxychloroquine: 50% effective concentration
(EC50) = 6.14 μM, whereas for chloroquine: EC50 = 23.90
μM).50 Hydroxychloroquine and chloroquine are known to
increase the pH of endosomes, which inhibits membrane
fusion, a required mechanism for viral entry (including SARS-
CoV-2) into the cell.19 Although chloroquine and hydroxy-
chloroquine are relatively well tolerated, several adverse effects

Figure 3. Diagram illustrating the landscape of CoV-KGE-predicted repurposable drugs for COVID-19. (A) Visualization of the drug vector
learned by the knowledge graph embedding using t-SNE (t-distributed stochastic neighbor embedding algorithm28). 2D representation of the
learned vectors for 14 types of drugs grouped by the first level of the Anatomical Therapeutic Chemical (ATC) classification system codes.
Semantically similar ATC drugs are mapped to nearby representations. We highlighted 11 drugs that are under clinical trials for COVID-19. (B)
Three highlighted drugs (toremifine, niclosamide, and indomethasin) having striking in vitro antiviral activities across Ebola virus,42,43 MRES-
CoV,44 SARS-CoV-1,45 and SARS-CoV-2.46

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00316
J. Proteome Res. XXXX, XXX, XXX−XXX

E

http://ClinicalTrials.gov
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00316?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00316?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00316?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00316?fig=fig3&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00316?ref=pdf


Table 1. Lists of the Selected 41 Top Drugs with the Potential to Treat COVID-19a
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Table 1. continued
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Table 1. continued
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(including QT prolongation) limit their clinical use for
COVID-19 patients, especially for patients with pre-existing
cardiovascular disease or diabetes.10,51−53 A recent observa-
tional study reported that hydroxychloroquine administration
was not associated with either a greatly lowered or an increased
risk of the composite end point of intubation or death for

patients with COVID-19 who had been admitted to the
hospital.35 As June 15, 2020, the U.S. FDA revoked the EUAs
for hydroxychloroquine and chloroquine for the treatment of
COVID-19 patients.29 As June 20, 2020, the National
Institutes of Health halted the clinical trial of hydroxychlor-
oquine owing to the lack of clinical benefits.30 Thus further

Table 1. continued

aNote: Drugs marked with * are in clinical trials. All predicted drugs are freely available at https://github.com/ChengF-Lab/CoV-KGE.
Enrichment scores (ESs) indicate the number of significantly enriched data sets for the drug.

Figure 4. Proposed mechanism-of-action model that combines antiviral and anti-inflammatory agents for the potential treatment of COVID-19.
Toremifene, a selective estrogen receptor modulator approved by the U.S. FDA for the treatment of advanced breast cancer, has shown various
antiviral activities across Ebola virus,42,43 MRES-CoV,44 SARS-CoV-1,45 and SARS-CoV-2.46 Melatonin is a synthesized hormone with ∼2.5 billion
years history. Given the well-described lung injury characteristics of severe COVID-19 by multiple inflammatory pathways,35,36 dexamethasone,
indomethacin, and melatonin are candidate anti-inflammatory agents for the treatment of patients with COVID-19 (Figure 3A). Thus combining
antiviral (toremifene or hydroxychloroquine) and anti-inflammatory agents (dexamethasone, indomethacin, or melatonin) may provide an effective
treatment for COVID-19, as demonstrated in onging COVID-19 trials (remdesivir plus baricitinib, clinicalTrials.gov Identifier: NCT04373044).
ACE2, Angiotensin-converting enzyme 2; TMPRSS2, Transmembrane Serine Protease 2.
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functional observations are urgently needed to investigate the
inconsistent results between in vitro antiviral activities and
clinical efficiency in the near future.
Niclosamide, an FDA-approved drug for the treatment of

tapeworm infestation, was recently identified to have a stronger
inhibitory activity on SARS-CoV-2 at the submicromolar level
(IC50 = 0.28 μM). Gassen et al. showed that niclosamide
inhibited SKP2 activity by enhancing autophagy and reducing
MERS-CoV replication as well.54 Altogether, niclosamide may
be another drug candidate for COVID-19, which is warranted
to be investigated experimentally and further tested in
randomized controlled trials.
Given the up-regulation of systemic inflammationin some

cases, culminating to a cytokine storm observed in severe
COVID-19 patients31combination therapy with an agent
targeting inflammation (melatonin, dexamethasone, or in-
domethacin) and with direct antiviral effects (toremifene and
niclosamide) has the potential to lead to successful treatments
(Figure 4). Because of the aging-related reduction of
endogenous melatonin levels and the vulnerability of older
individuals to the lethality of SARS-CoV-2,37 combining
exogenous melatonin administration and antiviral agents
(such as toremifene or niclosamide) may be of particular
benefit to older patients with COVID-19. Yet all computa-
tionally predicted drug candidates (Table 1) and proposed
drug combinations (Figure 4) must be validated experimen-
tally and be tested in randomized controlled trials. Several
combination antiviral and anti-inflammatory treatment trials
(remdesivir plus baricitinib) are underway for patients with
COVID-19 (clinicalTrials.gov Identifier: NCT04373044),
indicating the proof-of-concept of this combination therapy
for COVID-19.

■ DISCUSSION
As COVID-19 patients flood hospitals worldwide, physicians
are trying to search for effective antiviral therapies to save lives.
Multiple COVID-19 vaccine trials are underway, yet it might
not be physically possible to make enough vaccines for
everyone in a short period of time. Furthermore, SARS-CoV-2
replicates poorly in multiple animals, including dogs, pigs,
chickens, and ducks, which limits preclinical animal studies.55

To fight the emerging COVID-19 pandemic, we introduced
an integrative, network-based, deep-learning methodology to
discover candidate drugs for COVID-19, named CoV-KGE.
Via CoV-KGE, we built a comprehensive KG that includes 15
million edges across 39 types of relationships connecting drugs,
diseases, proteins/genes, pathways, and expressions from a
large scientific corpus of 24 million PubMed publications.
Using the ongoing COVID-19 trial data as a validation set, we
demonstrated that CoV-KGE had high performance in
identifying repurposable drugs for COVID-19, indicated by
the larger AUROC (AUROC = 0.85). Using Amazon’s AWS
computing resources, we identified 41 high-confidence
repurposed drug candidates (including dexamethasone, in-
domethacin, niclosamide, and toremifene) for COVID-19,
which were validated by an enrichment analysis of gene
expression and proteomics data in SARS-CoV-2 infected
human cells. Altogether, this study offers a powerful, integrated
deep-learning methodology for the rapid identification of
repurposable drugs for the potential treatment of COVID-19.
We acknowledge several potential limitations in the current

study. Potential data noises generated from different
experimental approaches in large-scale publications may

influence the performance of the current CoV-KGE models.
The original data of GNBR contain the confidence values of
the relations between entities. However, we ignored the
weights so that we could directly apply the RotatE algorithm
because we tried to obtain the prediction result in a cheap
computing-cost way. In our future work, we will take these
confidence values into account and try to design a knowledge-
graph-embedding algorithm that can be used for a KG with
weighted relationships. The lack of dose-dependent profiles
and the biological perturbation of SARS-CoV-2 virus−host
interactions may generate a coupled interplay between adverse
and therapeutic effects. The integration of pharmacokinetics
data from animal models and clinical trials into our CoV-KGE
methodology could establish the causal mechanism and patient
evidence through which predicted drugs would have high
clinical benefits for COVID-19 patients without obvious
adverse effects in a specific dosage.
In summary, we presented CoV-KGE, a powerful, integrated

AI methodology that can be used to quickly identify drugs that
can be repurposed for the potential treatment of COVID-19.
Our approach can minimize the translational gap between
preclinical testing results and clinical outcomes, which is a
significant problem in the rapid development of efficient
treatment strategies for the COVID-19 pandemic. From a
translational perspective, if broadly applied, the network tools
developed here could help develop effective treatment
strategies for other emerging infectious diseases and other
emerging complex diseases as well. However, all predicted
drugs not used in clinical trials must be tested in randomized
clinical trials before being used in COVID-19 patients.
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