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ABSTRACT

Genomic structural variation (SV), a common hall-
mark of cancer, has important predictive and ther-
apeutic implications. However, accurately detecting
SV using high-throughput sequencing data remains
challenging, especially for ‘targeted’ resequencing
efforts. This is critically important in the clinical set-
ting where targeted resequencing is frequently being
applied to rapidly assess clinically actionable muta-
tions in tumor biopsies in a cost-effective manner.
We present BreaKmer, a novel approach that uses
a ‘kmer’ strategy to assemble misaligned sequence
reads for predicting insertions, deletions, inversions,
tandem duplications and translocations at base-pair
resolution in targeted resequencing data. Variants
are predicted by realigning an assembled consen-
sus sequence created from sequence reads that were
abnormally aligned to the reference genome. Using
targeted resequencing data from tumor specimens
with orthogonally validated SV, non-tumor samples
and whole-genome sequencing data, BreaKmer had
a 97.4% overall sensitivity for known events and pre-
dicted 17 positively validated, novel variants. Rela-
tive to four publically available algorithms, BreaKmer
detected SV with increased sensitivity and limited
calls in non-tumor samples, key features for variant
analysis of tumor specimens in both the clinical and
research settings.

INTRODUCTION

Genomic structural variations (SVs) are frequently ob-
served in cancer and consist of insertions/deletions (in-
dels), larger genomic copy losses or gains and/or intra- and

inter-chromosomal rearrangements (1). SV can have im-
plications in treatment and disease outcome (2,3). Indeed,
several clinically relevant diagnostic and treatment modali-
ties are based on these events (4,5), including the therapeu-
tic targeting of EML4-ALK fusion protein in adenocarci-
noma, the BCR-ABL fusion protein in chronic myeloge-
nous leukemia, FLT3 internal tandem duplications (ITDs)
in acute myeloid leukemia (AML) and others (6–10). Thus,
rapidly identifying somatic SV in the clinic is important for
both diagnosis and treatment guidance.

Conventional cytogenetic studies and molecular-based
technologies are available to detect SV in both the clinical
and research settings (11). These include karyotype analysis
to identify chromosomal abnormalities, fluorescence in situ
hybridization (12) (FISH) for translocation and copy num-
ber analysis, polymerase chain reaction (PCR) or reverse-
transcription-PCR (RT-PCR) for the detection of known
genomic translocations or fusion transcripts and immuno-
histochemistry to detect antigens that may be the result of
genomic alterations (13). However, none of these technolo-
gies are comprehensive, and often multiple methods must be
employed to obtain reliable diagnostic results (14). A faster,
more sensitive method for identifying somatic SV at a high-
resolution would be of considerable value.

Massively parallel DNA sequencing (MPS) technology
has reduced scalability, cost, speed and resolution barriers
for genomic analysis. MPS has significantly impacted the
clinical setting by facilitating rapid molecular tumor pro-
filing for diagnostic and therapeutic decisions (15,16). Se-
quencing selective genomic regions is substantially more
cost effective than whole-genome sequencing considering
that virtually all of the ‘actionable’ genomic alterations oc-
cur in protein coding regions, which constitute ∼1% of the
human genome. Hybrid selection-based techniques are rou-
tinely being used to interrogate the whole exome (17,18),
which is ∼10-fold less expensive than whole-genome se-
quence (WGS) (19), and further reduction in the number
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of genomic regions targeted (e.g. cancer-specific panels)
equates to greater cost savings and the ability to immensely
increase sample throughput and read depth for increased
somatic event detection (20); however, there is a paucity of
methodologies to accommodate SV analysis from targeted
sequencing data.

Current methods typically apply read depth and mis-
alignment information from reference-mapped sequence
reads to identify SV (21–23) and indels (24,25) with sizes ex-
tending beyond the detection limits of current indel callers
(26). Detection algorithms identify patterns from the mis-
alignment features that deviate from expectation, such as
partially aligned or ‘split’ reads (SR) and ‘discordantly
mapped’ paired-end reads with unmapped mates or reads
aligned with unexpected orientations or insert sizes (21).
Nearly all of the current detection methods have been aimed
toward analyzing WGS-based data, where the designs to ex-
tract the SV signal appropriately account for the specific
characteristics of the sequencing data, such as read length
and insert size. With conventional WGS libraries consisting
of paired-end or mate-pair libraries with insert sizes larger
than 300 bp and read lengths less than 100 bp, the initial
methods focused on using discordantly mapped read pairs
because these contained most of the SV signal in the data.
As read lengths increased and provided more direct cover-
age at SV breakpoint locations, techniques began incorpo-
rating the SR information generated at these locations by
the aligners, often as a secondary signal or just to resolve
the breakpoint locations.

For targeted sequencing of hybrid-captured tumor DNA,
there are numerous differences to conventional WGS data
with considerable impacts to sources of SV signal. Discor-
dantly mapped read pairs become limited as a primary sig-
nal due to the expected use of libraries with smaller insert
sizes (< = 250 bp) required for formalin-fixed paraffin em-
bedded (FFPE) samples, which are typical for cancer spec-
imens. The discordantly mapped read pair evidence may
be further limited due to the design of the targeted panel,
which may only target and provide coverage for one of the
breakpoint locations in an SV event. The use of SRs be-
comes more relevant with this type of data as the targeted
design aims to directly capture and sequence reads span-
ning certain breakpoint locations and longer read sequences
(> = 100 bp) provide ample information. Available meth-
ods that exclusively use SRs (e.g. 27) or jointly consider SRs
and discordantly mapped read pairs (e.g. 28–30) can be triv-
ially applied to the targeted sequence data, yet treatment of
the soft-clipped sequences in the SV detection process for
these remains limited. Current strategies using soft-clipped
sequences for primary signal information involve remap-
ping and clustering (e.g. 28,29), assembling with co-located
soft-clipped sequences and then remapping (e.g. 27), or re-
lying on nearby discordantly mapped read pairs rather than
remapping (e.g. 30). The first strategy is limited by the abil-
ity to reliably remap short soft-clip sequences and by the ex-
clusion of soft-clipped sequences that are too short to map.
The second strategy is limited by only being able to create
an assembly using soft-clipped sequences aligned at a sin-
gle position and not include other reads, such as unmapped
reads with mapped mates. Both methods only using the soft-
clipped sequence, or assembly of these, to remap, which may

not be optimal when relevant microhomology sequence may
exist in the neighboring non-clipped sequences that could
be used for improved remapping. The third strategy relies
on the existence of discordantly mapped read pairs. Beyond
these limitations, none of these methods are designed to al-
gorithmically leverage the design or properties of the tar-
geted data to improve the calling. Furthermore, the gener-
ation of many artifact calls from experimental data likely
due to PCR, sequencing and/or alignment errors is a pro-
hibitive barrier to the usage of existing methods.

Here, we have developed ‘BreaKmer’, a novel method
to detect SV in targeted MPS data. BreaKmer identifies
SV and nucleotide-level breakpoints using the realignment
of variant contigs built from assembling all the misaligned
reads (i.e. soft-clipped or unmapped reads) in a targeted
region. A key feature in BreaKmer’s method is analyzing
the defined target regions independently, providing a re-
duced search space and ability to perform an assembly pro-
cess that optimally uses all of the relevant misaligned se-
quences to build a comprehensive variant contig. Three ad-
ditional innovations in BreaKmer are the implemented as-
sembly strategy using subsequences (‘kmers’) of the mis-
aligned sequences to build the variant contigs, the SV call-
ing procedure from the realignment of the contigs to refer-
ence and the incorporation of discordantly mapped paired
reads for candidate calls. Currently, it is the only tool that
calls SV along with breakpoint locations using a single
assembly procedure that takes into consideration all mis-
aligned sequences in a user-defined region. We applied our
method to targeted and WGS paired-end MPS data from
122 tumor and non-tumor samples, a subset of which had
known translocation events based on orthogonal clinical
tests. BreaKmer yielded a high sensitivity rate of 97.4% for
validated events and a positive predictive value of 77.3% for
novel events. Comparative to three publically available SV
calling tools, BreaKmer achieved higher sensitivity in call-
ing SV in the cancer specimen’s targeted sequencing data
while calling few SV in the non-tumor samples, suggesting a
low false-positive rate. These are important features in both
the clinical and research settings.

MATERIALS AND METHODS

Here we present the BreaKmer algorithm, which uniquely
combines defined target regions with an assembly and re-
alignment strategy to identify SV in individual samples. The
algorithm is designed to independently analyze target se-
quenced regions, providing a reduced SV detection search
space relative to a whole chromosome or genome. BreaK-
mer uses the reduced search space to apply a solution that
comprehensively assesses the misaligned sequences of the
reads in each region by first assembling them into contigu-
ous sequences and secondly determining if the assembled
sequences contain SV based on realignment to a reference
sequence. To enhance the SV calling and filtering, the dis-
cordantly mapped read pairs in each region are also ex-
tracted and applied to any corresponding SV. By jointly
considering all of the misaligned reads in a region for a sin-
gle assembly, this strategy uses all the available sequence in-
formation to create the longest and most accurate variant
contigs that may span SV breakpoints, as opposed to using
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multiple assemblies for clusters of SRs at different positions,
such as CREST (27). To efficiently assemble all misaligned
read sequences in a region jointly, the assembly implemen-
tation uses ‘kmers’ to filter, rank and select reads to assem-
ble using a greedy assembly approach. The implementation
focuses on building all possible contigs, particularly those
containing low-frequency variants with minimal read sup-
port. The BreaKmer strategy is outlined in Figure 1A.

Read extraction and cleaning

For an individual sample, BreaKmer analyzes sequenced
reads aligned to a reference genome and formatted in a
binary alignment format file (BAM). For a defined tar-
get region containing aligned reads, the algorithm first
extracts non-duplicated ‘misaligned’ reads including SRs,
reads that have been partially aligned to the reference (i.e.
‘soft-clipped’) and unmapped reads with a mapped mate
(Figure 1B). Adapter and poor quality (Phred quality < =
2) sequences that exist in the extracted reads are removed
using cutadapt (https://code.google.com/p/cutadapt). Addi-
tionally, alignment positions of the discordantly mapped
read pairs (DRs), or read pairs that are mapped to differ-
ent chromosomes or with insert sizes greater than 1 kilo-
base (kb), are stored for evidence in downstream filtering
and reporting of translocations. Read pairs aligned on the
same strands (forward–forward or reverse–reverse) or out-
of-order (reverse–forward) are stored for inversion and tan-
dem duplication evidence, respectively (Figure 1B).

Contig assembly

For the extracted and cleaned sample reads, a ‘kmer’ sub-
traction from reference is performed (Figure 1C). Specif-
ically, all possible k-length DNA strings, or kmers, from
a sample’s extracted sequence reads are enumerated. The
same procedure is completed with the reference sequence
from the corresponding target being analyzed. The kmers
that only exist within the sample set are retained for the as-
sembly.

The iterative assembly process begins with a seed kmer
that is used to retrieve the reads containing the kmer in their
sequences (Figure 1C). For the retrieved reads, the first read
is used to establish the initial contig sequence, and the subse-
quent reads with sequences that overlap the contig sequence
are merged to extend the contig. Any sequences that do not
have an overlapping sequence with 90% homology to the
contig are cached for assembly with other potential con-
tigs. After the initial contig is assembled, additional sample-
specific kmers within the retrieved read(s) are used to recruit
additional reads in which they are contained to further ex-
tend the contig. The process continues until all kmers have
been assembled into a contig.

Contig re-alignment and SV calling

The workflow for re-alignment, calling and filtering SV is
displayed in Supplementary Figure S1. Each contig assem-
bled with the specified minimum number of reads (default
of 2) is aligned against the target region reference sequence
using BLAT (31). The initial alignment to the target refer-
ence sequence determines if a contig contains an ‘insertion’

or ‘deletion’. The BLAT results are processed and it is deter-
mined whether there is an indel event and whether the blat
results pass indel filters (see Supplemental Methods). If a
BLAT result is determined to have an indel event but fails
to pass the filters nothing is called. If the BLAT result does
not have an indel event, the contig is then aligned against
the whole reference genome. Calling proceeds if there are
at least two results stored and at least one of the results
is within the target region being analyzed. Based on the
stored BLAT results, an intra- or inter-chromosomal re-
arrangement is called. The intra-chromosomal rearrange-
ments can be further defined as inversions or tandem du-
plications. These are classified based on the ‘misalignment’
signatures that exist from both the re-alignment results and
the discordantly mapped paired-end reads that support the
event. Called rearrangement events are subject to specific
filters. These filters include criteria that consider the amount
of read support assembled at the inferred breakpoints in
the contig and from discordantly mapped read pairs as well
as metrics assessing the realignment, such as the minimum
length of the BLAT aligned segments and alignment within
low-complexity or simple repeat regions (see Supplemental
Methods).

Verification of BreaKmer-identified SVs and indels

To confirm novel insertions and deletions identi-
fied by BreaKmer we employed Sanger sequencing.
Oligonucleotide primers were designed using Primer3
(http://biotools.umassmed.edu/bioapps/primer3 www.cgi)
and used to amplify an ∼500 base pair region surrounding
the identified indel. For each putative indel, both tumor
and normal liver samples were tested. The area of interest
was PCR amplified using AmpliTaq Gold DNA poly-
merase (Life Technologies, Carlsbad, CA, USA) and size
separated on an agarose gel. Individual bands were purified
and Sanger sequenced from both ends using the PCR
amplification primers (BigDye Terminator Sequencing
Kits, Life Technologies, Carlsbad, CA, USA).

To verify novel translocations, tumor samples with clini-
cally validated rearrangements as well as novel BreaKmer-
identified rearrangements were selected. Primers were de-
signed to span the breakpoint resulting in an ∼200-bp am-
plicon (Supplementary Table S1). Several tumor samples
with known translocations were also included to demon-
strate the validity of the approach. For verification of each
translocation, normal tissue samples were also included to
test specificity. PCR-amplified products were size-separated
by agarose gel electrophoresis and appropriately sized am-
plicons purified (Supplementary Figure S2). Sanger se-
quencing across the breakpoint verified discrepant results.

Patients and tumor tissue collection

Validation samples were selected from patients who were
consented under institutional review board (IRB) approved
protocol 11–104 from the Dana-Farber/Partners Cancer
Care Office for the Protection of Research Subjects or dis-
carded de-identified patient samples housed at the Brigham
and Women’s Hospital (BWH) Center for Advanced Molec-
ular Diagnostics (CAMD). For cases for which patient con-
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Figure 1. (A) Algorithm workflow for a given target region. (B) Illustration of reads with ‘misaligned’ sequences that are soft-clipped by the alignment
tool or paired-end reads with unmapped mates are extracted to use for building contigs. The locations of the discordantly mapped paired-end reads with
signatures suggestive of inversions, tandem duplications and translocations are stored and used for downstream analysis and filtering. (C) BreaKmer
assembly process using the kmer subtraction procedure to iteratively build contigs.

sent had been documented, pathologic samples were ob-
tained from DFCI or the BWH Department of Pathology
for DNA extraction, and subsequent testing preformed in
the BWH CAMD. The BWH Clinical Cytogenetics Labo-
ratory performed all karyotyping and FISH assays. Molec-
ular assays were performed by CAMD at BWH. All assays
performed at BWH were developed and validated under
CLIA guidelines. Patient charts were reviewed and appro-
priate specimens were selected for next-generation sequenc-
ing with the following criteria: ≥20% viable tumor con-
tent size ≥3 mm in greatest linear diameter. Specimen types
profiled included FFPE, fresh/frozen and blood/marrow.
Non-cancer ‘normal’ DNA samples were collected from de-
identified, discarded DNA from blood samples submitted
for Factor II or Factor V molecular screening.

Target capture panels

Two solution-phase hybrid capture targeted panels On-
coPanel version 2.1 (OPv2.1) and OncoPanel version 2.2
(OPv2.2) were designed to capture the exons of 305 and
504 genes, respectively, using Agilent SureSelect RNA baits.
OPv2.1 and OPv2.2 were further augmented with selected
introns from 14 and 29 genes or cluster regions (e.g. IgK,
IgL), respectively, to detect a set of known cancer-specific
translocations (Supplementary Table S2). A total of 110
samples were captured using OPv2.1 (21 translocation sam-
ples, eight FLT3-ITD samples, one KIT deletion sample and
80 normal samples), and nine translocation samples were
captured using OPv2.2.

DNA extraction and preparation

For solid tumor specimens, tissue was sectioned and hema-
toxylin and eosin (H&E)-stained slides were obtained.
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Tumor-rich areas from FFPE tumors were macrodissected
from unstained slides or cored from whole FFPE blocks;
fresh tissues were grossly minced and digested overnight
with Proteinase K. Blood or marrow samples with mononu-
clear hematologic malignancies were enriched by Ficoll gra-
dient prior to DNA extraction. DNA was extracted man-
ually or using an automated protocol (QiaSymphony) as
recommended by the manufacturer (Qiagen, Valencia, CA,
USA) and quantified using SYBR-green based dsDNA de-
tection (Invitrogen, Carlsbad, CA, USA). Samples with at
least 200 ng of DNA were processed for next-generation se-
quencing.

Target capture, sequencing and analysis

DNA was fragmented using sonication (Covaris Inc.,
Woburn, MA, USA) to 250 bp and further purified using
Agencourt AMPure XP beads. A total of 50 ng of size-
selected DNA was then ligated to specific adaptors during
library preparation (Illumina TruSeq, Illumina Inc., San
Diego, CA, USA). Each library was made with sample-
specific barcodes quantified using quantitative PCR (Kapa
Biosystems, Inc., Woburn, MA, USA), and libraries were
pooled to a total of 500 ng for capture enrichment using
the Agilent SureSelect hybrid capture kit. For OPv2.1, 24
libraries were pooled and sequenced on two flow cell lanes
(Illumina Inc., San Diego, CA, USA) for an equivalent of
12 samples per lane. For OPv2.2, eight to 24 samples were
pooled and sequenced over two flow cell lanes. The 100-bp,
paired-end sequences were generated using a HiSeq 2500
system in rapid run mode (Illumina Inc., San Diego, CA,
USA).

Sequenced reads were aligned to the reference sequence
b37 editions from the Human Genome Reference Con-
sortium using bwa (32) with the parameters ‘-q 5 –l 32
–k 2 –o 1’. Duplicate reads were identified and removed
using Picard tools. The alignments were further refined
using the GATK tool for localized realignment around
indel sites. Recalibration of the quality scores was per-
formed using GATK tools (http://www.broadinstitute.org/
gatk/guide/best-practices).

Sequencing output and quality metrics are listed in Sup-
plementary Table S3. The total sequence yield per sample
ranged from 6.8 to 98.1 million ‘pass filter’ reads with ‘pass
filter’ rates between 76 and 98%. The average mean target
coverage for all samples was 198 x. Coverage distributions
are similar for the two panels and normal samples (Supple-
mentary Figure S2).

Sample selection and replications

A total of 38 cancer specimens were selected for BreaK-
mer analysis (Table 1). There were 35 cancer samples clini-
cally profiled at CAMD with a rearrangement event within
a target-captured gene (Supplementary Table S4). To as-
sess reproducibility, 12 samples were processed in triplicate
across multiple independent runs. To avoid discordant re-
sults, several isolations were performed for each sample,
pooled to ensure sample homogeneity and then aliquoted
to produce replicates. All subsequent processes were per-
formed independently for each sample. To estimate the

lower limit of detection, four samples were prepared as
for reproducibility and then diluted. FFPE samples with
known translocation events were diluted with FFPE nor-
mal liver DNA, while fresh frozen or heme samples with
known translocation events were diluted with DNA isolated
from normal peripheral blood. Samples were sequenced at
100, 50 and 20% tumor content. Two human NSCLC cell
lines, NCI-H2228 and NCI-H3122, were derived from an
adenocarcinoma non-small cell lung cancer (33). An acute
monocytic leukemia cell line, THP-1, with a KMT2A-AF9
translocation was also obtained (34). A total of 80 normal
(non-cancer) samples were acquired from Factor II or Fac-
tor V molecular screening as positive controls.

SV detection analysis and processing

BreaKmer was used to analyze the targeted MPS data from
all the replicates of the 38 cancer and 80 non-cancer spec-
imens. All the target-captured regions in the OPv2.1 and
OPv2.2 panels (OPv2.1, n = 305; OPv2.2, n = 504) were
analyzed for each sample in which the corresponding pan-
els were used. Default and minimum thresholds were used
for assembling a contig (n = 2) and for subsequent filtering
of variants (the Materials and Methods section).

Four other SV detection methods––CREST (27),
Meerkat (28), BreakDancer (35) and Pindel (25)––were
run on our data set. Parameters for each program were set
to mimic the thresholds and settings used by BreaKmer.
CREST 1.0 was run with the same SV read support
threshold parameters and adjusted to be able to call
variants with read support at a single breakpoint location
(–min sclip reads 2, –min one side reads 2, –sensitive,
–rescue, –norm tandem repeat and –tr max size 100
for FLT3 ITDs). Meerkat 0.185 scripts (pre process.pl,
meerkat.pl, mechanism.pl and somatic sv.pl) were run with
default parameters with the exception of adjustment of the
parameters to identify discordantly mapped read pairs for
long-tailed insert size distributions that fit our data (-c 5,
-d 5). BreakDancer-max 1.44 and Pindel 0.2.5a1 were run
with default parameters. No matched normal samples were
available to use for either method.

To properly compare the output from each of the pro-
grams, the results from each were annotated using the hg19
refGene table (http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/database). Similar to BreaKmer calls, any results not
occurring within a targeted region were discarded from
comparison. For inversions, intra-chromosomal rearrange-
ments, insertions and deletions, one of the breakpoints must
be in or near (±20 bp) an ‘exonic-tiled’ region or an ‘exonic-
tiled’ region must be between the two breakpoints (±20 bp).
Translocations were only kept if one of the inferred break-
points occurred in a targeted region.

AML data

We selected four AML patients whose cancer genomes had
previously been sequenced through the Cancer Genome At-
las (TCGA) consortium and annotated with cytogenetic or
gene-fusion evidence of a somatic translocation (36). We
downloaded the reference-aligned, Illumina-generated tu-
mor DNA sequence reads of length 75 and 100 bp and insert
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Table 1. A list of sequenced tumor and non-tumor samples with known alterations, clinical annotations and number of replicates

Sample ID Known alteration Diagnosis
Tumor
percentage Tissue Detection method Panel Nt Nd

1 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
2 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
3 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
4 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
5 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
6 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
7 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
8 FLT3 indel AML 50 Blood Sanger sequencea OPv2.1 1 0
9 KIT deletion GIST NA FFPE Sanger sequence OPv2.1 1 0
10 t(2;2) ALK-EML4 LA 50 FF FISHb OPv2.1 16 6
11 t(2;2) ALK-EML4 LA 60 FFPE FISHb OPv2.1 1 0
12 t(2;2) ALK-EML4 LA 100 Cell line See reference (33) OPv2.2 2 0
13 t(2;2) ALK-EML4 LA 100 Cell line See reference (33) OPv2.2 1 0
14 t(2;2) ALK-EML4 LA 70 FFPE FISHb OPv2.2 1 0
15 t(9;22) BCR-ABL1 CML NA Blood qRT-PCR OPv2.2 3 0
16 t(9;22) BCR-ABL1 ALL NA Heme qRT-PCR OPv2.1 2 0
17 t(9;22) BCR-ABL1 CML NA Heme qRT-PCR OPv2.1 1 0
18 t(9;22) BCR-ABL1 CML NA Heme qRT-PCR OPv2.1 10 6
19 t(9;22) BCR-ABL1 CML NA Heme qRT-PCR OPv2.1 7 0
20 t(9;22) BCR-ABL1 CML NA Heme qRT-PCR OPv2.1 6 0
21 t(9;22) BCR-ABL1 CML 50 Bone Marrow qRT-PCR OPv2.2 1 0
22 t(7;16) EGFR

translocation
LA 70 FFPE PCR OPv2.1 15 6

23 t(21;22) ERG-EWSR1 Ewing’s
Sarcoma,
PNET

>90 FFPE FISHc OPv2.2 1 0

24 t(11;22) FLI1-EWSR1 Ewing’s
Sarcoma

100 FFPE FISHc OPv2.1 1 0

25 t(11;22) WT1-EWSR1 DSRCT 90 FFPE FISHc OPv2.1 1 0
26 t(11;22) FLI1-EWSR1 Ewing’s

Sarcoma,
PNET

>90 FFPE karyotype OPv2.2 1 0

27 t(8;17)
FGFR1-ANKRD13B

CML 90 MeoH Ac-acid
fixed

Karyotype, FISH OPv2.1 1 0

28 t(4;4) FIP1L1-PDGFRA CML NA MeoH Ac-acid
fixed

FISH OPv2.1 1 0

29 t(16;21) FUS-ERG AML 100 Bone Marrow Karyotype OPv2.1 1 0
30 t(14;18) IGH-BCL2 CAP survey

sample
NA DNA Qualitative DNA

PCR assay
OPv2.1 3 0

31 t(14;18) IGH-BCL2 FL NA Frozen lymph
node

Qualitative DNA
PCR assay

OPv2.1 8 0

32 t(10;11) KMT2A
translocation

AML NA MeoH Ac-acid
fixed

FISH OPv2.1 1 0

33 t(11;17) KMT2A
translocation

AML NA MeoH Ac-acid
fixed

FISH OPv2.1 1 0

34 t(6;11) KMT2A
translocation

AML 50 Bone Marrow FISH OPv2.1 1 0

35 t(9;11) MLLT3-KMT2A AML 100 Cell line See reference (34) OPv2.2 2 0
36 t(8;14) MYC-IGH DLBCL 70 FFPE FISH OPv2.1 1 0
37 t(15;17) PML-RARA APML/AML

M3
50 Bone Marrow RT-PCR OPv2.2 1 0

38 t(15;17) PML-RARA APML/AML
M3

NA Bone Marrow Qualitative DNA
PCR assay

OPv2.1 10 6

39–118 Normal ‘controls’ NA NA Blood NA OPv2.1 80 0

Nt: total number of replicates; Nd: number of dilution replicates; LA: lung adenocarcinoma; AML: acute myeloid leukemia; GIST: gastrointestinal stromal tumor; NSCLC:
non-small cell lung cancer; DSRCT: desmoplastic small round cell tumor; CML: chronic myelogenous leukemia; ALL: acute lymphoblastic leukemia; PNET: primitive neuroec-
todermal tumor; DLBCL: diffuse large B-cell lymphoma; APML: acute promyelocytic leukemia; FL: follicular B-cell lymphoma; OPv2.1: OncoPanel-clinical; OPv2: OncoPanel
v2; FFPE: formalin-fixed paraffin-embedded; FF: fresh frozen; FISH: fluourescence in situ hybridization; qRT-PCR: quantitative real-time PCR; NA: not available.
aNon-CLIA validated assay.
bVysis LSI ALK Dual color, Break Apart Rearrangement Probe (Abbott Molecular) at 2p23.
cLSI EWSR1 Dual Color, Break Apart Rearrangement Probe (Abbott Molecular) at 22q12.

size between 250 and 300 bp for these patients from the Can-
cer Genomics Hub (https://cghub.ucsc.edu). As described
previously (36), the reads were aligned using bwa 0.5.5 and
duplicate reads were removed used Picard 1.25. Based on
this alignment, the mean depths of coverage for these four
samples were 28.33, 36.13, 30.21 and 37.69.

RESULTS

BreaKmer detection of known variants in target-captured
data

To test the method on real sequencing data, BreaKmer was
used on targeted MPS data acquired from a mix of 38 tu-
mor specimens (Table 1), each with one orthogonally vali-
dated event and a subset having multiple replicates. Hybrid-
capture-based sequencing was performed using two ver-
sions of cancer gene-specific bait sets, OPv2.1 and OPv2.2
(the Materials and Methods section), which had mean tar-
geted sequence depths of 215 x and 251 x in target-captured

https://cghub.ucsc.edu
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regions, respectively. The genomic positions and translo-
cation partners of the 16 orthogonally validated translo-
cations within 29 of the cancer specimens are displayed
in Figure 2A. BreaKmer was highly sensitive in detecting
the known translocations. True-positive translocation calls
were made for 28 of the 29 (96.5%) translocation-positive
samples (Figure 2B). Between the two capture panels, all
21 translocations in samples captured with OPv2.1 were de-
tected, while eight of the nine translocations in OPv2.2 sam-
ples were positively detected. Considering all replicate sam-
ples in which the tumor-content was not diluted, BreaKmer
detected 75 out of the 77 (97.4%) known translocation calls.
Only one replicate among the 12 sample-replicate groups
was not positively called, resulting in an overall repro-
ducibility rate of 98.3%. High sensitivity was also achieved
using the tumor-content ‘dilution’ replicates (the Materi-
als and Methods section), demonstrating BreaKmer’s effi-
cacy in tumor samples with purities down to 20%. Overall,
BreaKmer was capable of positively identifying all but one
of the 20% tumor purity replicate translocations (i.e. ALK-
EML4). All eight FLT3-ITDs and the KIT exon-11 dele-
tion were identified. The FLT3-ITDs insertion sizes ranged
from 30 to 87 bp with all the insertion breakpoints oc-
curring within a 100-bp range of exon 14 (chr2:28608216–
38608308).

In addition to the known SVs, BreaKmer identified 21
additional SV events from all the cancer replicates. There
were 11 translocations and 10 insertion/deletion events that
were previously unidentified in all of the tumor samples.
All 11 novel translocations were submitted for confirma-
tion and nine were positively validated using PCR. (Fig-
ure 2C and Supplementary Table S5). For the 10 novel
insertions/deletions, there were nine with sufficient DNA
and that were successfully tested using PCR, eight of which
were positively confirmed (Supplementary Table S5). Over-
all, BreaKmer achieved a sensitivity of 97.4% in detecting
the 38 known events and a positive predictive value of 77.3%
for the newly predicted events. For the 80 non-cancer sam-
ples analyzed as a negative control set, few to no SV in-
volving the cancer-specific-targeted genes were expected to
be called. Aside from a set of indels occurring in many of
the samples and later identified to be due to alternative ref-
erence assembly sequence, BreaKmer called two transloca-
tions and three indels. One of the translocations, involving
the T-cell receptor beta locus (TRB) and an intergenic re-
gion, was validated, while two of the three indels were vali-
dated and the third test failed to run. The full list of BreaK-
mer results can be found in Supplementary Table S6.

BreaKmer SV detection metrics in targeted sequencing

To assess the amount of read support required to detect
translocations when one of the genomic partners was not
included in the hybrid-capture panel, we examined the ev-
idence for the known events detected by BreaKmer rela-
tive to coverage depth. Deep sequence coverage was ob-
served for at least one of the BreaKmer inferred genomic
breakpoint locations for each of the detected variants. More
specifically, 75% of the breakpoint-containing regions ex-
ceed a depth of a 100 reads with a minimum of 34 reads, for
each translocation. Only a single translocation ‘partner’ for

all but four of the known translocation events were designed
to be captured (Supplementary Table S4), resulting in a me-
dian read depth of three reads (34 instances of less than two
reads) at the BreaKmer inferred genomic breakpoints in the
non-targeted translocation partner (Supplementary Figure
S3). The number of assembled reads (ARs) that cover the
breakpoint location in the translocation contigs had a me-
dian of 14 reads (range of 2 to 81 reads). Similarly, the
discordantly mapped read pairs (DRs) that supported the
known translocation calls ranged from 0 to 78 reads with a
median value of seven reads. There were 11 translocations
with only two ARs and four translocations had zero DR
evidence. As expected, the amount of detected read sup-
port and corresponding read depths around the identified
breakpoints for all the known SV events are roughly corre-
lated (Spearman rank correlation coefficient = 0.47) (Fig-
ure 3A). The values of the two forms of read support (AR
and DR) for the translocations also have an expected asso-
ciation (Spearman rank correlation coefficient = 0.75) (Fig-
ure 3B).

There is an expected lower variation in total read sup-
port (RS) and corresponding sequencing read depths (RDs)
at BreaKmer inferred breakpoints for within-sample repli-
cates (RS average SD = 10.98; RD average SD = 110.35)
compared to between samples (RS SD = 34.72; RD aver-
age SD = 264.85). Even for the sample replicate groups with
low overall read support (i.e. <15 reads), the amount of AR
and DR support across replicates was consistent. For ex-
ample, the six replicates for sample 20, with an ABL1-BCR
translocation, had fairly uniform total read supports of 11,
10, 7, 10, 7 and 6 reads with corresponding read depths in
the ABL1 breakpoint location of 115, 146, 117, 194, 86 and
163.

The expected effect of reduced SV evidence due to a re-
duction in sequenced tumor-content was observed in the
dilution replicates from four translocation-positive samples
(Figure 3C). The read depths at the breakpoints were con-
stant with the reduction in tumor purity, with an exception
for the replicates containing the EGFR-intergenic translo-
cation. This was due to a large somatic EGFR amplification,
which observably has a direct effect on the read depth of the
EGFR translocation breakpoint identified by BreaKmer.

SV analysis comparisons

To test how BreaKmer performs relatively to widely used,
publically available SV detection tools, we analyzed our
complete data set with four other methods. CREST (27),
Meerkat (28) and BreakDancer-max (35) were applied to
the complete data set, while Pindel (25) was only applied
to the eight samples with FLT3-ITDs. Meerkat incorpo-
rates both soft-clipped and discordantly mapped paired-
end reads, while CREST strictly uses soft-clipped reads and
BreakDancer-max only uses discordantly mapped paired-
end reads. Pindel is designed for detecting breakpoints
for large deletions, medium-sized insertions, inversions and
tandem duplications. All programs were run with mostly
default parameters with minor adjustments and the results
were processed in a manner similar to BreaKmer’s (the Ma-
terials and Methods section).
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Figure 2. (A) A circos plot displaying links between gene partners and their genomic locations for the known translocations. (B) BreaKmer analysis results
for the 38 cancer specimens and 80 ‘normal’ controls. For the 18 known SV events listed in the table rows, the true-positive (gray rectangle) and false-negative
(red rectangle) results are shown for each replicate analyzed with the corresponding SV. The rectangles in the center are spaced to indicate separate samples.
Boxplots on the right show the distributions of total read support (black boxplots) with the read depth (gray boxplots) at the inferred breakpoints for each
of the known variants detected by BreaKmer. (C) A circos plot showing the validated novel translocation partners and their genomic locations identified
by BreaKmer.

Comparing sensitivities for identifying the set of 38
known variants in the 38 cancer specimens across the meth-
ods, BreaKmer (97.4%) outperformed CREST (78.9%),
Meerkat (71.1%) and BreakDancer-max (68.4%) (Table
2). Similarly, BreaKmer identified 84 out of 86 replicate
events compared to 66, 70 and 64 for CREST, Meerkat
and BreakDancer-max, respectively. Detection of translo-
cations in the reduced tumor-content replicates also demon-
strated a marked reduction in sensitivity for these methods.
Indeed, CREST missed all three EGFR translocations in
the 20% tumor purity replicates and BreakDancer-max only
identified one out of the six ALK-EML4 translocations in
all the ‘dilution’ replicates. The most difficult event to de-
tect across the three methods was the FLT3-ITD. Meerkat
and BreakDancer missed all eight cases, CREST missed six
and Pindel was able to detect all eight of the FLT3-ITDs.
CREST and BreakDancer-max also had difficulty in de-
tecting the BCL2-IGH translocations; the translocation was
identified in one and six out of the 11 sample replicates, re-
spectively.

There was a strikingly large quantity of previously
unidentified SV identified by CREST, Meerkat and
BreakDancer-max relative to BreaKmer for the 38 cancer
specimens as well for the 80 non-cancer samples (Table 3).
The number of additional calls from BreaKmer never ex-
ceeded five additional calls per sample, and many of these
were identified as indels that were artifacts from alterna-
tive reference assemblies. While similar artifacts could be
present in the other methods’ results, there were up to a
1000-fold more results output by the other three methods.
Even among the non-cancer samples there are a substan-
tial number of events predicted with averages of 46, 28
and 40 for CREST, Meerkat and BreakDancer-max, re-
spectively. Overlap in calls between replicates for the sam-
ples with three or more replicates resulted in high per-
centages of calls that were only identified in a single repli-
cate by CREST, Meerkat and BreakDancer-max, suggest-
ing high false-positive rates. For all three of these tools,

at least 90% of the additional calls for virtually all nine
replicate groups were not identified by more than a sin-
gle replicate. The additional calls categorized as indels, tan-
dem duplications, translocations or inversions revealed that
translocation was the most commonly called SV type by
CREST, while BreakDancer-max called more indels and
Meerkat had a consistent number of calls across the four
categories (Supplementary Figure S4). The full list of re-
sults for CREST, Meerkat and BreakDancer can be found
in Supplementary Table S7.

Analysis of the outputs from BreaKmer, CREST,
Meerkat and BreakDancer-max indicated a lack of repro-
ducibility for the additional calls made from the individ-
ual methods (Supplementary Table S8). The largest overlap
in calls occured between CREST and Meerkat with 2237
calls. In contrast, BreaKmer and Meerkat had the mini-
mum overlap with 9 overlapping calls. The set of 88 calls
identified by CREST, Meerkat and BreakDancer was com-
prised of 71 indels, two translocations and 15 inversions.
The two translocations had also been identified by BreaK-
mer in sample 12 and validated (t(5;8)TERT-intergenic,
t(3;12) EPHA3-intergenic).

Targeted SV analysis using WGS data

To test BreaKmer on WGS data, four adult de novo
AML patients annotated with KMT2A (i.e. MLL) (n =
2) and PML-RARA (n = 2) translocations were used.
These cases were previously analyzed and published with
cytogenetic confirmation of the PML-RARA cases and
RNA-sequencing gene fusions supporting all four translo-
cations (36). To recapitulate these translocations findings
and demonstrate targeted SV analysis in WGS data, we used
BreaKmer to analyze the superset of 579 targeted regions
from OPv2.1 and OPv2.2, which included the genic regions
of KMT2A, PML and RARA.

BreaKmer positively detected both of the PML-RARA
translocations and identified KMT2A rearrangements in



PAGE 9 OF 13 Nucleic Acids Research, 2015, Vol. 43, No. 3 e19

Table 2. Counts for the number of true-positive results for all the replicates, listed by the known alterations and four SV detection methods

True-positive counts

Total replicates BreaKmer CREST Meerkat BreakDancer

Known alteration ND D50 D20 ND D50 D20 ND D50 D20 ND D50 D20 ND D50 D20

ABL1-BCR 24 3 3 24 3 3 24 3 3 22 3 3 24 3 3
ALK-EML4 15 3 3 13 3 2 13 2 2 13 3 1 10 0 1
EGFR-intergenic 9 3 3 9 3 3 7 2 0 8 3 3 9 3 1
BCL2-IGH 11 0 0 11 0 0 1 0 0 10 0 0 6 0 0
PML-RARA 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3
FLT3-ITD 8 0 0 8 0 0 2 0 0 0 0 0 0 0 0
EWSR1-FLI1 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
KMT2A-MLLT3 2 0 0 2 0 0 2 0 0 1 0 0 1 0 0
KMT2A-MLLT10 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
KMT2A-MLLT4 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
KMT2A-MLLT6 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ERG-EWSR1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
EWSR1-WT1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ANKRD13B-
FGFR1

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

FIP1L1-PDGFRA 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ERG-FUS 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
IGH-MYC 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
KIT deletion 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
Total replicates 86 12 12 84 12 11 66 10 8 70 12 10 64 9 8
Total samples 38 4 4 37 4 4 30 4 3 27 4 4 26 3 4

ND: non-dilution replicates; D50: dilution replicates with 50% tumor purity; D20: dilution replicates with 20% tumor purity.

Table 3. A list of the total number of previously unidentified SV calls made by the SV detection methods for the tumor and non-tumor replicates

BreaKmer CREST Meerkat BreakDancer

Sample
ID(s)

Known
alteration N T M(S%)

MTG-
TRL T M(S%)

MTG-
TRL T M(S%)

MTG-
TRL T M(S%)

MTG-
TRL

10 ALK-EML4 10 3 0.3(0) 0 1797 179.7(99.9) 96.3 826 82.6(98.3) 42.8 337 33.7(95) 0.6
22 EGFR-

intergenic
9 9 1(30) 1.22 886 98.4(99.5) 62.78 420 46.7(96.7) 22.56 264 29.3(94.3) 1.78

31 BCL2-IGH 8 3 0.38(0) 0 699 87.38(99.9) 57.75 421 52.6(97.4) 22.13 1060 132.5 97.3) 0.63
19 ABL1-BCR 7 5 0.7(20) 0 991 141.6(99.8) 78 542 77.4(98.5) 31 589 84.1(99) 0.29
20 ABL1-BCR 6 4 0.7(50) 0 360 60(1) 44.5 121 20.2(95) 10 430 71.7(98.4) 0
18 ABL1-BCR 4 2 0.5(50) 0 822 205.5(1) 111.5 259 64.8(98.5) 24.5 187 46.8(98.4) 0.25
38 PML-RARA 4 2 0.5(0) 0 277 69.3(1) 48 135 33.8(95.6) 13 349 87.25(98.6) 1.25
15 ABL1-BCR 3 3 1(0) 0 513 171(99.8) 105.3 334 111.3(97.6) 51.33 1358 452.67(97.9) 3
30 BCL2-IGH 3 2 0.7(0) 0 296 98.7(1) 61 173 57.7(98.8) 20 416 138.7(98) 0
12 ALK-EML4 2 6 3 0 207 103.5 72.5 156 78 36.5 437 218.5 5.5
16 ABL1-BCR 2 2 1 0 161 80.5 54 104 52 17 555 277.5 1.5
35 KMT2A-

MLLT3
2 5 3 1 538 269 142.5 336 168 75.5 1601 800.5 6.5

1 FLT3-ITD 1 2 2 0 86 86 70 27 27 8 31 31.0 1
2 FLT3-ITD 1 2 2 0 74 74 45 32 32 10 118 118.0 0
3 FLT3-ITD 1 2 2 0 93 93 58 30 30 12 25 25.0 0
4 FLT3-ITD 1 2 2 0 275 275 129 79 79 30 81 81.0 0
5 FLT3-ITD 1 2 2 0 83 83 58 30 30 13 45 45.0 1
6 FLT3-ITD 1 2 2 0 79 79 53 26 26 11 27 27.0 1
7 FLT3-ITD 1 3 3 0 160 160 101 38 38 15 100 100.0 0
8 FLT3-ITD 1 1 1 0 87 87 65 44 44 16 17 17.0 0
9 KIT deletion 1 1 1 0 59 59 43 19 19 5 10 10.0 0
11 ALK-EML4 1 3 3 0 132 132 75 99 99 28 128 128.0 1
13 ALK-EML4 1 4 4 0 220 220 138 151 151 70 1558 1558.0 5
14 ALK-EML4 1 5 5 0 758 758 266 429 429 142 104 104.0 3
17 ABL1-BCR 1 3 3 0 86 86 58 66 66 27 135 135.0 0
21 ABL1-BCR 1 3 3 0 134 134 92 32 32 5 61 61.0 3
23 ERG-EWSR1 1 3 3 0 1034 1034 155 2733 2733 287 373 373.0 1
24 EWSR1-FLI1 1 2 2 1 1583 1583 208 884 884 127 99 99.0 3
25 EWSR1-WT1 1 2 2 0 481 481 161 186 186 70 192 192.0 0
26 EWSR1-FLI1 1 3 3 1 3506 3506 407 2140 2140 346 266 266.0 6
27 ANKRD13B-

FGFR1
1 2 2 0 1973 1973 249 1006 1006 185 137 137.0 10

28 FIP1L1-
PDGFRA

1 3 3 0 207 207 108 107 107 39 14 14.0 1

29 ERG-FUS 1 2 2 0 38 38 33 17 17 4 29 29.0 0
32 KMT2A-

MLLT10
1 5 5 1 280 280 138 110 110 43 36 36.0 1

33 KMT2A-
MLLT6

1 2 2 0 409 409 159 85 85 42 11 11.0 1

34 KMT2A-
MLLT4

1 2 2 0 72 72 51 45 45 11 16 16.0 1

36 IGH-MYC 1 3 3 0 70 70 37 50 50 14 15 15.0 0
37 PML-RARA 1 4 4 0 137 137 99 99 99 49 73 73.0 3
39–118 - 80 151 1.9 0.025 3706 46.33 32.69 2204 27.55 8.9875 3217 40.21 0.44

N: number of replicates/samples; T: total number of ‘additional calls’; M: average number of ‘additional’ calls made per replicate/sample; S: percentage of ‘additional’ calls made that were uniquely called
by a single replicate; MTG-TRL: average number of target genes involved in ‘additional’ translocation calls made per replicate/sample.
For samples with more than three replicates, the average per replicate/sample is calculated as well as the percentage of unique calls amonge the sample replicates.
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Figure 3. Plots displaying the relations between sequence read evidence and read depths. (A) A scatterplot showing the relation between the total read
support (RS) for the known SV events identified from the BreaKmer analysis and the maximum sequence read depth (RD) observed at the inferred SV
breakpoints on the log scale. Each point represents a replicate in which a true-positive call was made by BreaKmer, and the point color corresponds to
the known SV of the sample replicate. (B) A scatterplot showing the relation between the quantity of the two types of sequence read evidence identified
by BreaKmer for translocations. Each point represents a replicate with a known translocation that BreaKmer properly identified with the log transformed
number of assembled reads (AS) on the x-axis and the log transformed number of discordantly mapped read pairs (DR) on the y-axis. (C) Boxplots showing
the distributions of the BreaKmer inferred breakpoint read depth (RD, top panel) in relation to the amount of total read support (RS, bottom panel) of
the identified known translocations for the four samples with tumor purity dilution replicates.

the other two cases (Supplementary Table S9). For one pa-
tient with a published gene fusion between KMT2A and
MLLT10, BreaKmer identified a different partner gene,
DNAJC1, translocated with KMT2A. Previous studies have
identified DNAJC1 as a KMT2A translocation partner in
AML (37), and there were multiple contigs identified by
BreaKmer that supported the KMT2A-DNAJC1 translo-
cation and indicated a balanced event. The second patient
with a KMT2A rearrangement had multiple KMT2A fu-
sions with MLLT10 and CEP164, both of which were iden-
tified in our analysis. Considering mean depth of cover-

age for these data were between 28 and 37 x, there were
expectedly few reads (two to nine) assembled at the in-
ferred breakpoints for all of the assembled PML-RARA
and KMT2A contigs. There was a greater abundance of
discordantly mapped read pairs than ARs for three of the
four variants. By comparison, the published SV detection
results for these data generated by BreakDancer show that
both PML-RARA translocations were detected while the
KMT2A rearrangements were not.

BreaKmer detected nine other translocations in the four
samples. Only two of these translocations had discordantly
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mapped read-pair evidence, and one (TCF7L1-NAV2) of
which has been observed in colorectal cancers (38). A hand-
ful of indels were detected for the four samples; however,
manual inspection indicated that these are all the result of
alternative reference assemblies rather than true somatic
mutations.

DISCUSSION

Comprehensively screening the cancer genome at high res-
olution for a large spectrum of alterations is costly, slow
and challenging using traditional cytogenetic and molecu-
lar techniques. Optimally, WGS of tumor DNA would be
most sensitive for detecting SV; however, the current cost,
analysis and storage of these data are inhibitory in the clin-
ical setting. Alternatively, the clinical application of tar-
geted MPS provides a high-throughput, economical, multi-
application assay to compliment current tests and reduces
the cost and time for detecting actionable alterations, such
as SV. Therefore, targeted sequencing panels are becoming
more frequently used to detect genetic abnormalities, yet the
tools to analyze SV in these data are not optimized and cur-
rent algorithms, which were created for WGS data, lack the
necessary sensitivity and specificity on targeted data sets to
translate these tools to the clinical setting.

Here we described BreaKmer, a novel SV detection
method specifically designed for target-captured MPS data.
BreaKmer analyzes defined target regions of the genome in-
dependently by assembling all soft-clipped and unmapped
(with mapped mate) read sequences in a region and re-
aligning the assembled sequences to identify structural vari-
ants with their nucleotide-level breakpoints. The BreaKmer
methodology shares similarities to a recent SV detection
method, CREST, in using assembly and realignment of as-
sembled sequences as the primary techniques for SV call-
ing and breakpoint identification, unlike previously imple-
mented breakpoint identification methods that have used
assembly and realignment techniques solely as a secondary
analysis after SV identification. Our approach provides the
ability to specify and analyze targeted regions without a
first pass analysis to first indicate candidate regions. Yet,
BreaKmer has a similar assembly procedure as the afore-
mentioned breakpoint identification methods, particularly
in using all the pertinent misaligned sequences, both soft-
clipped and unmapped, within a specified region for a single
assembly. This significantly contrasts from the CREST as-
sembly method that performs separate assemblies for each
genomic position with a set of co-aligned SR sequences.

Beyond a unique SV detection workflow specifically for
targeted sequencing, BreaKmer provides a novel implemen-
tation of a greedy-based assembler designed for SV detec-
tion using kmers. In this assembly process, the kmer strat-
egy quickly selects and frequency ranks kmer sequences that
differ from the targeted reference sequence, indicating in-
volvement in SV. These variant kmer sequences are then
used to group the reads to assemble. An additional feature
of BreaKmer that is unlike other SR methods is the ex-
traction and use of discordantly mapped paired-end reads.
While discordantly mapped paired-end reads are typically
used alone or prior to SRs, BreaKmer uses them as non-
requisite evidence to aid in filtering candidate variants.

Our approach for analyzing SV in targeted sequencing
efforts is immediately compatible with ongoing clinical and
research efforts. BreaKmer provides an efficient means to
analyze all or subsets of targeted regions that were captured
and sequenced. Analyzing target-aligned reads can be triv-
ially done with other current SV detection methods, but un-
like BreaKmer, the targeted design is not used to enhance
SV calling within these tools.

We demonstrated BreaKmer’s performance to predict
translocations, insertion/deletions, inversions and tandem
duplications on regions using targeted and whole-genome
MPS data generated from a variety of cancer specimens
with orthogonally validated, clinically relevant genomic
variations. BreaKmer’s high sensitivity (97.4%) and re-
producibility (98.3%) for detecting known variants in the
targeted MPS data demonstrated the effectiveness of our
method, which uses kmers to assemble ‘variant genomes’
from abnormally aligned reads in a region and call SV from
these. Moreover, BreaKmer sensitively detected numerous
translocations even when only one gene of the transloca-
tion was deeply sequenced. Analysis of the 80 non-cancer
samples, expected to have limited SV calls in the cancer-
specific targets, resulted in a small set of germline events.
Lastly, BreaKmer analysis of WGS data using target regions
identified previously published rearrangements and further
highlighted BreaKmer’s flexibility and sensitivity.

While all four methods identified a majority of the
known SV events, BreaKmer achieved the highest sensitiv-
ity. Further assessing the causes of the missed events by the
other three tools indicated limitations at various stages in
the methods or implementations thereof. Considering the
amount of discordantly mapped read pair support for the
known variants is noticeably lower than the amount of SR
support or non-existent, BreakDancer-max’s exclusive use
of this information resulted in the expected limitation in
sensitivity. For CREST, failures to initially build assem-
blies from the soft-clipped sequences (six EGFR-intergenic
translocations) and produce calls from realignments (10
BCL2-IGH translocations) were sources for missed calls.
The lack of logging was unhelpful in determining the exact
logic for these missed calls, and adjustment of parameters
to increase sensitivity yielded no change. In these particu-
lar instances, BreaKmer’s process for assembling reads, re-
alignment and calling is more robust than CREST’s process.
Additionally, CREST failed to call six of the eight FLT3-
ITDs due to ‘mapping quality’ and ‘type distance’ filters
despite setting the proper tandem repeat parameters (see
the Materials and Methods section). These filters are not
well documented nor was it clear how to adjust the pa-
rameters for these particular filters. The complexity of in-
ferring these FLT3-ITDs using the CREST method high-
lights an advantage and key difference in the BreaKmer ap-
proach. Specifically, CREST assembly-mapping-searching-
assembly-alignment procedure must perform two assem-
blies and two alignments and determine the structural vari-
ant based on information from the combination of these
steps. BreaKmer simplifies this procedure by building the
full contig sequence containing the insertion sequence by
using all the SRs and unmapped reads with mapped mates
in the gene region and then performs a realignment to di-
rectly observe an insertion event as compared to the ref-
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erence sequence. Lastly, examination of Meerkat’s missed
calls revealed the limitation in remapping soft-clipped se-
quences prior to identifying discordant read pair clusters.
For the eight missed FLT3-ITDs and three of the EML4-
ALK translocation events the remapping step failed to map,
or uniquely map, the sequences to the proper breakpoint
locations preventing the ability to identify clusters at these
positions. As illustrated in these cases, failure to properly
remap individual soft-clipped sequences can easily elimi-
nate read support for a variant. BreaKmer’s approach to
assemble the soft-clipped and unmapped reads into a con-
sensus sequence first is a more robust way to group the sup-
porting reads and provide a longer sequence with improved
ability to properly realign. There were also three instances
where Meerkat missed calls in which the proper discordant
read pair cluster was identified but the cluster was not car-
ried forward as a candidate variant.

Beyond detecting the known events, all four methods
output numerous other SV calls that were not previously
known or validated. By aiming to maximize the sensitivity
of these methods with appropriate adjustment of various
parameters, such as read support thresholds, the total num-
ber of calls expectedly increased, likely due to more false-
positive results. This is supported by the reported lack of
reproducibility of many of the additional calls between the
sample replicates and the four methods as well as a high
number of calls in the non-cancer samples. Yet, the differ-
ences in methodologies between the four programs may ex-
plain some unique, and possibly real findings, as has been
suggested in previous comparisons using other SV calling
programs (22). Also, features and variations in parameters
of the different programs can make a substantial difference
in the number of additional calls that are made. For exam-
ple, allowing CREST to make calls with SRs only at one
of the variant’s breakpoints dramatically increases the to-
tal number of calls. In further examining the CREST out-
put, a majority of the additional calls were using duplicated
reads for read support despite the flagging their removal.
We estimated that ∼98% of the additional calls were of this
nature because their contigs were of equal length to a sin-
gle read. Systematic removal of these was not done, as it
would have removed true-positive calls as well. The exclu-
sive use of SRs (CREST) or discordant read pairs (Break-
Dancer) also limits the information used by the methods
to determine whether a call appears real or not. BreaKmer
makes use of the discordant read pair information to aid in
the filtering of rearrangement calls with low read support.
Despite aiming to appropriately adjust each program’s pa-
rameters to fairly compare results and maximize results, we
recognize that each program may require optimization for
targeted sequencing data to yield improved results.

In short, BreaKmer provides a novel method to sen-
sitively interrogate MPS data for SV. The application of
BreaKmer on clinical MPS data in combination with tra-
ditional pathological techniques will enhance the ability to
quickly and accurately aid in determining appropriate diag-
nosis and treatment regimens.

AVAILABILITY

BreaKmer is implemented in python programming lan-
guage and can be run on standard research-computing
hardware with ∼4 Gb of memory. An analysis of 300
genes/regions with an average of 150-fold sequence cover-
age for a single sample would range between 30 and 120 min
to complete. A binary alignment/map (BAM) formatted file
containing sequence alignments to the reference genome by
a ‘soft-clipping’ aligner, such as bwa (32) or Bowtie (39),
is required as input. BreaKmer is available to download at
https://github.com/a-bioinformatician/BreaKmer.
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