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Abstract
DNAmethylation reprogramming occurs during mammalian gametogenesis and embryo-

genesis. Sex-specific DNA methylation patterns at specific CpG islands controlling

imprinted genes are acquired during this window of development. Characterization of the

DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis

is essential for understanding the physiological and genetic aspects of female gametogene-

sis and to determine the parameters for oocyte competence. This knowledge can be used

to improve in vitro embryo production (IVP), specifically because oocyte competence is one

of the most important aspects determining the success of IVP. Imprinted genes, such as

IGF2, play important roles in embryo development, placentation and fetal growth. The aim

of this study was to characterize the DNA methylation profile of the CpG island located in

IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in

oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral

follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%,

65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial fol-

licles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039);

spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less

methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of

this region behaves differently between mature oocytes and spermatozoa. However, while

this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was

variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Further-

more, our results suggest that this CpG island may have received precocious reprogram-

ming, considering that the hypermethylated pattern was already found in growing oocytes

from primordial follicles. These results may contribute to our understanding of the repro-

gramming of imprinted genes during bovine oogenesis.
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Introduction
DNAmethylation, an epigenetic event, regulates important biological processes, such as geno-
mic imprinting, transposon silencing and chromosomal stability, and has an essential role in
mammalian gametogenesis and embryogenesis [1–4].

During the mammalian life cycle, two waves of DNA methylation reprogramming occur.
The first one takes place during gametogenesis, where primordial germ cells (PGCs) are
demethylated to allow them to acquire a specific pattern of methylation according to the indi-
vidual’s sex [3–5]. The second wave of methylation reprogramming starts immediately after
fertilization. Paternal and maternal genomes are actively and passively demethylated, respec-
tively, leading embryonic cells to a pluripotent state. Then, a de novomethylation process is ini-
tiated, specifically at the 8–16 cell and blastocyst stage in bovine and mouse embryos,
respectively [6]. From this point, embryonic cells start receiving tissue-specific methylation
patterns [3–5]. Therefore, a wide epigenetic reprogramming, which includes DNAmethyla-
tion, post-translational histone modifications and other molecular events, is requisite for the
production of viable gametes and embryos. Thus, understanding the life cycle of DNA methyl-
ation that occurs during gametogenesis may contribute to improving fertility traits in animals
and increasing the efficiency of assisted reproductive technologies (ARTs), especially because
epigenetic events may be susceptible to environment effects [7].

DNA methylation is involved in chromatin remodeling at imprinted and non-imprinted
regions of the genome. At imprinted regions, DNAmethylation patterns are acquired in a sex-
specific manner during oogenesis and spermatogenesis [5]. These genomic regions are respon-
sible for the regulation of imprinted genes, which have mono-allelic expression according to
the parental origin [8–10]. Usually, imprinted genes are organized in clusters in the genome
and are involved with embryo development, X-chromosome inactivation, placentation, fetal
growth, etc [7, 11]. Accordingly, in this study, we chose to characterize the DNAmethylation
programming in a DMR that is involved in controlling an important imprinted gene, insulin-
like growth factor 2 (IGF2). IGF2 is related to fetal growth [12], placenta development and tis-
sue differentiation [13], and as an imprinted gene, is paternally expressed [13], being controlled
by three intragenic DMRs and one intergenic DMR [7, 13–16]. Our laboratory previously char-
acterized the methylation pattern of the intragenic CpG island located in exon 10 of IGF2 dur-
ing the in vitromaturation of bovine oocytes [17], but we still need to characterize this pattern
of methylation throughout oogenesis.

An essential epigenetic event that occurs during the initial embryonic development in
female mammals is the X chromosome inactivation (XCI) [18–20], which is determinant to the
viability of female embryos. One of the most important genes related to the initiation of the
XCI is the XIST gene [21–23], which has its expression controlled by DNAmethylation. In this
study, we chose to analyse the profile of methylation of XIST as an unmethylated control.

Oocyte quality is one of the most important aspects related to the efficiency of embryo pro-
duction and fertility in animals [24]. A cycle of epigenetic reprogramming occurs during
oogenesis [25], and correct DNA methylation reprogramming is directly correlated to oocyte
quality [26]. Therefore, understanding this reprogramming of imprinted genes during oogene-
sis is essential to support the improvement of fertility and in vitro embryo production in ani-
mals and humans.

The aim of this study was to characterize the DNAmethylation profile of the CpG island
located in exon 10 of the IGF2 gene in oocytes during bovine folliculogenesis.

Methylation Profile of Bovine Oocytes
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Material and Methods
The Ethics Committee of the Federal University of Uberlândia–CEUA/UFU–Uberlândia, MG,
Brazil approved this experiment (007/12).

Oocyte recovery, classification and in vitromaturation
Ovaries from crossbred cows (Bos taurus indicus x Bos taurus taurus), that are aged between 30
and 72 months, were collected immediately after slaughter at a local abattoir (Qualimaxima,
Luziânia, Goiás, Brazil). They were immediately transported to the laboratory in saline solution
(0.9% NaCl) supplemented with penicillin (100 IU/ml) and streptomycin (100 mg/ml; (Sigma,
St. Louis MO, USA) at 35–37°C.

Cumulus oocyte complexes (COCs) were recovered and classified according to procedures
previously established in our laboratory [27, 28]. Briefly, the ovarian cortex was separated with
a scalpel blade and cut longitudinally, transversally and obliquely with a Tissue Chopper (The
Mickle Laboratory Engineering Co. Ltd., Gomshall, Surrey, England). The cuts were 150, 200,
250, 300 and 350 μm thick. The entire process was performed using phosphate-buffered saline
(PBS) containing 10% fetal calf serum (FCS; (Gibco BRL, Burlington, ON, Canada). The ovar-
ian fragments were placed in 50 mL conical tubes along with approximately 5 mL of PBS sup-
plemented with 10% fetal calf serum (FCS). A 3 mL Pasteur pipette was used to mechanically
dissociate the oocytes with successive suspension (10 to 40 times). The resulting material was
filtered using 500 and 245 μm nylon mesh to the collect large and small oocytes, respectively.
After decantation, 1 mL of the pellet was analyzed using an inverted microscope (Axiovert 135
M, Zeiss, Germany).

Oocytes with homogeneous cytoplasm and free of granulosa cells (denuded by pipetting)
were transferred to a 10 mL drop of tissue culture medium-199 (TCM-199) supplemented with
Hank's Balanced Salt (Gibco BRL, Burlington, ON, Canada). After many washes to remove any
granulosa cells and impurities, the isolated oocytes were photographed and measured using the
Motic Images Plus 2.0 program (Motic China Group Co. Ltd., Xiamen, China). The diameter
measurement was performed by excluding the zona pellucida. Oocytes< 20 μm, 65–85 μm,
100–120 μm (from 1–3 mm follicles) and>128 μm (from� 6 mm follicles) in diameter, were
classified as oocytes from primordial follicles, final secondary follicles, small antral follicles and
large antral follicles, respectively. Oocytes from primordial and final secondary follicles repre-
sent the preantral phase of folliculogenesis [27]. The antral groups were selected according to a
study that was performed in our laboratory, which showed that oocytes from 1–3 mm follicles
are less competent for embryo production than the oocytes from follicles�6 mm in size [28].
Oocytes were washed four times with PBS without calcium or magnesium. Then, the oocytes
were stored at -80°C until DNA isolation.

For oocyte maturation, COCs from 3–8 mm in diameter follicles, which are routinely used
for IVP, were aspirated. Only COCs with homogeneous granulated cytoplasm and at least
three layers of compact cumulus cells were used. After selection, COCs were washed and trans-
ferred to 50 ml (�10 oocytes) of maturation medium, covered with silicone oil and incubated
for 22–24 h at 39°C at 5% CO2. The maturation medium consisted of TCM-199 (Invitrogen,
CA, USA) supplemented with 10% FCS (Gibco BRL, Burlington, ON, Canada), 12 IU/ml LH
(Sigma, St. Louis MO, USA), 0.1 IU/ml FSH (Sigma, St. Louis MO, USA), 0.1 mg/ml L-gluta-
mine (Sigma, St. Louis MO, USA) and antibiotic (amikacin, 0.075 mg/ml). Following the matu-
ration period, COCs were incubated with 0.2% hyaluronidase for 10 min and then denuded by
repeated pipetting. Only oocytes that had extruded their first polar body were considered
matured (mature MII oocytes) and used for DNA isolation.

Methylation Profile of Bovine Oocytes
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Sperm processing
Sperm DNA from a sexually mature Nellore (Bos taurus indicus) bull of proven fertility and
routinely used for IVP in our laboratory was used as a control for the DNAmethylation pat-
terns. These sperm cells were prepared as described by Carvalho et al. [29].

DNA isolation and sodium bisulfite treatment
Two pools of 70 oocytes per group of immature oocytes (primordial, final secondary, small
antral and large antral), one pool of 63 MII oocytes and three straws of semen were used for
DNA isolation and bisulfite treatment. Each pool of oocytes was treated with Pronase E
(Sigma, St. Louis MO, USA) to digest the zona pellucida at a final concentration of 10 mg/mL.
Next, the oocytes were incubated in a thermocycler (PXE 0.5 Thermal Cycler, Electron Corpo-
ration, Asheville, NC, USA) for 35 minutes at 37°C followed by 15 minutes at 85°C. The geno-
mic DNA was extracted by cellular lysis using heat shock, in which the samples were frozen in
liquid nitrogen and immediately placed in a thermocycler for 1 minute at 95°C. This procedure
was repeated four times. Genomic DNA from sperm was isolated from pellets obtained after
passage through a Percoll gradient using the salting out procedure as described in Carvalho
et al. [29].

The DNA samples were treated with sodium bisulfite using the EZ DNAMethylation kit1

(Zymo Research, Irvine, CA, USA) according to manufacturer’s protocol. The samples were
diluted with 12 μL of distilled water and stored at -80°C until PCR amplification.

PCR amplification, cloning, and bisulfite sequencing
Sodium bisulfite-treated DNA samples were subjected to nested PCR. The primer sequences,
GenBank accession number, CpG island position and amplicon size are listed in Table 1. The
molecular structure of the bovine IGF2 gene showing the CpG island that was analyzed in this
study is illustrated in Fig 1.

The two rounds of amplification for IGF2 and x-inactive specific transcript (XIST), used as
unmethylayed control, were performed in a total volume of 20 μL using 1X Taq buffer, 2.0 mM
MgCl2, 0.4 mM dNTPs, 1 U Platinum1 Taq polymerase (Invitrogen, CA, USA), 1 μM of each
primer (forward and reverse) and 3 μL of bisulfite-treated DNA for the first round and 0.5 μL

Table 1. Gene identification, primer sequence and annealing position,GenBank accession number, CpG island position and amplicon size.

Gene Primers sequences (5’–3’) Primer
annealing
position

GenBank accession CpG island position Amplicon size

IGF2*out F: TGGGTAAGTTTTTTTAATATGATATT 243–268 X53553.1 Exon 10 455 bp

R: TTTAAAACCAATTAATTTTATACATT 672–697

IGF2*inner F: TAATATGATATTTGGAAGTAGT 257–278 X53553.1 Exon 10 420 bp

R: ACATTTTTAAAAATATTATTCT 655–676

XIST** out F: GGGTGTTTTTGTTTTAGTGTGTAGTA 1127–1252 AJ421481.1 Exon 1 482 bp

R: CTTTAATACCACCCACTAAAATTAATAC 1581–1608

XIST** inner F: TTGTTATATAGTAAAAGATGGT 1169–1190 AJ421481.1 Exon 1 405 bp

R: ACCAATCCTAACTAACTAAATA 1552–1573

*Gebert et al. [13]

**Liu et al. [30]. F-forward; R-Reverse; bp-base pair

doi:10.1371/journal.pone.0142072.t001
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of the amplicon for the second round. The temperature and time conditions for each PCR are
presented in Table 2.

After the nested PCR, the amplicons were purified from an agarose gel using the Wizard1

SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA) according to the manufac-
turer’s protocol. Then, the purified amplicons were cloned into the TOPO TA Cloning1 vector
(Invitrogen, CA, USA) and transferred into DH5α cells using a heat shock protocol. Plasmid
DNA was isolated using the QIAprep Spin Miniprep Kit (Qiagen, CA, USA) and individual
clones were sequenced using the dideoxy methodology. The sequencing quality was analyzed

Fig 1. Comparative representation of the mouse and cattle IGF2 genes.Green rectangles represent exons, while pink rectangles represent the H19
gene. Promoter regions are indicated by arrows and differentially methylated regions (DMRs) are represented by brown rectangles. ¥1 and ¥2 represent
pseudo-exons 1 and 2, respectively, in the mouse igf2 gene. The CpG island analyzed in this study is located in IGF2 exon 10. White circles represent each
individual CpG that was analyzed. The enhancer (E) that is involved in controlling the H19 and igf2 genes is represented by two blue circles. Question marks
means that the information has not been completely confirmed in cattle.

doi:10.1371/journal.pone.0142072.g001

Table 2. Nested PCR conditions for the IGF2 and XIST genes.

Gene Reaction Initial Denaturing Cycles (45 and 40 cycles for each reaction for IGF2 and
XIST, respectively)

Final Extension

Denaturing Annealing Extension

IGF2 1a reaction 94°C; 3 min. 94°C; 40 s. 45°C; 1 min. 72°C; 1 min. 72°C; 15 min.

2a reaction 94°C; 3 min. 94°C; 40 s. 40°C; 1 min. 72°C; 1 min. 72°C; 15 min.

XIST 1a reaction 94°C; 7 min. 94°C; 45 s. 47°C; 1 min. and 30 s. 72°C; 1 min. 72°C; 15 min.

2a reaction 94°C; 4 min. 94°C; 40 s. 42°C; 45 s. 72°C; 45 s. 72°C; 15 min.

doi:10.1371/journal.pone.0142072.t002
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using Chromas1 and the methylation pattern was analyzed using the BiQ Analyser1 program
[31]. DNA sequences were compared with GenBank X53553.1 for IGF2. Only sequences origi-
nating from the clones with� 95% homology and cytosine conversion were used.

Statistical analysis
The methylation pattern data were compared among experimental groups using ANOVA and
Tukey’s test or the Kruskal-Wallis and Mann-Whitney tests for data showing normality or not,
respectively. The frequency of hypomethylated and hypermethylated (more than 50% of meth-
ylated CpGs in a sequence, determined according to the method of Imamura et al. [32]) alleles
were compared using the χ2 test. All of the analyses were performed using Systat, version 10.2
(Inc., Richmond, CA, USA) and the results are presented as the mean ± standard error of the
mean (SEM).

Results
The methylation profile of the IGF2 gene is shown in Fig 2. The methylation percentage, num-
ber of analyzed sequences, minimum number of alleles according to the methylation pattern
and number of hypermethylated sequences are shown in Table 3. Fig 3 shows the frequency
between the hypermethylated and hypomethylated alleles for the IGF2 gene.

No significant differences in DNAmethylation percentage were found between the oocyte
from primordial follicles and MII oocytes (p = 0.088). In vitromatured oocytes (MII) were less
methylated than mature spermatozoa (p<0.001) (Fig 2). Regarding the frequency of hyper-
methylated and hypomethylated IGF2 alleles, oocytes from primordial follicles showed fewer
hypomethylated alleles than oocytes from small antral follicles (p = 0.001) and MII oocytes
(p = 0.039); spermatozoa showed only hypermethylated alleles (Fig 3).

Discussion
To characterize the DNAmethylation pattern during bovine folliculogenesis for the imprinted
gene IGF2, we used oocytes from follicles representing the initial and final phases of the two
stages of folliculogenesis, the preantral and antral stages. Thus, we have collected oocytes from
primordial, final secondary, small antral and large antral follicles using methodologies that
were previously established in our laboratory [17, 27, 28].

Our laboratory is interested in evaluating the influence of assisted reproductive technologies
(ARTs) on the DNAmethylation patterns of imprinted genes involved in bovine embryo devel-
opment. Thus, we are investigating the influence of ARTs on the DNA methylation pattern of
the IGF2 gene, specifically in the CpG island located in exon 10 of the gene [7, 17, 29, 33].

In this study, we have characterized the methylation pattern of this CpG island from oocytes
throughout bovine folliculogenesis. The comparative gene structure of IGF2 showing all of the
DMRs involved in mouse and bovine IGF2 expression, including the CpG island examined in
this study, is illustrated in Fig 1. Despite the mechanism controlling IGF2 expression is not well
characterized in cattle as in mouse, it is known that bovine IGF2 shows paternal mono-allelic
expression [34].

We found that the CpG island shows a similar methylation pattern in all of the oocyte
groups. Fully-grown MII oocytes showed 56.35% methylation (Fig 2) with*35% hypomethy-
lated alleles (Fig 3). In contrast, mature spermatozoa showed 96% methylation with 100%
hypermethylated alleles (Figs 2 and 3). Even though this region does not show a classical DMR
pattern with one allele totally methylated and the other totally demethylated, the methylation
patterns of the MII oocytes and spermatozoa were significantly different (Figs 2 and 3 and
Table 3). These observations are supported by data from Gebert et al. and Fagundes et al. [13,
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17] that found 16% and 28% methylation, respectively, for this CpG island, and conclude that
this genomic region is a DMR [13, 17]. The discordance among these data and our findings
may be related to differences in the in vitro culture conditions/oocyte donors (Bos taurus tau-
rus x Bos taurus indicus) and the sizes of the collected oocytes in the Gebert et al. and Fagundes
et al. studies, respectively [13, 17]. In contrast, when analyzing the same immature oocyte
groups, from follicles with 1–3 mm in size and without any influence of in vitro culture, we
have found the same methylation pattern as our previous study [17], with 56.0% and 51.1% of
methylation, respectively, which reinforces the agreement of these studies. Taken together, it
may be suggested that this CpG island may be a gametic or primary DMR, as described by
Colosimo et al. [35] and Yuen et al. [36], and that is imprinted in bovine.

Fig 2. Dynamics of DNAmethylation on the last exon of the IGF2 gene from oocytes during bovine folliculogenesis. Letters A-E represent the oocyte
groups and F and G spermatozoa. (A) Oocytes from primordial follicles; (B) oocytes from final secondary follicles; (C) oocytes from small antral follicles; (D)
oocytes from large antral follicles; (E) matured MII oocytes; (F and G) matured spermatozoa. A-F show the methylation profile on the last exon of IGF2 and G
shows the methylation profile on the exon 1 of the XIST. Each line represents one individual clone and each circle represents one CpG dinucleotide (28
CpGs for IGF2 and 17 CpGs for XIST). White circles represent unmethylated CpGs, filled black circles represent methylated CpGs and gray circles represent
a CpG that could not be analyzed. The numbers to the right of each clone indicate the number of times that the allele was sequenced and the numbers to the
bottom of each group represent the DNAmethylation means ± standard errors for each group. (*) represent significantly different means (p� 0.05). XIST
was used as unmethylated control.

doi:10.1371/journal.pone.0142072.g002
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In agreement with data from Gebert et al. and Fagundes et al. [13, 17], we also observed the
presence of both hypomethylated and hypermethylated alleles in all of the oocyte groups except
spermatozoa (Fig 2 and Table 3). These findings suggest that the methylation pattern for this
CpG island changes from a hypermethylated to a hypomethylated state during bovine folliculo-
genesis, where oocytes from primordial follicles showed a fewer number of hypomethylated
alleles compared to MII oocytes (p = 0.039) (Fig 3). This also supports the results from Gebert
et al. [13] and a previous study by our group [17] that found a hypomethylated profile in fully-
grown MII oocytes. The hypermethylated pattern found in growing oocytes from primordial
follicles (Figs 2 and 3 and Table 3) may indicate precocious reprogramming, indicative of spe-
cies-specific differences as suggested by Colosimo et al. [35]. Taken together, these results

Table 3. The methylation percentage, number of analyzed sequences, minimumnumber of alleles and number of hypermethylated sequences
(greater than 50% of methylated CpG sites) for each oocyte group and spermatozoa for the IGF2 gene.

Follicle
category

DNA methylation
percentage ± SEM

Number of analyzed
sequences

Minimum number of
alleles

Number of hypermethylated
sequences

Primordial 73.74 ± 2.88a 71 35 60 (84.5%)a

Final
Secondary

58.70 ± 7.46a,b 24 18 17 (70.8%)a,b

Small Antral 56.00 ± 5.58b 39 31 22 (56.4%)b,c

Large Antral 65.35 ± 7.45a,b 32 27 25 (78.1%)a,c

MII oocytes 56.35 ± 7.45a,b 26 11 17 (65.4%)b,c

Spermatozoa 96.04 ± 0.78c 23 15 23 (100%)d

a, b, c, d Different letters indicate significant differences among groups within each gene; p � 0.05

doi:10.1371/journal.pone.0142072.t003

Fig 3. Frequency of IGF2 hypermethylated and hypomethylated alleles. Each bar represents a treatment group that was analyzed (oocytes from
primordial, final secondary, small antral and large antral follicles, MII oocytes and spermatozoa). The black part of the bar represents the frequency or
proportion of hypomethylated alleles and gray represents the hypermethylated alleles. Different letters represent significant differences between the groups
according to the χ2 test (p� 0.05).

doi:10.1371/journal.pone.0142072.g003
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suggest that this CpG island is still reprogramming during bovine oocyte in vitromaturation,
resulting in a hypomethylated state in matured MII oocytes compared to that in sperm.

O’Doherty, O’Shea and Fair [37] evaluated the methylation pattern of imprinted genes in
bovine growing oocytes during the antral phase of folliculogenesis. For the majority of the
genes evaluated, the methylation pattern increased substantially during oocyte growth [37], in
agreement with what is expected for the imprinted genes as their DNA methylation pattern is
established during the growth stage [38]. Nonetheless, some of the genes did not show substan-
tial changes in their methylation profiles during oocyte growth, which is similar to what we
found for IGF2 in this study. These results are evidence that imprinted genes are not repro-
grammed in the same manner and at the same time during oogenesis, even in the same species.

The results obtained in this study can contribute to improving our understanding of meth-
ylation reprogramming of imprinted genes during oogenesis in cattle. It is important to analyze
the methylation pattern of the genomic region examined here in in vivo-matured bovine
oocytes to completely understand methylation reprogramming in bovine folliculogenesis
oogenesis, verify the influence of the in vitromaturation process on epigenetic features and,
consequently, enhance oocyte quality and the efficiency of in vitro embryo production.
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